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The question of whether complex numbers play a fundamental role in quantum theory has been debated since
the inception of quantum mechanics. Recently, a feasible proposal to differentiate between real and complex
quantum theories based on the technique of testing Bell nonlocalities has emerged [Renou et al., Nature (London)
600, 625 (2021)]. Based on this method, the real quantum theory has been falsified experimentally in both
photonic and superconducting quantum systems [Li et al., Phys. Rev. Lett. 128, 040402 (2022); Chen, et al., Phys.
Rev. Lett. 128, 040403 (2022)]. The quantum networks with multiple independent sources which are not causally
connected have gained significant interest as they offer a new perspective on studying the nonlocalities. The
independence of these sources imposes additional constraints on observable covariances and leads to new bounds
for classical and quantum correlations. In this study, we examine the discrimination between the real and complex
quantum theories with an entanglement swapping scenario under a stronger assumption that the two sources are
causally independent, which was not made in previous works. Using a revised Navascúes-Pironio-Acín method
and Bayesian optimization, we find a proposal with optimal coefficients of the correlation function which could
give a larger discrimination between the real and quantum theories compared with the existing proposals. This
work opens up avenues for further exploration of the discrimination between real and complex quantum theories
within intricate quantum networks featuring causally independent parties.
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I. INTRODUCTION

Quantum mechanics, which was established nearly 100
years ago, has achieved numerous significant accomplish-
ments that have had profound impacts on science and
technology [1,2]. Especially in the past two decades, quan-
tum information science, based on the principles of quantum
mechanics and information science, has activated a series of
advanced technologies such as quantum computing [3–8],
quantum communication [9,10], and quantum metrology
[11,12]. However, the fundamental role of complex numbers
in quantum mechanics has long puzzled its founders and sub-
sequent researchers [13]. Despite this, a group of dedicated
scientists has persistently pursued a quantum theory that re-
lies on only real numbers in its mathematical formulation,
running parallel to the development of the standard quantum
theory [14–21]. With a fixed Hilbert space dimension, the
real and complex quantum theories can be discriminated by
a single-site experiment using local tomography [22]. How-
ever, without bounding the dimension, one should consider
experiments involving several distant labs, such as the Bell
nonlocality test [23].
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Bell nonlocality was introduced by Bell in 1964, with
studying quantum correlations in a groundbreaking two-party
model through the analysis of outcome statistics in experi-
ments [23]. Bell’s model has made significant contributions
to our understanding of quantum phenomena and has been
instrumental in experimental tests that successfully ruled out
local hidden variable theories [24–30]. In past decades, the
studies of nonlocalities have been extended to the scenar-
ios of quantum networks [31], such as the nonbilocalities in
an entanglement-swapping quantum network [32,33]. These
studies offer new opportunities and perspectives for studying
quantum nonlocalities [33–54]. In addition, quantum net-
works also play important roles in ruling out quantum theories
based on only real numbers. It turns out that without bounding
the dimension of Hilbert space, the real and complex quan-
tum theories cannot be discriminated without a network-based
scenario, even in a conventional Bell scenario with more than
two separate parties [17,55,56]. Recently, Renou et al., with
the entanglement-swapping scenario [57], have given an inter-
esting proposal to falsify real quantum theories. Their model
involves three observers, namely, Alice, Bob, and Charlie,
and two independent entangled pairs without quantum cor-
relations but allowing sharing a global hidden variable λ as
shown in Fig. 1(a). In their protocol, Bob performs a single
joint measurement with four possible outcomes recorded as b,
while Alice and Charlie perform three and six measurements
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with two outcomes with x and z as the input and a and c
as the outcome, respectively. We refer to such a protocol as
the (3, 6) scenario in this paper. By defining a correlation
function based on the outcome probability distributions from
experimental data, Renou et al. [57] have demonstrated that
this function can assume different values under the constraints
of real and complex quantum theories. These values can
be calculated numerically using semidefinite programming
(SDP) optimization techniques. This meticulously designed
experiment has been conducted in both photonic and su-
perconducting qubit systems and has successfully falsified
the quantum theory based on only real numbers with com-
pelling experimental evidence [58–60]. Following the work
of Renou et al. [57], Bednorz and Batle reduced the num-
ber of Charlie’s measurement settings from six to four and
three constructing the (3,3) and (3,4) scenarios and proved
that a (2,2) scenario does not exist [61]. In these models, a
potential global hidden variable is taken into consideration,
allowing for prior classical correlations among the parties.
In quantum networks that incorporate multiple independent
sources [31,32,34], the causal structure becomes increasingly
complex. The independence of these sources in various net-
work structures introduces additional constraints on classical
and quantum correlations. For the simplest entanglement-
swapping quantum network with two casually independent
sources involving two independent hidden variables λ1 and λ2

as shown in Fig. 1(b), there are constraints on the observers’
measurement results coming from the independence of two
sources [32,33]:

∑
b

P(a, b, c|x, z) = P(a|x)P(c|z)

=
∑

b

P(a, b|x)
∑

b

P(b, c|z), (1)

where x and z are the input of Alice and Charlie, while a,
b, and c are the outcomes of Alice, Bob, and Charlie. These
new constraints bring a new maximum bound for numerically
calculating a Bell type function under classical and stan-
dard quantum theories with a revised Navascúes-Pironio-Acín
(NPA) method [38] which introduces a scalar extension of the
moment matrices.

In this work, we extend the study on the discrimina-
tion between real and complex quantum theories to the
scenarios of quantum networks with multiple independent
sources. Specifically, we focus on the simplest entanglement-
swapping model involving two independent hidden variables.
We introduce a revised NPA method, building upon the
technologies used in previous works [38,57] for numeri-
cal calculation of the maximum bounds of the correlation
function under the quantum theories that rely on only real
numbers. Furthermore, we employ Bayesian optimization
techniques to effectively search the optimal correlation func-
tion for discriminating the real and quantum theories, and we
successfully find a correlation function with a group of coef-
ficients that exhibits superior robustness compared to existing
proposals.

FIG. 1. Scenarios to discriminate complex and real quantum the-
ories. (a) The model used in Refs. [57,61]. (b) The model used in
this work. Two independent hidden variables emphasize the causal
independence of two sources. x and z represent the input values of
Alice and Charlie, while a, b, and c represent the outcomes of Alice,
Bob, and Charlie, respectively.

II. THE ENTANGLEMENT-SWAPPING SCENARIO

The entanglement-swapping scenario has been used to
discriminate the real and complex quantum theories as dis-
cussed in Ref. [57] with the assumption that the two sources
are allowed to share a classical hidden variable. In this sec-
tion we briefly elaborate the entanglement swapping model
with causally independent sources. As shown in Fig. 1(b),
such a scenario involves three observers, Alice, Bob, and
Charlie, as well as two independent entanglement sources,
ρAB1 and ρB2C . The entanglement source ρAB1 is shared be-
tween Alice and Bob, while the entanglement ρB2C is shared
between Bob and Charlie. Unlike the previous model used in
Ref. [57] [Fig. 1(a)], these two sources are entirely causally in-
dependent, devoid of both quantum and classical correlations.
They are characterized by two potential hidden variables with
independent origin, denoted as λ1 and λ2. In this scenario,
Bob conducts a single joint measurement on the two particles
he received from the two entanglement sources, obtaining
four different outcomes recorded as b = {1, 2, 3, 4}, while
Alice and Charlie randomly perform m and n dichotomic
measurements on their received particles, obtaining the out-
comes a = {1,−1} and c = {1,−1}, respectively. We refer to
such a protocol as the (m, n) scenario in this paper. We use a
group of conditional probabilities to denote the experimental
results. For example P(a, b, c|x, z) represents the probabil-
ity of outcome results a, b, and c when Alice, Bob, and
Charlie’s measurement settings Ax, Bb, and Cz, respectively,
x ∈ {1, 2, . . . , m} and z ∈ {1, 2, . . . , n}.

In this work, we define an open correlation function
with the outcome probability distribution and an m × n free
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coefficient matrix E in the form of.

F =
∑
x,z,b

g(b, x)exzS
b
x,z,

where Sb
x,z =

∑
a,c∈{±1}

acP(a, b, c|x, z),

g(b, x) =
{

1, if b = x or b = 4,

−1, otherwise. (2)

Here, exz is the element of the coefficient matrix E . Similar to
the Bell correlation function, the function F may take different
values depending on whether it is evaluated in the context
of classical theory, real quantum theory, or complex quantum
theory, and the maximum bound in each respective condition
can be recorded as Fc, Fr , and Fq. If we observe a value of F
which exceeds Fc and Fr but does not reach Fq, we can falsify
quantum theory based on only real numbers. The gap of Fq

and Fr represents the discrimination between real and com-
plex quantum theories. We define the value of R = Fr/Fq as
representing the ratio of the maximum bound of Eq. (2) under
real and complex quantum theory, respectively. A smaller R
indicates a larger discrimination between real and complex
quantum theories and may reduce the requirements for the
fidelities of the entanglement sources and measurements in
practical experiments. For example, we discuss the case that
three are white noises in two entanglement sources and the
Bell state measurements Bob performed on the two particles
he received. Then the entanglement source and the Bell state
measurement in complex quantum mechanics can be rewritten
as

ρAB1 = ρB2C = vE |�+〉〈�+| + (1 − vE )I,

B1 = vI |�+〉〈�+| + (1 − vI )I/4,

B2 = vI |�−〉〈�−| + (1 − vI )I/4,

B3 = vI |�+〉〈�+| + (1 − vI )I/4,

B4 = vI |�−〉〈�−| + (1 − vI )I/4, (3)

where vE and vI are the visibility of the entanglement source
and Bell Standard Measurement, respectively, and I is the
identity matrix. The noise value S′b

x,z can be calculated as

S′b
x,z = tr (ρAB1 ⊗ ρB2C )(Ax ⊗ Bb ⊗ Cz ) = v2

EvI S
b
x,z. (4)

Then the noise correlation function F ′
q = v2

EvI Fq. To exper-
imentally falsify real quantum mechanics, it is necessary for
us to satisfy the condition v2

EvI > Fr/Fq. It is clear that a lower
value of R requires lower visibility in experimental realization.
To optimize the coefficient matrix E and attain a lower value
of R = Fr/Fq, we employ Bayesian optimization, as outlined
in Sec. IV.

III. CALCULATING THE BOUND OF REAL QUANTUM
THEORIES IN THE MODEL INVOLVING TWO

INDEPENDENT HIDDEN VARIABLES

In this section, we initially outline the process of formulat-
ing an SDP optimization problem for the computation of Fr

and Fq, primarily in accordance with the approach detailed in
Ref. [57]. Subsequently, for the model used in this work, we
demonstrate the incorporation of supplementary constraints

from causal independence, as specified in Eq. (1), into the
SDP optimization problem.

In the swapping scenario shown in Fig. 1(b), the probability
distribution of measurement outputs can be represented by

P(a, b, c|x, z) = tr[(ρABC )(Aa|x ⊗ Bb ⊗ Cc|z )], (5)

where ρABC = ρAB1 ⊗ ρB2C , and Aa|x denotes the measurement
operator we use when Alice chooses x from possible settings
and gets output a; notice that measurement operators and
density operators here can live in either complex Hilbert space
or real Hilbert space.

To establish the constraints for Eq. (5) when computing
the upper bound of Eq. (2), we employ methodologies pre-
viously employed in earlier works [57,58,61], building upon
Moroder et al.’s extension [55] of the NPA hierarchy [62–64].
Our approach begins with the creation of two sets, A and C,
derived from the settings of Alice and Charlie. Specifically,
A encompasses all monomials of I , A1|1, A1|2, and A1|3 with
degrees of nA or less (for the definition of monomial degree,
refer to Ref. [62]). Similarly, C is constructed following the
same principle. Each monomial within A is linked to a ket
denoted as |α〉, with an associated property 〈α|α′〉 = δα,α′ .
Analogously, for monomials within C, an orthonormal set
|γ 〉 can also be associated. Then we define two completely
positive maps,

	A(η) =
∑
α,α′

tr(A†
αηAα′ )|α〉〈α′|,

	C (η) =
∑
γ ,γ ′

tr(C†
γ ηCγ ′ )|γ 〉〈γ ′|, (6)

where Aα denotes the monomial that |α〉 is associated to, and
then we define the matrix

�b = (	A ⊗ 	C )(ρAC|b), (7)

where ρAC|b = trB{(ρAB1 ⊗ ρB2C )(I ⊗ Bb ⊗ I )} is the reduced
state of systems A and C after Bob conducts the measurement,
obtaining output b.

Since 	A and 	C are completely positive, �b is positive
semidefinite, and it has other properties due to orthogonality
of {|α〉} and {|γ 〉}; that is, if α2α

†
1 = α4α

†
3 = α and γ2γ

†
1 =

γ4γ
†
3 = γ , we have

〈α1γ1|�b|α2γ2〉 = 〈α3γ3|�b|α4γ4〉 = tr{ρAC|b(Aα ⊗ Cγ )},
(8)

which allows us to write �b in a more simple way,

�b =
∑

α∈A·A,γ∈C·C
db

α,γ Mα ⊗ Nγ , (9)

where

Mα
a,a′ = δα,a′a† , Nγ

c,c′ = δγ ,c′c† , (10)

and the real coefficients {db
α,γ } are the variable set of the

optimization problem, it follows

db
A1|x,C1|z = P(1, b, 1|x, z), db

A1|x,I = P(1, b|x),

db
I,I = P(b), db

α,γ = tr{(Aα ⊗ Bb ⊗ Cγ )(ρABC )}, (11)

and the normalization constraint is
∑

b db
I,I = 1.
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Now we consider � = ∑
b �b, and by the independence of

ρAB1 and ρB2C , we have

� = 	A(ρA) ⊗ 	C (ρC ). (12)

Separability leads to different constraints in complex and real
quantum theories [65,66]:

�TA � 0, for complex quantum theory,

�TA = �, for real quantum theory.
(13)

the latter constraint in Eq. (13) is stronger, leading to a lower
upper bound of F .

As we mentioned in Sec. I, in our model involving λ1 and
λ2 shown in Fig. 1(b), the independence of ρAB1 and ρB2C

brings new constraints on probability distribution [notice that
this formula is the same as Eq. (1)]:

∑
b

P(a, b|x)
∑

b

P(b, c|z) =
∑

b

P(a, b, c|x, z); (14)

however, due to their nonlinear nature, direct inclusion of the
constraints from Eq. (14) into an SDP optimization problem
is not feasible. To address this, we expand upon the tech-
nique presented in Ref. [38], adapting it to a bipartite form.
This adaptation enhances compatibility with the aforemen-
tioned numerical approach, rendering it more suitable for
implementation.

We modify the set C constructed from Charlie’s settings as
[take (3, 3) for instance]

C = {I,C1|1,C1|2,C1|3, . . . ,C1|2C1|3, c1I, c2I, c3I}, (15)

where ci = P(c = 1|z = i), and A does not change.
{db

α,γ } are constructed by the same process as Eqs. (6), (7),
(8), and (9), with more constraints coming from Eq. (14):

∑
b

db
α,ciI =

∑
b

db
α,C1|i , for ∀α, ∀i ∈ {1, 2, 3},

∑
b

db
I,ciC1| j

=
∑

b

db
I,cic j I , for ∀i, j ∈ {1, 2, 3}, (16)

which can be derived from Eqs. (11) and (14), specifically,

∑
b

db
α,ciI =

∑
b

tr{(α ⊗ ciI )ρAC|b}

= ci

∑
b

tr{(α ⊗ I )ρAC|b}

= ci

∑
b

db
α,I =

∑
b

db
α,C1|i ; (17)

the second formula in Eq. (16) can be derived in the same way.
The new constraints in Eq. (16) should also be satisfied

under complex quantum theory. Hence, to calculate the max-
imum bound of F [Eq. (2)] under real and complex quantum
theories, we can construct and solve an SDP optimization

problem as follows:

max F

s.t . �b =
∑

α∈A·A,γ∈C·C
db

α,γ Mα ⊗ Nγ � 0,

∑
b

P(b) = 1,

∑
b

db
α,ciI =

∑
b

db
α,C1|i , for ∀α, ∀i ∈ {1, 2, 3},

∑
b

db
I,ciC1| j

=
∑

b

db
I,cic j I , for ∀i, j ∈ {1, 2, 3},

×
⎡
⎣∑

b

�b =
(∑

b

�b

)TA

(if real)

⎤
⎦. (18)

The corresponding relationship between {P(a, b, c|x, z)} and
{db

α,γ } is illustrated by Eq. (11).

IV. SEARCHING OPTIMAL CORRELATION FUNCTION
WITH BAYESIAN OPTIMIZATION

Bayesian optimization is a powerful technique for hyperpa-
rameter tuning, which involves finding the optimal values of a
set of parameters for a given objective function. One popular
implementation of Bayesian optimization is sequential model-
based optimization (SMBO), the detailed principles of which
are discussed in Ref. [67]. Here we briefly introduce SMBO
and illustrate how to use it in the discrimination of complex
and real theories.

SMBO is an iterative algorithm that generates a model of
the objective function in each iteration to identify the next
set of parameters to test, ultimately finding the optimal set of
parameters. To construct the objective function model, SMBO
utilizes the parameter tuning history H = [x1:i, f (x1:i )], where
x1:i and f (x1:i ) denote parameters and corresponding func-
tion values obtained in i times iterations. In the (i + 1)th

iteration, an acquisition function is employed to determine
the next parameter set value xi+1. This acquisition function
balances exploitation, which involves selecting values close
to the current most optimal parameter set, and exploration,
which employs randomness to prevent falling into local op-
timal solutions. SMBO is terminated when the predefined
number of iterations is reached. This algorithm is particularly
beneficial when the objective function is a black-box function
that is challenging to evaluate and does not have well-defined
derivatives.

In the discrimination between complex and real quantum
theories, the parameter set to optimize is {exz} in Eq. (2), and
the objective function is R(E ) = Fr/Fq, where Fr and Fq are
maximum bounds of Eq. (2) under real quantum theory and
complex quantum theory, respectively. Both Fr and Fq can be
calculated by the SDP optimization problem constructed in
Sec. III through MATLAB packages MOSEK [68] and YALMIP

[69], sometimes Fq can be calculated analytically under cer-
tain assumptions. We use the MATLAB Bayesian optimization
package [70] to realize SMBO on the objective function R(E ).
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In the (3, 3) scenario, the optimal values for {exz} we get
are (permutation has been done to make results symmetric)

E =
⎛
⎝0.31993 0.5 −0.5

0.5 0.31933 0.5
−0.5 0.5 0.31933

⎞
⎠, (19)

with Fr = 2.1134, Fq = 2.3283, and R(E ) = 0.9077, The spe-
cific states and measurements to achieve Fq are [61]

{Ax} = {σi},

{Cz} =
{∑

i

ci
zσi

}
, ci

z = − eiz√
e2

1z + e2
2z + e2

3z

,

B1 = (I ⊗ I − σX ⊗ σX − σY ⊗ σY − σZ ⊗ σZ )/4,

B2 = (I ⊗ I − σX ⊗ σX + σY ⊗ σY + σZ ⊗ σZ )/4,

B3 = (I ⊗ I + σX ⊗ σX − σY ⊗ σY + σZ ⊗ σZ )/4,

B4 = (I ⊗ I + σX ⊗ σX + σY ⊗ σY − σZ ⊗ σZ )/4,

ρAB1 = ρB2C = |�+〉〈�+|, |�+〉 = 1√
2

(|00〉 + |11〉),

where {σi} are Pauli operators.
Similarly, in the (3,4) scenario, the optimal set of parame-

ters we obtained is

E =
⎛
⎝−0.19883 0.1996 0.20026 0.19944

0.20094 −0.19971 0.20083 0.1987
0.2006 0.19961 −0.2 0.19971

⎞
⎠.

(20)
We can infer that absolute values of all coefficients are the
same, and hence the optimal set is (with every coefficient
timing 5)

E =
⎛
⎝−1 1 1 1

1 −1 1 1
1 1 −1 1

⎞
⎠, (21)

with Fq = 6.9282, Fr = 6.4722, and R(E ) = 0.8847, which is
lower than R(E ) of a (3,6) scenario in Ref. [57]. To achieve
Fq, {Aa} and {Bb} used are the same as what the (3,3) scenario
uses, and (Cz ) are⎛

⎜⎜⎝
C1

C2

C3

C4

⎞
⎟⎟⎠ = 1√

3

⎛
⎜⎜⎝

1 −1 −1
−1 1 −1
−1 −1 1
−1 −1 −1

⎞
⎟⎟⎠

⎛
⎝σX

σY

σZ

⎞
⎠. (22)

In the swapping-entanglement model involving λ1 and λ2, the
new constraints (16) are included, so we obtain tighter upper
bounds for Fr . Since Fq at least has the same forms as previous
work [57,61], we achieve lower values of R(E ). We compare
the results presented in this work with those from previous
research, as illustrated in Table I. The findings indicate that

TABLE I. Comparison between this work and previous works
[57,58,61].

Scenario R(E ) Causal constraint

(3, 3) [61] 0.9381 No
(3, 3) [This work] 0.9077 Yes
(3, 4) [61] 0.9341 No
(3, 4) [This work] 0.8847 Yes
(3, 6) [57] 0.9028 No

we have achieved lower values of R(E ), implying reduced
visibility requirements for experimental implementation and
hence exhibiting superior robustness.

V. SUMMARY AND DISCUSSIONS

In summary, our work offers proposals to discriminate real
and complex quantum theories in an entanglement-swapping
model involving two independent hidden variables, which em-
phasize the causally independent nature of sources. To address
new constraints of the causal independence on the experi-
mental outcome probability distribution, we have developed
a numerical method based on the NPA technologies, enabling
discrimination between real and complex quantum theories in
quantum networks with causally independent parties. In this
work, we further employ Bayesian optimization to search for
the optimal coefficient matrix of the correlation function. As a
result, we obtain a more experimentally feasible scenario that
allows discriminating real and quantum theories with lower
visibility of the sources and measurements, and we compare
this scenario to existing proposals.

Finally, we discuss the reasonableness of the independence
assumption in our model. Renou et al.’s and other previous
models [57,58,61] consider a global hidden variable shared
between the two sources in the entanglement-swapping
scenario. This is because the two entangled sources may be
produced in the same factory or may be operated using the
same power socket. The causal network with an additional
source should be considered more general than the one
without such a source. However, a very similar assumption
is actually needed in Renou et al.’s and other previous
models, which is the independence of randomness sources
for choosing measurements, which also corresponds to the
“free choice” or “measurement independence” assumption in
standard Bell tests [32,33]. The stronger assumption that the
entanglement source is absolutely independent brings new
constraints on the probability distribution of the input-output
experiment as the form of Eq. (1). These constraints are not
only added to the experimental results predicted by complex
quantum theory but are also added to the cases predicted by
real quantum theories and classical theory. These constraints
may change the effective probability distributions for all three
cases and help us find a more experimentally feasible scenario
with lower demand of visibility of the sources and measure-
ments. These considerations should be extended to exploring
discrimination between real and complex quantum theories in
more complicated quantum networks with causally indepen-
dent parties which will introduce more additional constraints
[31]. We believe further advancements for the discrimination
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of real and complex quantum theories will be achieved, ulti-
mately making experiments more accessible in the near future.
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