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Quantum coherence distribution and high-dimensional complementarity
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In the last few years, the l1 norm has been used as a quantum coherence measure by many authors. In this
work, we introduce a variable that mediates the complementarity relation between the l1 norm of coherence,
linear entropy, and the predictability of a quantum state of dimension greater than two. We show that this variable
indicates the coherence distribution among the pairs of base states expanding the Hilbert space. We also show that
a uniform quantum coherence distribution creates a direct complementarity between the l1 norm, predictability,
and linear entropy.
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I. INTRODUCTION

Complementarity relations have permeated theoretical de-
scriptions and the modeling of quantum physical systems.
These relations help determine some variable of interest from
experimental data concerning a second variable complemen-
tary to the first one. The wave-particle duality, for example,
corresponds numerically to the complementarity between the
contrast and the which-way knowledge of an interferometer
[1–3]. Establishing a quantitative complementarity between
these effects gave rise to many works in the 1990s, and early
2000s [3–5].

Many authors explored the which-way information mea-
sure in the context of quantum states’ discrimination of
high-dimension states [1–3,6–8]. Concerning quantum coher-
ence, Baumgratz et al. showed that the l1 norm of coherence
is a valid quantum coherence monotone against the l2 norm,
used by previous authors [1,3,9,10]. Currently, different au-
thors have studied new interferometric complementarities
involving the l1 norm and the connection between quantum
coherence and quantum entanglement [7,11,12]. In earlier
works, authors showed that exact equality connects l2 norm,
linear entropy, and predictability [10,13]. In this article,
we investigate the complementarity between the l1 norm of
quantum coherence, linear entropy, and predictability of any
D-dimension discrete quantum state. We show that they are
connected by a fourth variable quantity that we name T .
We also investigate T ’s physical meaning and its rule in the
complementarity upper bound.

II. BUILDING THE COMPLEMENTARITY

Streltsov et al. showed that quantum coherence is directly
dependent on quantum state purity [12]. For a given degree of
purity, quantum coherence is maximum for states formed by
a superposition with equal coefficients. In parallel, for a given
superposition of base states expanding the respective Hilbert
space, quantum coherence is maximum if such a superposition
is pure. An inequality was obtained relating the l1 norm of
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coherence and the mixedness degree of a quantum state [14].
Here we analyze this inequality, including other variables, to
get a relation as accurate as possible.

Considering a D-dimensional quantum state represented by
the density operator

ρ̂ =
D∑

i=1

D∑
j=1

ρi j |i〉 〈 j|, (1)

its normalized form of linear entropy S, predictability P, and
l1 norm of coherence C are defined, respectively, as [9,10,15]

S = D

(D − 1)
[1 − Tr(ρ̂2)] = D

(D − 1)

⎡
⎣1 −

D∑
i=1

D∑
j=1

|ρi j |2
⎤
⎦,

(2)

P =
√√√√ D

D − 1

(
D∑

i=1

|ρii|2 − 1

D

)
, (3)

C = 1

D − 1

D∑
i=1

D∑
j=1
j �=i

|ρi j | = 1

D − 1
‖ �W ‖1, (4)

where ‖ �W ‖1 is the l1 norm of the vector �W , composed by all
the n nondiagonal coefficients of ρ̂, with n = D2 − D.

By calculating S + P2 we obtain

D(D − 1)

2
C2 + S + P2 = 1 + (D − 2)(D + 1)

2
T, (5)

where T is a variable that is dependent on ρ̂ nondiagonal
coefficients, such that

T = 4D

(D − 2)(D2 − 1)

D∑
i=1

D∑
j=1
j>i

D∑
k=1

D∑
l=1
l>k

(i, j)�=(k,l )

|ρi j ||ρkl |. (6)

III. T AS A BOUNDING OF COMPLEMENTARITY

In Ref. [10], Jakob and Bergou obtained a complementarity
relation between the linear entropy, predictability, and an as-
sumed quantum coherence measure V (generalized visibility).
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In a normalized form, we can write the equation obtained by
them as

P2 + V2 + S = 1, (7)

where

V =
√√√√ D

(D − 1)

D∑
i=1

D∑
j=1( j �=i)

|ρi j |2 =
√

D

(D − 1)
‖ �W ‖2, (8)

and ‖ �W ‖2 is the l2 norm of the vector �W composed by the n
nondiagonal coefficients of ρ̂.

The left side of Eqs. (7) and (5) differ from each other in the
choice for quantum coherence measure. Using resource theory
treatment, Baumgratz et al. showed that V is not a quantum
coherence monotone. Consequently, we can consider it an in-
valid quantum coherence measure [9]. This finding invalidates
Eq. (7) as a relation between linear entropy, predictability, and
quantum coherence monotone for discrete states.

Considering the difference between the l1 and l2 norms,
we could already expect that the sum of P2, S, and C2 would
not be equal to an exact value. Therefore, the establishment
of a complementarity between S, P, and C evokes further
discussions about the variable T. In the first approach, we can
use the relation between the l1 and l2 norms to establish an
upper bound for T and the left side of Eq. (5).

Given l1 and l2 norms of a vector �W , the Cauchy-Schwarz
inequality leads to [16]

‖ �W ‖2
1 � n‖ �W ‖2

2, (9)

where n is the �W dimension. In our context, n = D2 − D
corresponds to the nondiagonal coefficients of ρ̂.

From Eqs. (8) and (4) we can write

C2 = 2

D(D − 1)
V2 + (D − 2)(D + 1)

D(D − 1)
T. (10)

Considering the definitions of Eqs. (4) and (8), from
Eqs. (10) and (9) we obtain

T � C2. (11)

Both C and T are positive semi-defined. In particular, the
variable T has the quantum coherence as upper bound. Taking
Eq. (11) in Eq. (5), we obtain the complementarity

C2 + S + P2 � 1. (12)

Equation (12) achieves the equality when T achieves its
upper bound in Eq. (11). Furthermore, we also can determine
the T value that implies C2 + S + P2 = 1 without resorting to
Eq. (9), as we show next.

In Eq. (5) we observe that it is possible to obtain C2 + S +
P2 = 1 only in the case of

D(D − 1)

2
C2 − (D − 2)(D + 1)

2
T = C2,

T = C2, (13)

which matches the T upper bound in Eq. (11), and validates
the construction of the inequality Eq. (12) from Eqs. (9)
and (13).

IV. COMPLEMENTARITY REDUCTIONS

Another way to check our discussion is to analyze Eq. (5)
for specific cases with one or more quantifiers equal to zero,
resulting in reduced forms of complementarity.

C = 0: If state ρ̂ is completely mixed (incoherent), C = 0
and T = 0 also. In this case, from Eq. (5), we recover the
known complementarity between predictability and linear en-
tropy [10], namely,

S + P2 = 1. (14)

T = 0: If state ρ̂ has quantum coherence C �= 0, but only
one nondiagonal coefficient different from 0 (and its complex
conjugated), then T = 0 even though C �= 0. In this case, from
Eq. (5),

D(D − 1)

2
C2 + S + P2 = 1, (15)

which is also an exact complementarity relation between C,
S, and P.

The quantum coherence of a D-dimensionl state with T =
0 is, at most, Cmax = 2/[D(D − 1)], with the unique coeffi-
cient above diagonal equal to 1/D. In this case, D(D−1)

2 C2
max =

2/[D(D − 1)], and S + P2 reaches the minimum. Further, in
this situation the minimum of P and S are Pmin = 0 and
Smin = 1 − 2/[D(D − 1)], which agrees with Eq. (15).

S = 0: If state ρ̂ is pure, S = 0 and from Eq. (5) we obtain

D(D − 1)

2
C2 + P2 = 1 + (D − 2)(D + 1)

2
T. (16)

Pure states can be written as ρ̂ = |ψ〉 〈ψ |, such that C
and T are always different from zero, unless |ψ〉 is a single
element of the base states used for expanding the states in the
D-dimensional Hilbert space. Only in this special case, P = 1
and C = T = 0 for ρ̂ = |ψ〉 〈ψ |.

P = 0: If state ρ̂ has all diagonal coefficients {ρii} equal to
1/D, P = 0. In this case,

D(D − 1)

2
C2 + S = 1 + (D − 2)(D + 1)

2
T, (17)

with S = 1 being only in the case of C = 0 (so T = 0).
Considering a general computational analysis of Eq. (5),

Fig. 1 shows the plot of the numerical values of T and D(D −
1)C2/2 + S + P2, for different quantum states randomly gen-
erated by MATHEMATICA software. As expected, we observe
that the left side of Eq. (5) is a first-order function of T , where
the slope (D − 2)(D + 1)/(2) increases as D increases. If we
used nonnormalized definitions of the variables S, P, and C,
the straight lines shown in Fig. 1 would have the same slope
and would cross the ordinate axis (vertical axis) at different
points.

V. T PHYSICAL MEANING: QUANTUM
COHERENCE DISTRIBUTION

It is interesting to observe that T [Eq. (6)] depends on
the multiplication between absolute values of two nondiago-
nal coefficients. It is proportional to the sum of all possible
outcomes, the sum of products of all pair combinations of
nondiagonal coefficients. T is undefined for D = 2 since a
density operator in this dimension has only one nondiagonal
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FIG. 1. Numerical plot of D(D − 1)C2/2 + S + P2 as a function
of T for random quantum states drawn. The states were generated
by applying random unitary operations on diagonal states, initially
generated by using the RANDOMREAL function in MATHEMATICA

software. Each plotted marker corresponds to a specific quantum
state and the points with the same color represent states with the
same dimension D. For each value of D, 10 000 quantum states were
generated.

element (and its complex conjugated). For other dimensions,
T �= 0 if ρ̂ has at least two coefficients ρi j (i < j) different
from zero.

In previous work, we treated each absolute value of the
nondiagonal coefficient (|ρi j |, i < j) as a measure of the “par-
tial coherence” between |i〉 and | j〉, belonging to the base
states expanding ρ̂ Hilbert space [13,17]. In that regard, a
quantum state with all |ρi j | (i < j) equal to the same value
presents the same “partial coherence” for all pairs {|i〉 , | j〉}. In

this case, we can say that quantum coherence C is uniformly
distributed in the system. Moreover, if ρ̂ has only one nondi-
agonal coefficient different from zero, its quantum coherence
is concentrated in one pair belonging to the base states.

Concerning the variable T, it reaches the minimum (T = 0)
if ρ̂ is incoherent, or if the quantum coherence of ρ̂ is concen-
trated in one pair (|i〉 , | j〉). On the other hand, by replacing
the definitions of T [Eq. (6)] and C [Eq. (4)] in Eq. (13), we
obtain that T reaches the maximum if the state ρ̂ is such a way
that

D∑
i=1

D∑
j=1
j>i

D∑
k=1

D∑
l=1
l>k

(i, j)�=(k,l )

|ρi j ||ρkl | = (D+1)(D−2)
4

D∑
i=1

D∑
j=1
j �=i

|ρi j |2,

(18)

which is true only if absolute values of all coefficients ρi j are
equal to the same value.

Figure 2 shows the behavior of T and the right side of
Eq. (13) for dimensions D = 3 and D = 5, considering two
situations: different numbers (n) of |ρi j | �= 0 (i < j) having
the same fixed value (x) and a fixed number of |ρi j | �= 0
(i < j) but with variable values. We observe that T coin-
cides with (D2 − 1)(D − 2)C2/D and is equal to equal to
(D2 − D)/2 if the number of |ρi j | �= 0 (i < j) is maximum,
independently of the value of the nondiagonal coefficients of
the density operator. For any fixed value of coherence C, T
reaches its maximum possible value in the case in which all
|ρi j | are equal. In other words, Eq. (13) is reached in a uniform
distribution of coherence over all possible state pairs. Here,
states are referred to as the states composing the base states
used for defining the one-partite density operator ρ̂. In this

FIG. 2. T and C2 behavior for different quantities of (a), (c) nonnull nondiagonal density operator coefficients and (b), (d) different values
of nonnull nondiagonal coefficient. In (a), (b) D = 3, in (c), (d) D = 5. n is the number of |ρi j | �= 0 (i < j) in the density operator. x is the
value of each nondiagonal coefficient that is different from zero. In each graph the curves with the same color hue correspond to the same fixed
values of (a), (c) x and (b), (d) n.
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sense, T corresponds to a different kind of distribution than
that presented in Refs. [18–20].

Here, states are referred to the states composing the base
states used for defining the one-partite density operator ρ̂. In
this sense, T corresponds to a different kind of distribution
than that presented in Refs. [18–20].

Without supposing an initial equality between the absolute
values of the nonnull coefficients ρi j (i < j), we can analyze
equations Eqs. (13) and (18) for arbitrary coefficients in spe-
cific dimensions. Taking D = 3 as an example, we can write
the general qutrit state as Eq. (13)

ρ =

⎛
⎜⎝

ρ11 ρ12 ρ13

ρ∗
12 ρ22 ρ23

ρ∗
13 ρ∗

23 ρ33

⎞
⎟⎠. (19)

Equation (13) is true if Eq. (18) holds, which for this case
means that

|ρ12||ρ13| + |ρ12||ρ23| + |ρ13||ρ23|
= |ρ12|2 + |ρ13|2 + |ρ23|2, (20)

which is satisfied only if |ρ12| = |ρ13| = |ρ23|, independently
of their value ({|ρ12|, |ρ13|, |ρ23|} ∈ R).

VI. CONCLUSION

We investigated the complementarity relation between lin-
ear entropy S, predictability P, and the l1 norm of coherence
C, for D-dimensional discrete quantum states. We showed
that the complementarity relation is mediated by a fourth
variable that is upper bounded by a multiple of C2 with the
proportionality factor depending on D. The complementarity
relation analyzed here is also helpful for quantum state char-

acterization. If ρ̂ corresponds to the density operator of one of
the parts of a bipartite system, for example, the square root of
its linear entropy,

√
S, is proportional to the I-Concurrence

[21] of the joint quantum state. We can determine the en-
tanglement of a bipartite system by measuring the reduced
state’s quantum coherence, predictability, and the quantum
coherence distribution T. P and C can be experimentally ob-
tained by methods established in the literature [10,17,22,23],
and T can be obtained by the pair-to-pair visibility measures,
as proposed in Ref. [17]. Even if one cannot determine all the
variables, it is possible to establish an upper bound for the
I-Concurrence.

We demonstrated that T indicates the quantum coherence
distribution among the levels of a one-partite system, being a
nonentropic quantifier differing from previous works such as
Refs. [18–20,24]. The distribution of coherence between pairs
of base states in a one-partite system seem also to parallel
the entanglement distribution in a multiqubit system. If all
qubits pairs are entangled, the system presents genuine entan-
glement [25,26]. Concerning our discussions, if all level pairs
are coherent, Eq. (12) reaches the upper bound. As genuine
coherence has been used in another sense [27], we raise here
the question of a parallel between genuine entanglement mea-
sures and the distribution of coherence among the levels of a
unipartite system.
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