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Parameter-space investigation for spin-dependent electron diffraction in the Kapitza-Dirac effect
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We demonstrate that spin-dependent electron diffraction is possible for a smooth range of transverse electron
momenta in a two-photon Bragg scattering scenario of the Kapitza-Dirac effect. Our analysis is rendered possible
by introducing a generalized specification for quantifying spin-dependent diffraction, yielding an optimization
problem which is solved by making use of a Newton gradient iteration scheme. With this procedure, we
investigate the spin-dependent effect for different transverse electron momenta and different laser polarizations
of the standing-light-wave Kapitza-Dirac scattering. The possibility of using arbitrarily low transverse electron
momenta when setting up a spin-dependent Kapitza-Dirac experiment allows longer interaction times of the
electron with the laser and therefore enables less constraining parameters for an implementation of the effect.
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I. INTRODUCTION

Kapitza and Dirac predicted the reflection of electrons at
standing waves of light [1], known today as the Kapitza-Dirac
effect. The effect was demonstrated experimentally for atoms
[2,3] and then also for electrons [4], with another precise
experiment conducted confirming the Kapitza-Dirac effect
with multiple [5] and single [6] diffraction orders for elec-
trons. The experimental realization of the Kapitza-Dirac effect
raised the question of spin effects [7,8], which were suggested
theoretically [9–13]. Indeed, a recent implementation of the
Kapitza-Dirac effect on the basis of transmission electron
microscopy showed an expected dip of the diffracted beam
at the location where spin effects are expected, provided suf-
ficient experimental accuracy was available [14]. Follow-up
theoretical investigations focused on bichromatic laser con-
figurations to show spin effects in the Kapitza-Dirac effect
[15–20] and refined descriptions suggested coherent electron
spin polarization and spin inference by the interaction with
light only [21–28].

Among the predictions of a spin-dependent Kapitza-Dirac
effect, several scenarios consider three or more photon inter-
actions [9,10,15,16,18–20] or a quantum state evolution up
to at least fractions of the transition’s Rabi cycle is required
[17,29]. A recently discussed two-photon interaction in a
Bragg scattering setup opens the perspective for an experi-
mental implementation of the effect at hard-x-ray standing
light waves [30], but the necessary electron momentum of
1mc puts limits on the interaction time of the laser with
the electron. With low electron velocities one could achieve
higher spin-dependent diffraction probabilities, which would
ease the necessary demand for the peak laser intensity of the
experiment.

*ahrens@shnu.edu.cn

Nevertheless, the parameters discussed in Ref. [30] are
not the only possible set of parameters for a spin-dependent
two-photon interaction in the Kapitza-Dirac effect. From the
Taylor expansion of the spin- and polarization-dependent
scattering matrix in [30], one can see that similar spin-
dependent two-photon diffraction setups are possible, when
smoothly varying the setup parameters. Consequently, we
investigate different parameter ranges for observing the
spin-dependent electron diffraction effect. We do this by es-
tablishing a general formulation for the characterization of
spin-dependent electron diffraction, where we implement an
iterative algorithm for the optimization of spin-dependent
diffraction by using the Newton method in two dimensions.
Being equipped with this tool, we are able to demonstrate
spin-dependent electron diffraction, even for vanishing zero
transverse electron momenta.

Our article is structured as follows. In Sec. II we present
our theory. We begin by introducing the laser field, the
electron quantum state, and the related Compton scattering
formula for the two-photon Kapitza-Dirac effect in the Bragg
regime in Sec. II A. We then discuss and specify the meaning
of spin-dependent diffraction in the context of the Kapitza-
Dirac effect in Sec. II B and introduce a quantity, which
we call contrast, for quantifying this spin dependence in
Sec. II C. We then demonstrate the functionality of an itera-
tive algorithm for determining the optimized spin parameters
for the contrast in Sec. III. We do this first in the context
of a known literature example (Sec. III A) and then show
that the optimization algorithm can be used to smoothly
lower the transverse electron momentum to zero (Sec. III B).
In Sec. IV we verify the algorithmically determined re-
sults by comparing the results with analytic solutions on
the basis of a Taylor expansion of the Compton tensor. We
finally present an outlook for the use of the our method
in Sec. V and provide documentation of the algorithmic
implementation for the contrast optimization procedure in
Appendix A. We also provide a refined description of the spin
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configuration of the electron when undergoing scattering in
Appendix B.

II. THEORETICAL DESCRIPTION

A. Electron diffraction and Compton scattering

In our investigation, we consider the electron diffraction at
a standing-wave laser beam, which is propagating along the
x axis,

Ar = A0,rei(ωt−kLx) + A∗
0,re−i(ωt−kLx), (1a)

Al = A0,l e
i(ωt+kLx) + A∗

0,l e
−i(ωt+kLx), (1b)

where Ar (Al ) is the polarization of the beam traveling in
the positive (negative) direction along the x axis, with the
amplitude A0,r (A0,l ). Denoted are also the laser wave number
kL, laser frequency ω = kL, and time t ; we set h̄ = c = 1 in
this article, with the exception of exemplifying the transverse
electron momentum in terms of keV/c and the laser photon
energy in terms of eV in Sec. III A.

For the initial electron quantum state in the two-photon
Kapitza-Dirac effect we assume the wave function

�i(x, t0) =
∑

s

cs
i (t0)u+,s

pi
eix·pi (2a)

at initial time t0 and for the electron after the interaction with
the laser we similarly write the final quantum state

� f (x, t ) =
∑

s

cs
f (t )u+,s

p f
eix·p f . (2b)

Initial and final electron momenta

pi = −kLe1 + p2e2 + p3e3, (3a)

p f = kLe1 + p2e2 + p3e3 (3b)

are chosen such that energy and momentum conservation are
fulfilled [9,10,31], for the case of absorption of one photon
from the right-propagating laser beam and the induced emis-
sion of another photon into the left-propagating laser beam,
from the external field (1). In Eqs. (2) we also define the
bispinors as

u+,s
p =

√
Ep + m

2m

(
χ s

σ·p
Ep+m χ s

)
, (4a)

u−,s
p =

√
Ep + m

2m

( σ·p
Ep+m χ s

χ s

)
, (4b)

with the vector σ of Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(5)

and the relativistic energy momentum relation

Ep =
√

m2 + p2, (6)

where m is the electron rest mass. Note that we are referring
to the spatial direction of the e1, e2, and e3 unit vectors when
mentioning the x, y, and z axes in this article.

The spin-dependent quantum state propagation from the
initial to the final electron quantum state in the event of

scattering at the laser beam can be written as

cs′
f (t ) =

∑
s

U s′,s(t, t0)cs
i (t0). (7)

For the mentioned case of absorption and emission of a single
photon (two-photon interaction) in a standing-wave laser
beam, we have shown that the diffraction probability is pro-
portional to the Compton scattering formula [30]

U s′,s(t, t0) ∼ Mss′ = (A∗
0,l )μ(A0,r )νM̃s′s;μν, (8)

with the Compton tensor

M̃s′s;μν = ūs
p f

(
γ μ /pi + /k + m

2pi · k
γ ν − γ ν /pi − /k′ + m

2pi · k′ γ μ

)
us′

pi
.

(9)

Here we are defining the four-vectors pi = (Epi , pi ), k =
(ω, k), and k′ = (ω,−k); the photon momentum k =
(0, 0, kL ); and the Dirac adjoint ūs

p = us†
p γ 0. The expressions

are based on Einstein’s sum convention with the metric g =
diag(1,−1,−1,−1) and Dirac gamma matrices

γ 0 =
(
1 0
0 1

)
, γ i =

(
0 σ i

−σ i 0

)
, (10)

where 1 is the 2×2 identity. Further details about conven-
tions in quantum field theory can be found, for example, in
Refs. [32–37].

We introduce the dimensionless parameters

qL = kL

m
, q2 = p2

m
, q3 = p3

m
(11)

in place of the laser wave number kL and the transverse mo-
menta p2 and p3 of the electron, for ease of notation in the
following. Note that the word “transverse” is used with respect
to the laser beam propagation direction (x direction), in this
article.

B. Characterization of spin-dependent diffraction

We have introduced the spin propagation matrix M as the
S-matrix component of Compton scattering in Eq. (8), which
depends on a multidimensional space of physical parameters,
i.e., polarization and momenta of the laser beams and the
electron. Therefore, the exact form of M is difficult to predict
and we thus assume the matrix M to be a general complex
2×2 matrix, M ∈ C2×2 with eight independent degrees of
freedom in the following discussion. After having established
the concept of the contrast below, we illustrate our formalism
again with specific matrix entries M from Eq. (8) in Secs. III
and IV.

We point out that we base our investigation directly on the
complex entries of the S matrix, as in Eqs. (8) and (9) in this
work, and it might be fruitful to understand how our plain
matrix treatment might generalize in spin parametrizations on
the basis of the Stokes vector [38–40] or the spin density
matrix [41] in further studies (for details see, for example,
[42]). In contrast to a plane-wave external field situation, for
which a solution of the Dirac equation is available in terms
of the Volkov solution [43], we base the matrix input for our
consideration in the context of a standing light wave on a
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situation where the quantum dynamics is linear in the external
fields such that the Compton scattering formula can be used
to describe the dynamics [30]. Note that our focus in this
work is the influence of the initial electron polarization on
the final diffraction pattern after laser-electron interaction.
The classical electron motion can also be influenced by the
spin dependence of the radiation reaction force [22]. In this
context, it is possible to describe electron spin polarization by
including photon emissions along the semiclassical particle
motion in a Monte Carlo implementation [44].

Even though we have already identified projection matrices
as one possible characterization criterion for spin-dependent
electron diffraction in the Kapitza-Dirac effect in a pre-
vious investigation [29], more general matrix forms for
spin-dependent diffraction are possible [30]. At this point
we want to emphasize that we associate the term spin-
dependent diffraction with a diffraction pattern which depends
on the initial spin state of the electron, in the context of the
Kapitza-Dirac scattering. The large number of matrix degrees
of freedom for the electron spin-propagation matrix turn the
question “How can one define a general and unique character-
ization for spin-dependent spin propagation matrices?” into a
sophisticated problem.

As the first step, one may be tempted to establish a gen-
eral definition for the term “spin-dependent spin propagation
matrix.” For such a definition it is reasonable to require the
following two conditions: Spin-dependent spin propagation
matrices should be (i) nonzero and (ii) have a nonzero kernel
dimension. This definition would guarantee diffraction, as the
matrix is required to be nonvanishing (first condition). The
diffraction will also be spin dependent, because we have de-
fined the guaranteed existence of an electron spin polarization
which will be mapped on the zero vector, which is the kernel
of the matrix (second condition).

The next question that arises is how one would handle this
definition in practical terms, in a numerical implementation.
The accuracy of the numerical representation of numbers
turns the second condition into a nontrivial problem, and
this problem is related to another question, regarding spin-
dependent diffraction: What about diffraction, which is only
partially spin dependent? For specifying the term “partially
spin-dependent”, we assume two orthogonal electron spin po-
larizations ψA ∈ C2 and ψB ∈ C2. Specifically, in this article
we choose the commonly known states

ψA =
(

cos
(

α
2

)
sin

(
α
2

)
eiϕ

)
, ψB =

(
sin

(
α
2

)
e−iϕ

− cos
(

α
2

)
)

, (12)

whose expectation value with respect to the vector of spin ma-
trices σ points in the directions n = (sin α cos ϕ, sin α sin ϕ,

cos α) and −n on the Bloch unit sphere, respectively.

C. Quantifying spin-dependent diffraction

As the next step in quantifying the term partially spin
dependent we define a quantity that we call contrast as the
fraction

C ′(M ) = |MψA|2
|MψB|2 , (13)

evaluated for a given matrix M at the value pair (α, ϕ) such
that C ′(M ) is minimal. In other words, the contrast C(M )
of the matrix M is the minimum value of C ′(M ), where the
minimum is to be determined with respect to the variables
α and ϕ of the spinors in Eq. (12). In the context of this
definition, the stated criterion for a spin-dependent spin prop-
agation matrix as a matrix that is nonvanishing and has a
nonzero kernel dimension corresponds to a spin propagation
matrix with zero contrast C(M ) = 0. On the other hand, the
maximal possible value for the contrast emerges for a situa-
tion in which |MψA|2 = |MψB|2 since the requirement for a
minimum of C ′(M ) implies that a value pair (α, ϕ) is chosen
for which |MψA|2 is smaller than or equal to |MψB|2. There-
fore, the maximal possible value for the contrast is one and
we have 0 � C(M ) � 1 for all M ∈ C2×2. Within the frame-
work of this description, partial spin-dependent diffraction
corresponds to a contrast that is larger than zero and smaller
than one.

The last question in the discussion about spin dependence
concerns the determination of the values α and ϕ, at which
C ′(M ) is minimal. An exact constructive method for the ex-
plicit determination for the value pair (α, ϕ) for the minimum
might exist. Nevertheless, in this work, we are pursuing a
pragmatic approach, by implementing a Newton method in
the two-dimensional space of the variables α and ϕ for finding
a local minimum of C ′(M ). The implementation details of the
Newton procedure in our work are summarized in Appendix A
and an executable example for running the optimization
algorithm is provided in the Supplemental Material [45].

III. PARAMETER STUDY OF SPIN-DEPENDENT
DIFFRACTION

A. Method demonstration

We now want to apply the above-discussed formalism
to a specific example. From previous investigations, a spin-
dependent electron-laser interaction is predicted in a standing
light wave in which one of the counterpropagating laser beams
is linearly polarized while the other beam is circularly polar-
ized and additionally the electron has a transverse momentum
of 511 keV/c in the polarization direction of the linearly
polarized beam [30,46]. We therefore set the polarization
vectors of the laser beam (1) to the values A0,r = e3 and
A0,l = (e2 + ie3)/

√
2, compute the matrix M according to the

Compton scattering formula (8), and determine the contrast
C(M ) as a function of the two transverse electron momenta
around the values q2 = 0 and q3 = 1 in Fig. 1. Note that the
value q3 = 1 corresponds to the above-mentioned momentum
511 keV/c. Also, we set the wave number of the laser beam
to the value qL = 0.02, in accordance with the corresponding
value in related investigations [30,46,47]. The value qL =
0.02 corresponds to x-ray photons with an energy of about
10 220 eV. The resulting contrast in Fig. 1 is indeed approach-
ing zero for parameters at which spin-dependent diffraction
has already been predicted in Ref. [30]. Therefore, Fig. 1
illustrates the nonzero kernel dimension for the occurrence
of spin-dependent diffraction, as discussed above. The other
mentioned criterion, which is a nonzero spin propagation ma-
trix for observing spin-dependent diffraction, can be verified
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FIG. 1. Example of vanishing contrast. The contrast C(M ) is
computed for the scenario described in Sec. III A and evaluated
according to the procedure discussed in Sec. II C, where the spin
propagation matrix M is based on the Compton scattering formula
(8). The iterative method for the determination of C(M ) is described
in Appendix A. We evaluate M and C(M ) as a function of the
transverse electron momenta q2 and q3, around the centering values
q2 = 0 and q3 = 1, according to parameters similar to the param-
eters in Ref. [30]. Also, as in Refs. [30,46], we choose the laser
energy qL = 0.02 and the laser polarizations A0,r = e3 and A0,l =
(e2 + ie3)/

√
2.

by another plot as shown in Fig. 2. Figure 2 contains the
same parameters as in Fig. 1, but now the quantity |MψB|2 is
shown instead of C(M ). The nonvanishing probability |MψB|2
in Fig. 2 implies that the initial spin polarization ψB still
results in a final diffraction probability. This can happen only
if the spin propagation matrix is nonzero. In summary, the
data in Figs. 1 and 2 agree with the expectation that elec-
trons with initial polarization ψA are not (or are only less)
diffracted, while electrons with polarization ψB are under-
going diffraction. We therefore have successfully applied our
theory framework to a situation in which the final diffraction
pattern of the Kapitza-Dirac effect depends on the choice of
the initial electron spin polarization (either ψA or ψB). Note
that we provide a comprehensive description of the electron
spin state before and after Kapitza-Dirac scattering for Figs. 1
and 2 in Appendix B.

B. Spin-dependent diffraction for smooth parameter change

In the following, we are interested in finding parame-
ters for the laser polarization and electron momentum for
which the electron undergoes spin-dependent diffraction in
Kapitza-Dirac scattering with having a low transverse electron
momentum. In this context, we mention that the polarization
amplitudes A0,r and A0,l in Eq. (1) are complex three-
component vectors, where the vacuum Maxwell equations im-
ply that the component along the laser propagation axis
vanishes for a plane-wave laser field. Therefore, for our beams
propagating along the x axis, the first component of A0,r and
A0,l is zero, resulting in eight remaining degrees of free-
dom (two complex numbers for each of the two polarization

FIG. 2. Nonvanishing diffraction probability for the transverse
momentum parameters as in Fig. 1. In analogy to the procedure in
Fig. 1, we compute the spin propagation matrix M as a function of
the transverse momenta q2 and q3. Different from Fig. 1 however, we
display the maximal possible diffraction probability |MψB|2, in place
of the contrast C(M ). For each value pair (q2, q3) in the density plot,
we use the iteratively optimized values (α, ϕ) from our algorithm
for the determination of C(M ). We point out that the circumstance of
zero contrast in Fig. 1 in combination with a nonvanishing diffraction
probability in this figure implies that spin-dependent diffraction can
emerge for suitable choices of α and ϕ, in the Kapitza-Dirac effect,
in accordance with the conclusion drawn in Refs. [30,46].

amplitudes) for the polarization of the standing-wave laser
beam.

The general exploration of the parameter space with re-
spect to possible polarizations and electron momenta might be
interesting. However, for the research question of this work,
we specifically find that spin-dependent electron diffraction
with low transverse electron momenta can be achieved by
varying the ellipticity of one laser beam while keeping the
other beam linearly polarized. We therefore choose the polar-
ization

A0,l =
⎛
⎝ 0

cos θ

i sin θ

⎞
⎠, A0,r =

⎛
⎝0

0
1

⎞
⎠. (14)

The external field is compatible with the polarization used
in Figs. 1 and 2 of the preceding section, for the case in
which we set the ellipticity parameter to the value θ = π/4 in
Eq. (14).

In order to explore the occurrence of spin-dependent
electron diffraction dependent on the transverse electron
momentum q3 and the ellipticity parameter θ of the left-
propagating laser beam, we display the contrast C(M ) as a
function of these two parameters in a density plot in Fig. 3.
The parameter q2, which was varied in Figs. 1 and 2, is
set to the constant value q2 = 0. We see in Fig. 3 that for
each value q3 there is an angle θ for which the contrast is
zero, in the white regions in the density plot. This means
that for every transverse momentum q3 in the displayed range
q3 ∈ [0, 1] one expects to find parameters for spin-dependent

012212-4



PARAMETER-SPACE INVESTIGATION FOR … PHYSICAL REVIEW A 109, 012212 (2024)

FIG. 3. Contrast for a left-propagating laser beam with ellipti-
cal polarization. The parameters and computation procedure are the
same as in Fig. 1, except that we use the more general polarization
(14) with elliptical polarization angle θ and keep the value for the
transverse momentum q2 fixed at value 0. One can see that for every
transverse momentum q3 (x axis) there is a polarization with angle θ

(y axis) for which the contrast reaches zero.

diffraction provided the spin-independent diffraction proba-
bility for those parameters is nonvanishing.

The choice of presentation for the contrast in Fig. 3 appears
unsuitable, as the values for a zero contrast are located in
a region very close to θ = 0 but not exactly at θ = 0. To
better observe the low-contrast regions at q3 = 0, we therefore
display C(M ) again as a function of θ and q3 in Fig. 4,
where we now use the inverse function 1/θ instead of θ as
the y axis for the density plot. The most interesting region in
Fig. 4 is the location where the contrast C(M ) is at its lowest
value. We denote this lowest contrast location by the function
θ (q3). The position of this numerically determined minimum
θ (q3) is marked by the black solid line labeled min in Fig. 4.
We find that the function can be approximated by the fitting
function

1

θ
(q3) = a1 + a2

√
q2

3 + a3 (15a)

on the interval q3 ∈ [0, 0.9] and

1

θ
(q3) = b1 + b2

√
(q3 − 1)2 + b3 (15b)

on the interval q3 ∈ [0.9, 1]. The fitting parameters for the
functions are determined as

a1 = 9.671×101, b1 = 2.771×10−2, (16a)

a2 = −8.510×101, b2 = 7.041×101, (16b)

a3 = 2.996×10−1, b3 = 3.137×10−4. (16c)

We display the fitting functions (15) with parameters (16) as
red and blue dashed lines in Fig. 4 to demonstrate that they
approximate the minimum function θ (q3) well.

To demonstrate explicitly that spin-dependent diffraction
takes place along the fitted line in Fig. 4, we display |MψA|2

FIG. 4. Contrast as a function of the inverse ellipticity parameter
1/θ and q3. In this figure, we have inverted θ at the y axis, as
compared to Fig. 3, such that the minimum value of the contrast can
be located more easily. The location of the minimum is plotted in
the figure as a black solid line. We can fit this minimum location
by the functions (15a) for the range q3 ∈ [0, 0.9] (red dashed line)
and (15b) for the range q3 ∈ [0.9, 1] (blue dashed line). The inset
magnifies the fit of the blue dashed line. The value of 1/θ at the
left (q3 = 0) and right (q3 = 1) bounds of the figure match analytic
predictions for zero contrast, as shown in Secs. IV A and IV B.

and |MψB|2 as a function of q3 in Fig. 5(a). The laser polar-
ization A0,l in Eq. (14) at each value of q3 in Fig. 5 is set
according to the functional dependence θ (q3) of the fitting
functions in Eq. (15). The parameters α and ϕ for the initial
electron spin polarization in Fig. 5(a) are determined in the
same way as for the C′(M ) minimum iteration in Figs. 1–4,
where we find that the spinor angle ϕ(q3) of the spinors (12) is
always zero. The function of the other angle α(q3) is displayed
in Fig. 5(b). We see in Fig. 5(a) that |MψA|2 is several orders
of magnitude smaller than |MψB|2. In other words, for each
transverse momentum q3, with q2 = 0, we are able to find
laser polarizations A0,r and A0,l and an initial electron spin
configuration such the spin propagation matrix M in the form
of Eq. (8) assumes matrix entries for which the two orthogonal
polarizations ψA and ψB have a significantly different diffrac-
tion probability. This confirms the desired spin-dependent
diffraction effect. We point out that Fig. 5 presents explicit
parameters for the laser polarization and the electron spin
polarization such that the spin-dependent diffraction effect
emerges.

IV. DISCUSSION

A. Consistency considerations

We refer back to the scenario of Refs. [30,46] at q3 = 1,
which is discussed in Sec. III A, corresponding to the right end
of the x axis in Figs. 4 and 5. The fitting function (15b) at this
right end evaluates to 1/θ = 4.005/π . This matches the value
θ = π/4, which was used in Sec. III A and confirms the fitting
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FIG. 5. Explicit demonstration of a vanishing contrast along the
dashed line in Fig. 4(a). We determine the parameter pair (α, ϕ) with
our iterative contrast determination algorithm for the combination of
q3 and 1/θ (q3) along the minimum fit (15) of the contrast distribution
in Fig. 4. The probability |MψA|2 is several orders of magnitude
smaller than |MψB|2 along the minimum location in Fig. 4, which
implies a value of the contrast in Eq. (13) significantly smaller than
1. In combination with a nonvanishing amplitude for |MψB|2 this
represents spin-dependent diffraction. Note that tiny discrepancies
between the fitting functions (15) and the exact location of the con-
trast minimum in the (1/θ, p3) plane of Fig. 4, as well as a small
discontinuity between the two parts of the fitting functions (15a) and
(15b), lead to a larger variation of |MψA|2 on the logarithmic scale
of (a) of this figure. Despite these variations, which can be under-
stood systematically, the stated property that |MψA|2 is significantly
smaller than |MψB|2 holds true. (b) Parameter α in Eq. (12), at which
the low contrast takes place. The other spinor angle ϕ is always
determined to zero in our iterations. Shown in (b) is the initial spin
orientation parameter α of the electron for the lowest contrast. The
value of α at the left (q3 = 0) and right (q3 = 1) bounds match the
analytic considerations in Secs. IV A and IV B.

procedure. Regarding the determined electron polarization,
we mention that spin-dependent diffraction is discussed for
the angle α = 7π/4 + 2π in Refs. [30,46], where we skip the
additional 2π , as the contrast is 2π periodic with respect to
α, as explained in Appendix A. The remaining value 7π/4
for the angle α matches the determined value in Fig. 5(b), at
q3 = 1, and confirms our iterative algorithm.

B. Limit for low transverse electron momenta

In analogy to the preceding section, we would like to do a
similar analysis for the momentum q3 = 0. This is of interest,
as a low transverse electron momentum can allow for longer
interaction times, for the interaction between the laser and
electron in the Kapitza-Dirac effect. Following the procedures
in Refs. [30,46], we perform a Taylor series expansion of the
Compton tensor (9) around the point of transverse momenta
q2 = q3 = 0 up to second order in products of the variables

qL, q2, and q3. We obtain the matrix entries

Ms′s;22 =
(

1 − 2q2
2 + 1

2
q2

L

)
1 − i

2
q3qLσ2 − 3i

2
q2qLσ3,

Ms′s;23 = −2q2q31 − iqLσ1 + iq2qLσ2 − iq3qLσ3,

Ms′s;32 = −2q2q31 + iqLσ1 + iq2qLσ2 − iq3qLσ3,

Ms′s;33 =
(

1 − 2q2
3 + 1

2
q2

L

)
1 + 3i

2
q3qLσ2 + i

2
q2qLσ3.

(17)

On the basis of this expansion, the subsequent argument about
the spin- and polarization-dependent interaction is carried out
in a calculation up to leading order in the small parameters
qi. For the polarization vectors in Eq. (14) we choose the
angle θ such that sin θ evaluates to qL. This is roughly the
case for θ ≈ qL = 0.02. We obtain the polarizations A0,l =
e2 + iqLe3 and A0,r = e3 for the left- and right-propagating
laser beams, respectively. Together with the Taylor expansion
(17), these polarizations evaluate in the Compton scattering
formula (8) as

M ≈ −iqL1 − iqLσ1 = −iqL

(
1 1
1 1

)
. (18)

We see that the eigenvectors of σ1,

ψA = 1√
2

(−1
1

)
, ψB = 1√

2

(−1
−1

)
, (19)

produce a zero contrast C(M ) = 0. The states (19) correspond
to the spinors (12) with the parameters α = 3π/2 and ϕ = 0.
This matches the algorithmically determined values for α

and ϕ at the left end of the x axis in Fig. 5(b), for the
chosen photon energy qL = 0.02. Similarly, the left side of
Fig. 4 is confirmed, since we have chosen 1/θ ≈ 1/qL = 50.
The fitting function (15a) consistently evaluates to the value
1/θ (0) = 50.13.

We further confirm our consideration by displaying the
contrast and diffraction probability as a function of the mo-
menta q2 and q3 around the point q2 = q3 = 0 in Figs. 6 and
7, respectively. The procedure is similar to the variation of mo-
menta in Figs. 1 and 2, with the difference that the momentum
interval at the x axis of Figs. 6 and 7 is now q3 ∈ [−0.05, 0.05]
and the ellipticity parameter of the left-propagating laser beam
is set to 1/θ = 50, as discussed above. We can see in Fig. 6
a contrast close to zero, where Fig. 7 implies a nonvanish-
ing diffraction probability for the discussed spin dynamics.
This confirms our conclusion from above: Spin-dependent
diffraction is possible for the transverse momenta q2 = q3 =
0, with laser and electron polarization parameters 1/θ = 50,
α = 3π/2, and ϕ = 0 as implied on the left (q3 = 0) of Figs. 4
and 5, for the case of the laser frequency qL = 0.02. Note that
a code example for the iterative algorithm with the mentioned
parameters is provided in the Supplemental Material [45] for
the specific case of the momenta q2 = q3 = 0. We also point
out that we give a thorough description of the spin configura-
tion of the electron spin in Figs. 6 and 7, similarly to what is
done for Figs. 1 and 2 in Appendix B.
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FIG. 6. Contrast around the momentum q2 = q3 = 0. We dis-
play the contrast similarly to in Fig. 1, but now for the range q3 ∈
[−0.05, 0.05] such that it is centered around the momentum q3 = 0.
The ellipticity parameter of the left-propagating laser beam is set to
the value θ = 1

50 . We find a contrast close to zero at the momenta
q2 = q3 = 0.

V. CONCLUSION AND OUTLOOK

In this study, we have introduced the contrast on the basis
of Eq. (13). For a given spin propagation matrix, the initial
electron spin polarization is to be optimized such that contrast
reaches its minimum. This definition can serve as a measure
for quantifying the spin-dependent diffraction in the Kapitza-
Dirac effect. With the help of an iterative algorithm, as de-
scribed in Appendix A, which optimizes any given spin propa-
gation matrix M ∈ C2×2 regarding the spin-dependent diffrac-
tion effect, we were able to systematically search for the
optimal parameters at which a spin-dependent Kapitza-Dirac

FIG. 7. Diffraction probability around the momentum q2 = q3 =
0. Similarly to the contrast over the range q3 ∈ [−0.05, 0.05] in
Fig. 6 as a modification of Fig. 1, we display here the diffraction
probability |MψB|2 over the range q3 ∈ [−0.05, 0.05] and θ = 1

50 ,
as a modification of Fig. 2. We see again a nonvanishing diffraction
probability, which, in combination with the low contrast in Fig. 6,
implies the existence of spin-dependent diffraction at q2 = q3 = 0.

effect can take place. Specifically, we demonstrated in Figs. 4
and 5 that spin-dependent diffraction with a contrast close
to zero [C(M ) ≈ 0] can always be achieved for any trans-
verse momentum between 0 and 1mc in the direction of
the linearly polarized laser beam. The zero-contrast situation
takes place when one of the counterpropagating beams in the
Kapitza-Dirac effect is polarized in the direction of the trans-
verse electron momentum, whereas the polarization of the
other beam is elliptically polarized according to the polariza-
tion (14) with ellipticity θ given by Eq. (15) and related fit
parameters (16). Therefore, our results demonstrate that spin-
dependent two-photon Kapitza-Dirac scattering in the Bragg
regime is possible for arbitrarily small transverse electron
momenta, implying longer possible interaction times of the
laser with the electron. Since the diffraction probability grows
quadratically with the effective interaction time between the
laser and the electron, our finding can enhance the count rate
in an experimental setup or, analogously, lower the necessary
laser intensity which is required in such an experiment.

In the future, it would be interesting to apply the discussed
spin optimization procedure to the spin propagation of the
Kapitza-Dirac effect with strongly focused laser beams [47].
Another application of the contrast technology is an investi-
gation of the dimensionality of parameter space (i.e., numbers
of parameters which can be varied independently of each
other) such that spin-dependent electron diffraction can still
be observed.
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APPENDIX A: CONTRAST ITERATION ALGORITHM

For the determination of the contrast C(M ) we are inter-
ested in the minimization of the function C ′(M ), defined in
Eq. (13), as a function of α and ϕ, for a given complex 2×2
matrix M. For the minimization we make use of Newton’s
method in two dimensions [48], with the iteration step(

αn+1

ϕn+1

)
=

(
αn

ϕn

)
− H (αn, ϕn)−1g(αn, ϕn), (A1)

where H (αn, ϕn)−1 is the inverse of the Hessian matrix

H (αn, ϕn) =
[

∂2
αC ′(M ) ∂α∂ϕC ′(M )

∂ϕ∂αC ′(M ) ∂2
ϕC ′(M )

]∣∣∣∣∣
α=αn
ϕ=ϕn

(A2)

and g(αn, ϕn) is the gradient

g(αn, ϕn) =
[
∂αC ′(M )

∂ϕC ′(M )

]∣∣∣∣∣
α=αn
ϕ=ϕn

. (A3)

To avoid numerical inaccuracy, we have manually computed
and implemented the derivatives ∂αC ′(M ), ∂ϕC ′(M ), ∂2

αC ′(M ),
∂2
ϕC ′(M ), and ∂α∂ϕC ′(M ). The calculation of the derivatives

and also an executable example of our algorithm are provided
in the Supplemental Material [45].

Note that the spinors (12) are periodic, with periodicity
interval α ∈ [0, 4π ], ϕ ∈ [0, 2π ]. Further, the spinors have
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a minus sign over the range α ∈ [2π, 4π ], which drops out
in the absolute value of the contrast definition (13). We also
obtain the same spinors upon the substitutions ϕ → ϕ + π

and α → 2π − α. Therefore, to avoid ambiguities, we restrict
the parameters of the spinors (12) to the bounds

α ∈ [0, 2π ], ϕ ∈ [0, π ]. (A4)

The computation of the contrast is implemented in the
following way.

(i) For given polarizations A0,l and A0,r of the counterprop-
agating laser beams, we compute the spin propagation matrix
M of the Kapitza-Dirac effect from the Compton scattering
formula (8).

(ii) To avoid the iteration into a wrong local minimum, we
first iterate over all values of pairs (α, ϕ) on a grid of equal
spacing, with 126 different grid points for α and 63 grid points
for ϕ. We assume that the pair (α, ϕ) with the lowest value in
Eq. (13) is near the global minimum and use it as initial values
α0 and ϕ0 for the iteration.

(iii) With the initial values set, we iterate Newton’s
method in two dimensions (A1), where the Hessian matrix
H (αn, ϕn) and the gradient g(αn, ϕn) are computed for each
iteration step.

(iv) After each iteration step, we check whether αn and
ϕn are inside the restricted bounds (A4) and use the above-
discussed periodicity properties to reassign the parameters
back to the bounds (A4), in case they are not within these
bounds.

(v) We stop the iteration when the gradient is low
|g(αn, ϕn)| < 10−15, the Hessian matrix is nearly singular
(i.e., inversion is getting more inaccurate) det[H (αn, ϕn)] <

10−20, or the convergence does not take place after 80
iterations.

APPENDIX B: SPIN-EXPECTATION VALUES OF THE
ELECTRON IN SPIN-DEPENDENT DIFFRACTION

We would like to provide information about the electron
spin configuration before and after Kapitza-Dirac scattering
for the situation in Figs. 1 and 2 and likewise for the situation
in Figs. 6 and 7. We do this by evaluating the spin-expectation
value

〈ψB|Si|ψB〉
〈ψB|ψB〉 (B1a)

of the spin- 1
2 spin operator Si = h̄σ/2 for the contrast opti-

mized values α and ϕ over the parameter range of transverse
electron momenta in the figures. The spin-expectation value in
Eq. (B1a) provides the spin polarization direction of the elec-
tron before scattering, whereas the spin-expectation value of
the electron after scattering is given by

〈MψB|Si|MψB〉
〈MψB|MψB〉 . (B1b)

Normalizing the spin-expectation value by the norm of the
spin state in Eqs. (B1a) and (B1b) ensures that the length of
the displayed spin vector is h̄/2. The spin polarization direc-
tion of ψA before scattering points in the opposite direction of
ψB in Eq. (B1a). For the situation of the spin state MψA after

FIG. 8. Spin-expectation value (B1) for the setup in Figs. 1 and
2: (a), (d), and (g) spin-expectation value for the spin state ψB,
as in Eq. (B1a); (b), (e), and (h) normalized spin-expectation val-
ues (B1c) for the spin state MψA, with the normalization factor
(〈MψB|MψB〉)−1; and (c), (f), and (i) normalized spin-expectation
value for the spin state MψB, with the normalization factor
(〈MψB|MψB〉)−1, as in Eq. (B1b), for (a)–(c) the x components 〈S1〉,
(d)–(f) the y components 〈S2〉, and (g)–(i) the z components 〈S3〉. In
the central region we see a spin-flip along the e1-e3 direction. The
y component of the spin orientation remains almost unchanged when
diffraction occurs.

scattering, we consider the quantity

〈MψA|Si|MψA〉
〈MψB|MψB〉 , (B1c)

normalized by 〈MψB|MψB〉, since the denominator
〈MψA|MψA〉 would lead to the situation of a numerically
unstable, lifted singularity, in the case of zero contrast.

In Fig. 8 we display the spin-expectation values (B1) for
the situation in Figs. 1 and 2, where Figs. 8(a), 8(d), and 8(g)

FIG. 9. Spin-expectation value (B1) for the setup in Figs. 6 and
7 for the same arrangement as in Fig. 8. In the case of diffraction a
+x-polarized electron is scattered into a +x-polarized state.
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are the three components of Eq. (B1a); Figs. 8(b), 8(e), and
8(h) are the three components of Eq. (B1c); and Figs. 8(c),
8(f), and 8(i) are the three components of Eq. (B1b). We note
that the y component of the electron’s spin polarization shows
no significant change before [Fig. 8(d)] and after [Fig. 8(f)]
scattering. Also the x and z components in Figs. 8(a) and 8(g)
before diffraction appear very similar to Figs. 8(c) and 8(i)
after diffraction. Only in the central region, we observe a spin
flip in the e1-e3 direction, which is consistent with the descrip-
tion in Refs. [30,46] and our consideration in Sec. IV A.

We also display the spin-expectation values (B1) for the
situation in Figs. 6 and 7 in Fig. 9, with the same panel
arrangement as in Fig. 8. We clearly observe a spin polar-
ization of ψB and MψB in the x direction, corresponding to
our consideration in Sec. IV B, with ψB in Eq. (19) being the
σ1 eigenstate with eigenvalue +1 and after applying to the
spin-propagation matrix (18) remaining a σ1 eigenstate with
eigenvalue +1. In both Figs. 8 and 9, the quantity (B1c) in
Figs. 8(b), 9(b), 8(e), 9(e), 8(h), and 9(h) is very close to zero,
consistent with the contrast in Fig. 1 and in particular in Fig. 6.
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