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Prethermal discrete time crystal in driven-dissipative dipolar systems
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Here we provide a theoretical framework to analyze discrete time-crystalline (DTC) phases in the dissipative
dipolar systems subjected to a two-pulse excitation scheme. As a particular realization, we choose a quantum
many-body system that exhibits prethermalization due to the presence of the quasiconserved quantities. The
analysis uses a fluctuation-regulated quantum master equation, which captures the dissipative effects of the drive
and dipolar coupling on the dynamics regularized by the thermal fluctuations. We find that the effects of such
dissipation lend stability to the dynamics and are directly responsible for the robustness. Specifically, we find
that longer fluctuation correlation time enhances the stability of DTC. We also obtain the lifetime of such a
robust period-doubling response, a salient feature of the DTC phase, by varying several system parameters. Our
results are in good agreement with the recent experimental findings in dipolar systems using nuclear magnetic
resonance spectroscopy. Finally, we provide an estimate how the DTC performance degrades with temperature.
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I. INTRODUCTION

In the recent past, several groups demonstrated, theo-
retically as well as experimentally, that driven quantum
many-body systems exhibit a variety of exotic out-of-
equilibrium phases [1–5], a prime example being the discrete
time-crystalline (DTC) phase [6,7]. Wilczek originally pro-
posed that a quantum system may exhibit a time-periodic
echolike behavior through breaking of the continuous time-
translation symmetry; however, the idea was later shown to be
untenable [8,9]. Later Khemani, Else, and others proposed the
concept of the DTC phase, which is characterized by breaking
the discrete time-translation symmetry in the presence of a
time-periodic Hamiltonian [10,11]. In this phase, the peri-
odicity of any system observables is an integer multiple of
the period of the drive Hamiltonian. Most commonly, DTCs
exhibit a period doubling or a subharmonic response [11].

More recently, several groups experimentally demon-
strated the existence of the DTC phase using nuclear magnetic
resonance (NMR), trapped ions, and circuit QED systems
[12–20]. One common feature for most of the experiments
mentioned above is the application of external drives that
contain two noncommuting Hamiltonians are applied in
successive time steps. For examples, the experimental demon-
strations by Choi et al. and Beatrez et al. use two-pulse
schemes on driven dissipative dipolar systems [13,17]. We
note that some groups also reported that the subharmonic
response are stabilized by dissipation in DTC [18–20].

The two-pulse scheme consists of a spin-locking sequence
along the x direction (the first drive) followed by a rotation
along the y axis (the second drive) [13,17]. Choi et al. used
an ensemble of dipolar coupled nitrogen-vacancy (NV) cen-
ters, whereas Beatrez et al. used dipolar coupled 13C nuclear
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spins in a diamond to demonstrate such a novel subharmonic
response. In both cases, it was theoretically observed that a
critically slow thermalization or prethermalization occurred
in the system, which plays a significant role in stabilizing the
DTC phase under perturbations [21,22].

In general, for an isolated many-body system, the
prethermalization in the presence of periodic drive is
theoretically analyzed by Floquet theory (i.e., Floquet
prethermalization) [22–27]. The effect of the Floquet
heating in each cycle can be captured by the second-order
contribution of the periodic drive [25]. In the presence of local
interaction and high-frequency drive, such heating becomes
exponentially slow, which results in a long-lived prethermal
plateau in the system [28].

Although such systems are not perfectly isolated sys-
tems, they are weakly coupled with the external environment
with a long relaxation time [22,29]. Recently, for such sys-
tems, we have provided a dynamical approach to describe
the prethermalization in periodically driven dissipative dipo-
lar systems [30,31]. We have used a recently proposed
fluctuation-regulated quantum master equation (FRQME)
[32], which successfully explained the interplay between the
secular part of the on-resonant periodic drive and dipolar
interaction that led to a prethermal phase. The dynamics
is constrained by a set of quasiconserved quantities in this
regime. Subsequently, the nonsecular interactions and system-
bath interaction provide a very slow thermalization process.
Thus, the second-order terms of the drive and dipolar inter-
action regulated by thermal fluctuations conveniently explain
the effect of the Floquet heating in the system.

As the existing DTC phases in such systems are directly
connected to the emerging long-lived prethermal order, such
kind of robust period-doubling response is often known as
prethermal discrete time crystal (PDTC). The term PDTC was
first coined by Kypriandis et al. [16], however, the existence
of such phases in the prethermal regime of periodically driven
system was first predicted in a pioneer work by Else et al. [33].
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We note that it has significant differences from the other types
of DTC phases that appear in an open quantum system. For
example, the boundary time crystal, measure-induced time
crystal, where an effective mean-field QME has been imple-
mented to obtain the persistent period-doubling oscillations
in the thermodynamic limit of a many-body system [34–36].
On the other hand, PDTC has a finite lifetime, for example,
in case of the dipolar coupled systems in the presence of
periodic drive, the lower bound of the heating rate of the
prethermal order is provided by the dipolar interaction [17].
In such cases, the maximum contribution is coming from
the nearest-neighbor spins as the amplitude of the dipolar
interaction falls off as r−3, where r is the distance between
the spin pairs. Beatrez et al. numerically show that a simpli-
fied model consisting of 14 spins can successfully mimic the
experimental outcomes of PDTC in case of 13C nuclear spins
in diamonds [17].

Here, we provide an alternative prescription for the
PDTC phase that emerged in dipolar coupled systems. Using
FRQME, we obtain the existence of the stable DTC phase
in such systems subjected to the two-pulse scheme as men-
tioned above. We also compare our analytical results with
those experimental outcomes. In addition, we also check the
robustness of such period-doubling response by varying the
fluctuation correlation timescale, which is inversely propor-
tional to the temperature.

We have arranged the paper in the following order. In
Sec. II, we give a brief overview of the dissipative dipolar
system subjected to a two-pulse scheme. The dynamics of the
system for a two-spin ensemble case is discussed in Sec. III,
where we separately discuss the dynamics under the spin-
locking pulse in the x direction, and the θ rotation along
the y direction. Using the dynamical equation of each pulse
sequence, we show the emergence of the DTC phase in the
same section. We further generalize our description for the N
spin system in Sec. IV, and provide the numerical results for
the robust DTC regime by varying several system parameters
and comparing them with the existing experimental results.
Finally, we briefly discuss the results and their implications in
Sec. V and conclude in Sec. VI.

II. DESCRIPTION OF THE SYSTEM

We consider a dipolar coupled spin 1/2 system, which is
weakly coupled with the external environment. We assume
that the spin 1/2 particles are identical to each other. The
free Hamiltonian of the system is written as, HS = ∑N

i=1 ω◦I i
z .

Here, ω◦ is the Zeeman frequency, N is the number of the
spins, and Im = σm/2. σm is the m component of the Pauli
spin matrix [m = {x, y, z}]. Hdd represents the dipolar inter-
actions between the spin pairs, the analytical form of Hdd is
given by,

Hdd =
N∑

i, j=1

μ◦
4πr3

i j

γ 2
a h̄(�Ii.�I j − 3(�Ii.r̂)( �I j .r̂)), [i > j]. (1)

Here, μ◦ is the magnetic permeability constant, and γa is the
gyromagnetic ratio.

Following the works by Beatrez et al. and Choi et al., the
system undergoes the two-pulse protocol [13,17]. A pictorial

FIG. 1. The schematic diagram shows the experimental realiza-
tion for demonstrating the DTC phase in the dissipative dipolar
system. The initial state is prepared by using a π/2 pulse in the
y direction. The two-drive protocol is given here. The spin-locking
sequence is provided for τ1 time, secondly, a θ = π + δ rotation is
given along y direction for a duration τ2. The whole sequence, τ =
τ1 + τ2 is repeated for n times before measuring the final spectrum
of S[Mx (t )].

depiction of the two-pulse scheme is presented in Fig. 1.
Initially, the spins are oriented along the z direction in the
presence of the Zeeman field. A π/2 pulse along the y di-
rection is applied to rotate the spins along the x direction.
Therefore, the density matrix after that step is written as,
ρS|t→0 = |ψ〉〈ψ |. Here, |ψ〉|t→0 =⊗N

i=1(|↑〉i+|↓〉i )/
√

2. |↑〉
and |↓〉 are the eigenstate of the Zeeman basis. Next, a
resonant periodic drive along the x direction is applied for
a time duration of τ1. In this period the dipolar interaction
(Hdd ) is also effective, such a pulse sequence is known as a
spin-locking sequence in NMR [37]. The corresponding drive
Hamiltonian is given by,

Hx =
N∑

i=1

ω1I i
x cos ω◦t . (2)

The dynamical equation of the reduced density ma-
trix of the system (ρS ) is given by the FRQME. The
FRQME have been proposed and verified experimentally by
Chakrabarti et al. in 2018 [32,38]. The analytical form of the
FRQME in the interaction picture of the free Hamiltonian is
given by [32],

dρS

dt
= − iTrL

[
Heff (t ), ρS ⊗ ρ

eq
L

]sec

−
∫ ∞

0
dτTrL

[
Heff (t ),

[
Heff (t−τ ), ρS ⊗ ρ

eq
L

]]sec
e− |τ |

τc .

(3)

Here, we note that 0 < t < τ1. Heff (t ) denotes the interaction
representation of HSL + Hx(t ) + Hdd. HSL is the system-
bath coupling Hamiltonian, the detailed form of HSL is
mentioned in our earlier work on spin locking [30]. τc is
the fluctuation correlation timescale, and ρ

eq
L is the equi-

librium density matrices of the environment. The unique
feature of the above Eq. (3) is the presence of the expo-
nential kernel in the second-order terms that help calculate
the dissipative effects of the coupling and drive, whereas
a regular Born-Markov QME failed to explain such effects
[39]. FRQME has been used as an efficient tool for analyzing
several applications in NMR, quantum optics, and quantum
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information processing [40–44]. Here, we assume that the
strength of drive and dipolar (ω1, ωd ) is much stronger than
the system-bath interaction (ωSL), ω1, ωd � ωSL. Such ap-
proximation is valid, when the system has a large relaxation
time (T1) [22].

Following the spin-locking sequence, a θ=π+δ rotation
is applied about the y direction. The corresponding Hamilto-
nian in the interaction picture is given by,

Hy = ω2

N∑
i=1

I i
y. (4)

Here, ω2τ2 = π + δ. Here we assume that ω2 � ωd , so the
effect of Hdd is ignored in this time duration, and the required
time τ2 is usually small and hence the drive-induced dissipa-
tion is ignored [17]. The corresponding dynamical equation is
given by the von Neumann-Liouville equation, which is writ-
ten as,

dρS

dt
= −i[Hy, ρS]. (5)

Here, we note that τ1 < t < τ2. To obtain the 2τ periodic
response in the system, the total sequence, τ = τ1 + τ2 is
repeated n times [n ∈ I]. We solved these equations (3) and
(5) in the Liouville space, where ρ̂S is a N2×1 column matrix
and the Liouvillian (L̂) is a N2×N2 matrix. The correspond-
ing dynamical equation in the Liouville space is given by,
dρ̂S/dt = L̂ρ̂S .

The final density matrix ρ̂S (t ) after the n cycle can be
written as,

ρ̂S (t ) = [eL̂yτ2 eL̂spτ1 ]nρ̂S|t→0. (6)

Here, L̂y is the Liouvillian corresponding to the rotation
along y direction and L̂SP is the Liouvillian corresponding to
the spin-locking sequence. The detailed analytical forms of
L̂sp, L̂y are given in the next section.

III. DYNAMICS OF THE ENSEMBLE
OF TWO-SPIN 1/2 PARTICLES

In this section, we are considering a simplified model
of an ensemble of two dipolar coupled spin 1/2 particles
connected to the thermal environment. As ωd ∝ 1/r3, the
major contribution is coming from the nearest-neighbor spins.
Therefore, such a simplified model can successfully describe
the emergence of the prethermalization using the spin-locking
sequence [30]. The analytical form of Hdd can also be
written in the spherical tensor notation for two-spin cases,
which is given by, Hdd = ∑2

m=−2(−1)mωdmT m
2 . Here, ωdm =

(μ◦h̄γ 2/4πr3) Y−m
2 (�,φ), and Y−m

2 (�,φ) is the spherical
harmonics of rank 2. (�,φ) are the polar and azimuthal angles
of the orientation of the dipolar vector with respect to the
direction of the Zeeman field. T m

2 is the irreducible spherical
tensor (of rank 2 and order m).

A. Dynamics under spin-locking sequence

For the two-spin cases, in the interaction picture, both
Hdd, Hx can written as a combination secular part and the
nonsecular part. Here, H sec

x = ω1
∑

i I i
x and H sec

dd = ωd0T 0
2 =

ωd0 (2I1
z I2

z − I1
x I2

x − I1
y I2

y ). Similarly the nonsecular parts are
written as, Hn

dd = ∑
m(−1)mωdmT m

2 e−imω◦t [∀m �= 0], Hn
x =∑

i ω1(I i
+e+2iω◦t + I i

−e−2iω◦t ). Here, “sec” represents the sec-
ular part, and “n” represents the nonsecular part of the
Hamiltonian. Using FRQME [Eq. (3)], the dynamical equa-
tion for this case is written as [30],

dρS

dt
= Lsp[ρS (t )]

= (Lsec + Lnsec + LSL)[ρS (t )], [0 < t < τ1], (7)

where, Lsec, Lnsec, LSL are the contribution coming from the
secular terms of drive and dipolar interaction, the nonsecu-
lar terms, and the system-bath coupling, respectively. Their
detailed forms can be found in our earlier work [30]. Lsec

provides a decay rate for the system to reach the prether-
mal plateau. Similarly, Lnsec,+LSL provides the decay of
the prethermal state to the final thermal state. We choose
ω1, ωd � ωSL and ω◦τc > 1. Hence, Lsec[ρS] > Lnsec[ρS] >

LSL[ρS]. We also show the numerical results of the evolution
of the x magnetization [Mx(t )] for the four choices of τc. For
decreasing τc, the prethermal plateau emerges at a much later
timescale. Although, at a longer timescale, the decay terms
(Lnsec, LSL) become more effective, so the lifetime of the
prethermal phase becomes shorter. The corresponding rate for
reaching the prethermal plateau is proportional to τc and the
decay rate of the plateau is τc

1+(ω◦τc )2 , which implies that, for a
long-lived prethermal plateau, one must have ω◦τc � 1 [30].

As we are interested in the dynamics of the systems up to
the prethermalization, the contributions of the last two terms
are ignored for the upcoming calculations. The analytical form
of Lsec[ρS] is given as,

Lsec[ρS] = −i[Hsec, ρS] − τc[Hsec, [Hsec, ρS]], (8)

Here, Hsec = H sec
x + H sec

dd . We define L̂1 = −i[Hsec ⊗ I −
I ⊗ HT

sec]. T denotes the transpose operator. Using this for-
mula we get, L̂sp = L̂1 + τcL̂1×L̂1. We analyze Eq. (7) using
a set of symmetric and antisymmetric observables, for which
we have.

ρS (t ) =
∑
α,β

Aαβ (t )Iα ⊗ Iβ, (9)

where, α, β ∈ {x, y, z, d}, and Id = 2×2 identity matrix.
Mi = Aid + Adi, Mii = Aii, Mi j =Ai j + Aji ∀i �= j, and i, j �=d .
As the initial condition belongs to the symmetric observ-
ables, the evolution of the antisymmetric observables is
negligible in comparison to the symmetric observables. The
detailed dynamical equations in terms of observables are
shown in Appendix A. In terms of symmetric observ-
ables, the dynamics can be divided into two subgroups
{Mx, Myy, Mzz, Myz} and {Mz, My, Mxz, Mxy}. For the given
initial condition, the dynamics is confined only within the
first subgroup. There exist several conserved quantities in the
first subgroup, which are written as, 3ωd Ṁzz + ω1Ṁx = 0,
Ṁyy + Ṁzz = 0, and Ṁxx = 0 [30]. The existence of such
conserved quantities ensures that, if initially, any one of
the observables from the first group is nonzero, then they
have finite values at the prethermal state. The solution of
Mx(t ) by solving the above Eq. (8) for Mx|t→0 = M◦ is
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given as,

Mpre
x (M◦, t ) = M◦

(
4ω2

1

κ2
1

+ 9

4

ω2
d0

κ2
1

cos(κ1t )e−κ2
1 tτc

)
. (10)

Here, κ2
1 = 4ω2

1 + 9
4ω2

d0
. The above solution [Eq. (10)] sig-

nifies that Mpre
x (M◦, t ) will reach a steady state, and the

steady-state value is given as Mpre
x |t→∞ = M◦

4ω2
1

κ2
1

. We note
that, in the limit ω◦τc > 1, and ω1, ωd � ωSL, our numerical
results [Fig. 2(a)] matches well with the experimental evi-
dences by Beatrez et al. [22]. In the next sections, we show
that such a long-lived prethermal plateau helps to stabilize the
DTC phase.

B. Dynamics under the rotation along the y direction

We note that the rotation along the y direction occurs for a
short duration, so, no heating occurs in this time duration. In
other words, the effects of the dissipators are negligible during
this period. Therefore, the dynamics is adequately described
by the first-order process. Here, Hy = ω2

∑2
i=1 I i

y. To obtain
the existence of the DTC phase, we are only interested in the
dynamics of Mx(t ). The solution of Eq. (5) in terms of Mx(t )
is written as,

Mrot
x (t ) = M1 cos(ω2t ), Mrot

z (t ) = M1 sin(ω2t ). (11)

Here, Mrot
x |t→0 = M1. We define L̂y = −i[Hy ⊗ I − I ⊗ HT

y ].

C. Emergence of the DTC phase

To study the emergence of the DTC phase in the two-spin
ensemble, we provide the analytical solution of Mx(t ) up
to 2τ time period by solving Eq. (6). In experiments, drive
strength is taken to be stronger than the dipolar interaction
(ω1 > ωd ). Such consideration leads to the negligible decay
of Mx(t ) in the transient phase [13]. In this limit, the evolution
of Mzz, Myy, Myz is negligible with respect to Mx(t ), which is
shown in Appendix A. For the initial condition Mx|t→0 = 1,
the solution of Mx(t ) at time τ1 is given as,

Mx(τ1) = Mpre
x (1, τ1), Mz(τ1) = 0. (12)

After the rotation, the solution is given by,

Mx(τ ) = Mpre
x (1, τ1) cos θ, Mz(τ ) = Mpre

x (1, τ1) sin θ.

(13)

Here, θ = ω2τ2. Similarly, after a time τ + τ1, the solution is,

Mx(τ + τ1) = Mpre
x

[
Mpre

x (1, τ1), τ1
]

cos θ,

Mz(τ + τ1) = Mpre
z

[
Mpre

x (1, τ1), τ1
]

sin θ. (14)

Finally after the 2τ time period, the analytical expression of
Mx(2τ ) is written as,

Mx(2τ ) = Mpre
x

[
Mpre

x (1, τ1), τ1
]

cos2 θ

+ Mpre
z

[
Mpre

x (1, τ1), τ1
]

sin2 θ. (15)

Here, the form of Mpre
z (α, t ) is obtained by solving the dy-

namical equations of the other subgroup {Mz, My, Mxz, Mxy},
which is shown in Appendix A.

FIG. 2. Plots of Mx versus time are shown in (a), (b), (c), and
(d) for the four choices of τc, which are 10−3 ms, 10−4 ms, 10−5 ms,
and 10−6 ms, respectively. Here, ω2τ2 = 0. The value of the fixed
parameters are given as, ω1 = 2π×5 kHz, ωd = 2π×5 kHz, ω◦ =
2π×104 kHz, and ωSL = 10−1 kHz. We note that, when τc > 1/ω◦,
there is a finite lifetime of the prethermal plateau, whereas, for τc <

1/ω◦, the system directly thermalizes, so, there is no existence of the
prethermal plateau.

1. Solution for θ = π

Putting θ = π , in the above solutions, we get,

Mx(0) = 1,

Mx(τ1) = Mpre
x (1, τ1),

Mx(τ ) = −Mpre
x (1, τ1),

Mx(τ + τ1) = −Mpre
x

[
Mpre

x (1, τ1), τ1
]
,

Mx(2τ ) = Mpre
x

[
Mpre

x (1, τ1), τ1
]
. (16)

In the above Eq. (16), we show that, in every time period τ ,
the sign of Mx is reversed. Therefore, Mx(t ) comes to the same
phase at every 2τ time period, which signifies that the system
shows the period-doubling response. On the other hand, Mz(t )
remains zero throughout the evolution. For increasing the
values of ωd , we note that κ2

1 increases, which signifies that
the value Mpre

x (1, τ1) decreases in every cycle, therefore such
period-doubling response becomes short lived. It was previ-
ously reported that the melting of DTC order is proportional
to the square of the interaction strength [17]. In our case, we
find that κ2

1 ∝ ω2
d , which supports the existing experimental

results. Hence, for a robust DTC regime, we need ω1 > ωd .

2. Solutions for θ = π + δ, with δ/π → 0

To obtain the stability of the DTC phase, we apply a per-
turbation (δ) in the π rotation. In such cases, we note that,
cos(π + δ) = −1, sin(π + δ) = −δ. The solution is given by,

Mx(0) = 1,

Mx(τ1) = Mpre
x (1, τ1), Mz(τ1) = 0,

Mx(τ ) = −Mpre
x (1, τ1), Mz(τ ) = −δMpre

x (1, τ1)

Mx(τ + τ1) = −Mpre
x

[
Mpre

x (1, τ1), τ1
]
,

Mz(τ + τ1) = −δMpre
z

[
Mpre

x (1, τ1), τ1
]

Mx(2τ ) = Mpre
x

[
Mpre

x (1, τ1), τ1
]

+ δ2Mpre
z

[
Mpre

x (1, τ1), τ1
]
. (17)
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In the above solutions [Eq. (17)], the 2τ periodicity is ab-
sent due to the presence of the extra term in Mx(2τ ), the
period-doubling response is. Such a response can be retrieved
if δ2 → 0 or Mpre

z (Mpre
x (1, τ1), τ1) → 0. In Appendix A, we

show the plot of Mpre
z (t ) for various choices of τ1, and τc.

We note that, Mpre
z (Mα, t ) decays faster for higher values

of τ1, and τc. Therefore, higher τ1 and lower δ are suitable
conditions for observing the DTC phase in the system, which
matches with the previous experimental results [13].

For, ω1 > ωd , the expressions of Mpre
z (Mα, t ) is given as,

Mpre
z (Mα, t ) = Mα cos(ω1t )e−ω2

1τct . (18)

Therefore, for higher values of τc, the effect of the extra
term of Mx(2τ ) in Eq. (17) can be neglected so, the DTC
response is robust in this regime. For the generalization of
our theoretical results for the two-spin ensemble, we inspect
a many-spin dipolar coupled ensemble in the next section.
We also study the existence of a stable DTC regime in the
presence of a two-pulse sequence by varying ω1, ωd , τ1, δ, τc,
n and N .

IV. DYNAMICS OF THE ENSEMBLE
OF N SPIN 1/2 PARTICLES

Here, we consider an ensemble of N-spin dipolar coupled
systems weakly coupled to the environment. For simplic-
ity, we model the individual dipolar coupling between the
spin pairs by an averaged coupling amplitude. Due to such
averaging, the coupling amplitude is always lower than the
coupling between the nearest-neighbor interaction. Following
the works by Lacelle et al., in case of N-spin systems, the
number of distinct spin pairs are N (N − 1)/2, so the averaged
coupling amplitude is given by, ωd ∝ |ωdi j |2N/[N (N − 1)]
[45]. Here, |ωdi j | is the nearest-neighbor coupling amplitude.
The advantage of the above simplification is given below. The
secular Hamiltonian, H sec

x + H sec
dd , and the rotation Hamilto-

nian Hy commutes with J2 operator, the form of the operator
Ji is defined as,

�J =
N∑

i=1

∑
a=x,y,z

�σai

2
. (19)

It is also known as the total angular momentum operator or
the collective operator. Therefore, those Hamiltonians can be
written by using the collective basis, |J, m〉. Here, Jmax = N/2,
and −N/2 � m � N/2. The representation of the Hamiltoni-
ans is given by,

H sec
dd = ωd

(
2J2

z − J2
x − J2

y

)
,

H sec
x = ω1Jx,

Hy = ω2Jy. (20)

The matrix elements of the collective operators in the |J, m〉
basis are given below,

Jz = mδJ ′,Jδm′,m

J± =
√

(J ∓ m)(J ± m + 1)δJ ′,Jδm′,m±1. (21)

Here, Jx = J+ + J− and Jy = (J+ − J−)/i. We note that, us-
ing the collective operators, L̂sp and L̂y can be written in

FIG. 3. Plots of Mx versus the number of cycles are shown in
(a), (c), (e) and their corresponding Fourier transform, S(Mx ) versus
ω are shown in (b), (d), and (f). The value of the fixed parameters
are given as, ω1 = 2π×25 kHz, ωd = 2π×0.1 kHz, τc = 10−3 ms,
N = 15, and n = 200. For the top plot [(a), (b)], ω1τ1 = 2π×0.02,
ω2τ2 = π . For the middle plot [(c), (d)], ω1τ1 = 2π×0.02, ω2τ2 =
1.03π . For the bottom plot [(e), (f)], ω1τ1 = 2π , ω2τ2 = 1.03π . The
period doubling occurs for the upper plot [(b)] as the peak of the
Fourier spectra appears at ω = π . A small increase in ω2τ2 destroys
the 2τ periodic response [shown in (d)], which can be retrieved with
a higher decay rate for a significant increment of ω1τ1 [shown in (f)].
In plots showing spectra in (b), (d), and (f), the y axis is in arbitrary
units.

the block-diagonal form. Therefore, if the initial condition
belongs to the particular block, the dynamics remain confined
in that particular block. We choose the initial state to be the
eigenstate corresponding maximum eigenvalue of Jx, where
J = N/2, so the dynamics is confined in the principal J block.
We also note that, for the atom number N , the size of the
principal block is (N + 1)×(N + 1), whereas, in the Zeeman
basis, no such block structure arises and the size of the Hilbert
space is N2×N2. Such reduction of the dimensions in this case
has several numerical benefits.

We note that along with 〈J2〉, there exist another quantity
for the evolution under Lsp, which is given by,

d

dt

(
ω1〈Jx〉 + 3ωd

〈
J2

z

〉) = 0. (22)

The above Eq. (22) is the natural extension of the two-spin
ensemble case, which ensures that 〈Jx〉 will reach a nonzero
prethermal state. Next, we study the emergence of the DTC
phase in the system using the above-mentioned prethermal
state. Finding the dynamical equation for the many-spin sys-
tems is cumbersome, as there exist several operators in the
dynamics. Therefore, we numerically solve Eq. (6) for N =
15 and find Mx(t ), and we also obtain the regime of stable
DTC phase by varying the relevant parameters [ω1, ωd , δ, τ1,
n, N , and τc]. For the next part of the calculation, we denote
〈Jx (t )〉
(N/2) as Mx(t ).

We calculate Mx(t ) and its spectrum for the initial condi-
tion Mx|t→0 = 1 and plot in Fig. 3. For a fixed ωd , ω1, n, and
τc, when ω2τ2 = π and ω1τ1 = 2π×0.02, we confirm a sub-
harmonic response. For ω2τ2 = π , the x magnetization flipped
from x̂ to −x̂ in each cycle, therefore the spectrum has a single
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(a) (b)

(c)

FIG. 4. (a) shows the contour plot of the crystalline fraction ( f ) as a function of dimensionless quantities ω1τ1 and ω2τ2. The list of fixed
parameters are given here, ω1 = 2π×100 kHz, ωd = 2π×0.1 kHz, τc = 10−5 ms, N = 15, and n = 200. We note that the DTC phase is more
robust for lower values of |ω2τ2 − π | and higher values of ω1τ1. Here f = 0.1 is defined as the phase boundary. To understand the dependence
of δ on the decay rate of the DTC phase, we plot the FWHM of the spectrum of Mx (t ) as a function of dimensionless δ and also fit the plot
with p2(δ) = a + b×δλ in (b). The list of the fixed parameters are given as, ω1 = 2π×50 kHz, ωd = 2π×0.1 kHz, τc = 10−3, N = 15, and
n = 200. The fitting parameters are chosen as a = 1.147×10−4, b = 1.227, and λ = 2.267. Hence, for higher δ, such period-doubling response
decays much faster. (c) shows the contour plot of |S(Mx )|2 as a function of ω1τ1 and ω, for a fixed drive strength ω1. The list of fixed parameters
is given here, ω1 = 2π×100 kHz, ωd = 2π×0.1 kHz, ω2τ2 = 1.03π , τc = 10−3 ms, N = 15, and n = 200. For lower values of τ1, there is no
existence of the DTC phase, as two peaks appear at ω = π + δ. As, we increase τ1, a robust DTC regime can be found for higher values of τ1.
However, for a very high τ1, due to the presence of nonsecular terms and system-bath coupling, such robustness dies out.

peak at a position ω = π (top curve in Fig. 3). Next, we study
the stability of the 2τ response by varying the experimental
parameters τ1 and δ. For the same τ1, if δ = 0.03π , the 2τ

periodicity vanishes, and we get two peaks very close to ω,
ω = π ± δ. Such period-doubling response can be retrieved
with a larger τ1 (100 times than the previous one). Therefore,
our result suggests that lower δ and higher τ1 are desirable
for observing the DTC phase. This numerical finding matches
with our theoretical calculation for two-spin ensemble calcu-
lations, where for large τ1, the extra term in Eq. (17) vanishes,
so the period-doubling response can be retrieved. Although
for a very high τ1, the other terms Lnsec + LSL become effec-
tive, which provide a decay in Mx(t ), therefore the prethermal
phase is destroyed. As a result, the DTC phase also vanishes
for a very high τ1 regime.

Following the works by Choi et al., we define the crys-
talline fraction ( f ) as [13],

f = |S(ω = π )|2∑
ω |S(ω)|2 . (23)

We also show a contour plot of crystalline fraction ( f ) as a
function of dimensionless quantities ω2τ2 and ω1τ1 to capture
the regime of the DTC phase in the system. The plot of f

clearly shows the dependence of δ and τ1 on the DTC phase.
The stable regime is shown in the yellow regime of the contour
plot in Fig. 4(a), which also matches with earlier experimental
results [13]. Here f = 0.1 is defined as the phase boundary,
so, below f = 0.1, there is a smooth crossover from the DTC
phase to the non-DTC phase. We note that the period-doubling
response vanishes quickly for increasing δ. To find the depen-
dence of δ on the decay rate, we numerically plot the spectrum
of Mx(t ) and fit them with the following Lorentzian function,
fL(ω) = p1×p2

p2
2+(ω−π )2 . Here p1, p2 is the fitting parameters. Es-

pecially, p2 represents the width of the spectrum, which is also
proportional to the full width half-maximum (FWHM). We
numerically calculate p2 for different choice of δ and fit with
the following function, p2(δ) = a + b×δλ, here a, b, λ are
the fitting parameters. The comparison between the numerical
and data fitting is shown in Fig. 4(b). Our result shows that
λ = 2.267, which matches well with the experimental result
by Beatrez et al. [17].

For ω2τ2 = 0, the solution of the dynamical equa-
tion [Eq. (6)] shows the prethermalization in the system as
Mx(t ) reaches a quasisteady state [Eq. (10)]. Therefore, in
Fig. 5(a), prethermalization occurs in the blue regime near
the ω2τ2 = 0. On the other hand, the system reaches the DTC
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(a) (b)

FIG. 5. (a) shows the contour plot of Mx as a function of dimensionless ω2τ2 and the no. of cycle (n). The list of fixed parameters is
given here, ω1 = 2π×50 kHz, ωd = 2π×0.1 kHz, τc = 10−3 ms, ω1τ1 = 2π , N = 15, and n = 1000. The black region around ω2τ2 = 0 is
known as the prethermal phase. The alternative black and white stripes around ω2τ2 = ±π shows the existence of the stable DTC phase up
to n = 500. (b) shows the contour plot of |S(Mx )|2 as a function of ω2τ2 and ω. The list of fixed parameters is given here, ω1 = 2π×50 kHz,
ωd = 2π×0.1 kHz, τc = 10−3 ms, ω1τ1 = 2π×2, N = 15, and n = 200. The Fourier peak around ω = {0, 2π} arises due to the presence of
the prethermal phase; similarly, the peaks around ω = π denote the emergence of the DTC phase.

phase around ω2τ2 = ±π . The alternative dark bands occur
due to the flipping of Mx at each cycle, [sgn[(Mx )2n+1] =
−sgn[(Mx )2n]], which shows a robust subharmonic response
around ω2τ2 = ±π . Our calculation also shows that such a
period-doubling response is robust up to 500 cycles.

To confirm the existence of the DTC phase in the system,
we also provide a contour plot of the spectrum of Mx in
Fig. 5(b). The prethermal phase occurs when ω2τ2 = 2Nπ ,
{N ∈ I}. Therefore, the Fourier peak arises at ω = 0, 2π

for that particular values of ω2τ2, which signifies that the
applied drive and the response have the same periodicity
at the prethermal phase. From Fig. 5(a), we find that DTC
phase occurs at ω2τ2 = ±π , similarly the Fourier peaks in
Fig. 5(b) arise at ω = π for ω2τ2 ≈ ±(2N + 1)π . The results
corresponding to Figs. 5(a), 5(b) are in agreement with the
experimental observation by Beatrez et al. [17].

In our dynamical equation [Eq. (6)], τc plays an important
role. To demonstrate the τc dependence of the DTC phase,
We also plot Mx(t ) and its Fourier transform S[Mx(t )]. For
low values of τc, there is no existence of 2τ periodicity,
but for changing the value of τc from 10−7 ms to 10−3 ms,
such a novel response is retrieved, which is shown in Fig. 6.
Although, τc cannot be increased infinitely as it has a cutoff,
which is determined by, ω1τc < 1. Beyond that limit, the
perturbation theory breaks down. The numerical results also
match with the analytical calculations, as for higher values of
τc, the effect of the extra term of Mx(2τ ) in Eq. (17) can be
neglected.

We find that the roles of τ1 and τc are complementary. It is
well known that τc is inversely proportional to the temperature
[38]. Hence, at lower temperatures, the effect of the imperfect
rotation would be diminished, and the subharmonic response
could be restored. We also show a contour plot of |S(Mx )|2
as a function of τc and ω in Fig. 7(a), which shows that for
decreasing τc, the peak at ω = π becomes broader and after a
certain value, the DTC phase vanishes as instead of one peak
at ω = π , we got two peaks at ω = π ± δ. Therefore, the 2τ

periodic response vanishes for lowering τc. To find the rate

of broadening, we follow a similar protocol, which we did
numerically for p2(δ) vs δ. In this case, we get p2(τc) ∝ τ−1

c ,
which shows in Fig. 7(b).

To find the dependency of ω1, ωd on the robust DTC phase,
we also show a contour plot of log10 |S(Mx )|2 as a function
of ω1 (for fixed ωd ) and ωd (for fixed ω1) in Figs. 8(a), 8(b)
respectively. Two plots show the exactly opposite behavior.
We note that, Mpre

x ∝ ( ω1
ωd

)2, and a higher value of Mpre
x is

required for a stable DTC phase. For increasing ω1, and for

FIG. 6. Plot of Mx versus the number of cycles are shown in (a),
(c), (e) and their corresponding Fourier transforms, S(Mx ) versus
ω are shown in (b), (d), and (f). The chosen parameters are ω1 =
2π×125 kHz, ωd = 2π×0.1 kHz, n = 200, ω1τ1 = 2π×2, N = 15,
and ω2τ2 = 1.03π . For the top plot [(a), (b)], τc = 10−3 ms. For the
middle plot [(c), (d)], τc = 10−5 ms. For the bottom plot [(e), (f)], the
value of τc = 10−7 ms. We note that the intensity of the spectrum is
maximum for τc = 10−3 ms, and by decreasing τc, such intensity is
also suppressed and for τc = 10−7, the intensity is nearly zero. The
above plots signifies that lowering τc results in the decay of robust
2τ response in the system. In plots showing spectra in (b), (d), and
(f), the y axis is in arbitrary units.
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(a) (b)

FIG. 7. (a) shows the contour plot of |S(Mx )|2 as a function of τc and ω. The list of fixed parameters is given here, ω1 = 2π×125 kHz,
ωd = 2π×0.1 kHz, ω1τ1 = 2π , ω2τ2 = 1.03π , N = 15, and n = 200. The DTC phase is more robust in the high τc regime as a single narrower
peak arises at τc = 10−3 ms. For lowering τc, the peak becomes broader, and around τc → 10−5 ms, the single peak breaks into two peaks at
ω = π ± 0.03π , which leads to the breaking of 2τ periodicity in the system. To find the dependency of τc on the broadening, we plot FWHM
as a function of τc and also fit with p2(τc ) = a + b×τ λ

c in (b). The list of the fixed parameters is given as (a). The value of the fitting parameters
are, a = −3.6×10−4, b = 2.181×10−7, and λ = −0.992. Hence for higher τc, the DTC phase becomes more stable.

decreasing ωd , the DTC phase becomes more robust. For both
cases, the upper bound is given by ω1τc < 1, and ωdτc < 1.

We also check the stability of the DTC phase by changing
the atom number. To use the |JM〉 basis for a higher number of
atoms, we need an averaged dipolar interaction in the model.
Previously, we mentioned that for N number of atoms, the
averaged interaction can be modeled as ωd ∝ |ωdi j |/N , where
ωdi j is the nearest-neighbor interaction. Using the above re-
lation, we numerically plot the time evolution of Mx and its
spectrum, which is shown in Fig. 9. Our result implies that
for increasing the number of atoms the behavior of the DTC
phase remains unchanged as the major contribution is coming
from the nearest-neighbor interactions.

V. DISCUSSIONS

To predict the robust period-doubling response, we have
used the FRQME for deriving the dynamical equation of the
dissipative systems, in the presence of the drive and dipolar
interaction [32]. Such formalism predicts unique second-order
terms of the above-mentioned interactions, which play a major
role in the stability of the DTC phase.

Recently, it has been reported that the interplay between
drive and dissipation lead to persistence oscillation, which
plays a key role in the emergence of the DTC phase in
driven dissipative systems [34,46–49]. For example, due to the
imperfect rotation in dissipative-Floquet systems, the system
starts to evolve in the wrong sector of the Hilbert space, which
is corrected by dissipation, leading to a stable DTC [46]. Sim-
ilarly, in our case, due to imperfect rotation along the y axis,
Mz starts to evolve, which can be stabilized by increasing the
dissipation time (τ1). Therefore, our results support the recent
theoretical arguments on the stability of DTC in dissipative
systems [46]. However, in the presence of the imperfect ro-
tation δ, such period-doubling response becomes short lived,
as the decay rate of the oscillations is proportional to δ2.267,
which also matches with the recent experimental observation
by Beatrez et al. [17].

We also find that in the presence of the perturbation, the
spin-locking pulse with a larger time duration is much more
effective in diminishing the destructive effect of the pertur-
bation (shown in Fig. 4(c)), which is in agreement with the
works by Choi et al. [13]. There exists an upper bound of τ1,
as in this high-τ1 regime the system-bath coupling becomes

(a) (b)

FIG. 8. (a) shows the contour plot of log10 |S(Mx )|2 as a function of ω1 and ω. The list of fixed parameters is given here, τ1 = 20 ms,
ωd = 2π×0.1 kHz, ω2τ2 = 1.03π , τc = 10−3 ms, N = 15, and n = 200. For lower values of ω1, the peak at ω = π becomes broader. On
the other hand, for higher values of ω1, it becomes more robust as we have a narrower peak at ω = π , so the DTC phase is more robust
in this regime. In (b), we show the contour plot of log10 |S(Mx )|2 as a function of ωd and ω. The list of fixed parameters is given here,
ω1 = 2π×50 kHz, ω1τ1 = 2π , ω2τ2 = 1.03π , τc = 10−3 ms, N = 15, and n = 200. It shows exactly the opposite behavior of Fig. 8(a). As for
higher ωd , the peak at ω = π becomes broader. Hence, the strong dipolar coupling has a negative effect in the DTC phase.
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FIG. 9. Plot of Mx versus the number of cycles is shown in (a),
(c), (e) and their corresponding Fourier transform, S(Mx ) versus ω

are shown in (b), (d), and (f). The value of the fixed parameters
are given as, ω1 = 2π×25 kHz, |ωdi j | = 2π×2 kHz, τc = 10−3 ms,
ω1τ1 = 2π×2, ω2τ2 = 1.01π , and n = 200. For the top plot [(a),
(b)], N = 15, ωd = |ωdi j |/15 kHz. For the middle plot [(c), (d)],
N = 20, ωd = |ωdi j |/20 kHz. For the bottom plot [(e), (f)], N = 25,
ωd = |ωdi j |/25 kHz. For all the cases, Mx and S(Mx ) show nearly the
same behavior as the major contribution is coming from the nearest-
neighbors interactions (|ωdi j | ∝ 1/r3). Therefore, for increasing the
no. of atoms, the DTC phases remain intact. In plots showing spectra
in (b), (d), and (f), the y axis is in arbitrary units.

effective, so the system further thermalizes (T1 process). The
upper bound of τ1 is given by, τ1/T1 < 1. As the DTC phase
can only be found in the nonequilibrium time domain, such
choice of τ1 is prohibited.

We also check the stability of the DTC phase, by varying
the other parameters, ω1, and ωd . Such stability depends on
the higher values of Mx(t ) in the quasistationary prethermal
phase. Our results show that a stronger drive is required in
this case. Similarly, a much weaker dipolar interaction also
plays the same role here. Therefore, the presence of the
dipolar interaction contributes to the decay of the prethermal
order, as Mpre

x ∝ M◦(1 − 9
16 ( ωd

ω1
)2) for ω1 > ωd , so the decay

rate is proportional to ω2
d . Such dependency was previously

reported by Beatrez et al. [17]. We note that, for ωd = 0,
our dynamical equation has similarities with the collective
spin Markovian dephasing process Lsec[ρS] ∝ γ (2JxρSJx −
{J2

x , ρS}) [13], which can successfully predict the existence
of 2τ periodicity in the x direction. Although, the fundamen-
tal difference between the two processes is given as, in our
case γ ∝ ω2

1τc, and only FRQME can predict such processes,
which is known as drive-induced dissipation (DID) [32]. On
the other hand, for the dephasing process γ ∝ ω2

SL
τc

1+(ω◦τc )2 ,
as ω1 � ωSL, such process is neglected in this case. In the
experiment, spins are randomly oriented in the absence of
dipolar interaction, such random configuration of the spins
provides a detrimental effect to the DTC phase. Therefore,
ω1 > ωd � ωSL > 0 is the necessary condition for having a
stable DTC phase.

We also note that the 1/r3 dependence of the dipolar
interaction implies that, the major contribution is coming
from the nearest-neighbor interactions. Therefore, in the case
of a multispin dipolar network, if we assume that the coupling

amplitude between the spin pairs is equal, without proper
averaging of such interactions, we get a period-doubling
response with a higher decay rate. As the effective
interaction between the nearest spin pairs increases without
the averaging. Such issue can be resolved by assuming
ωd ∝ ωdi j /N [45].

Our prescription can be extended to any number of dipo-
lar coupled spins in an ensemble. There exist other methods
based on a mean-field quantum master equation for observing
the persistent period-doubling oscillations in open many-
body quantum systems [34,35]. We note that our approach
has significant differences from the previous methods and
matches well with the existing experimental pieces of evi-
dence [13,17].

For the dissipative dipolar systems, the subharmonic re-
sponse in the presence of a long-lived prethermal phase has
some dissimilarities from the usual definition of the Floquet
time crystal as proposed by Else et al. [33]. In the for-
mer case, the period-doubling response is not long lived and
it depends on the lifetime of the prethermal plateau [17].
In addition to that, due to the presence of self-averaging
effects, the experimental results for nearly 103 number of
spins can be theoretically reproduced using only fewer atoms,
which we confirm using our analytical and numerical re-
sults. On the other hand, for the Floquet time crystal, the
robust subharmonic response is only possible in the ther-
modynamic limit of the atoms. A brief discussion on the
difference between the experimentally found prethermal DTC
and the Floquet DTC is also provided in the review article by
Khemani et al. [7].

Moreover, we find that the DTC phase depends on the
environmental parameter (τc), which in turn suggests that the
DTC phase is more stable at low temperatures. We also note
that FRQME has a region of validity as too low temperature
might break the timescale separation argument, requiring a
non-Markovian approach.

VI. CONCLUSIONS

As a summary, using FRQME, we have provided an al-
ternative theoretical explanation for the emergence of the
prethermal DTC phase in a dissipative dipolar network ex-
periencing the two-pulse excitation (i.e., the spin-locking
pulse followed by a rotation in the perpendicular direction).
We note that, during the evolution under the spin-locking
pulse, a quasiconserved quantity exists, which plays a piv-
otal role in preserving the prethermal order. We show that
the robustness of the DTC phase depends on the long-
lived prethermal order. We also check the stability of the
DTC phase by changing the existing parameters in our
dynamical equation, and we note that our analytical and
numerical results also match with the recent experimen-
tal works. In addition, we find that such period-doubling
oscillations are more robust at the lower temperature. We
envisage that our approach will be useful in quantum syn-
chronization problems. Moreover, our analysis can also be
extended to describe other kinds of exotic nonequilibrium
phases that emerged in the driven dissipative many-body
systems.
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(a) (b)

FIG. 10. (a) shows the plot of observables (〈O〉), which are, Mpre
x (blue solid line, the top curve), Mpre

zz (red dotted line, second from the top),
Mpre

yy (green dashed line, the bottom curve), and Mpre
yz (black dash-dotted line, second from the bottom) versus number of cycle by numerically

solving Eq. (7). Here, ω2τ2 = 0. The list of fixed parameters are given as, ω1 = 2π×40 kHz, ωd0 = 2π×10 kHz, τc = 10−4 ms, and ω1τ1 =
2π×0.02. The initial condition is chosen as Mx|t→0 = 1. For such a choice of parameters, the system reaches a steady state after some cycle.
The dynamical evolution of Mpre

zz , Mpre
yy , Mpre

yz are negligible compared to Mpre
x . (b) shows the plot of observables Mpre

z versus the number of
cycles for three different choices of τ1, τc. Here ω2τ2 = 0. The list of fixed parameters are ω1 = 2π×40 kHz, ωd0 = 2π×4 kHz. Three choices
are given as {ω1τ

1
1 = 2π×0.05, τ 1

c = 10−4 ms} (red dotted line), {ω1τ
2
1 = 2π×0.2, τ 1

c = 10−4 ms} (gray solid line), and {ω1τ
1
1 = 2π×0.05,

τ 2
c = 10−3 ms} (black dashed line). The initial condition is chosen as Mz|t→0 = −0.2. The above plot indicates that for higher values of τc and

τ1, Mpre
z decays faster for increasing the number of cycles. Such a condition is necessary for obtaining the DTC phase.
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APPENDIX: DYNAMICS UNDER
SPIN-LOCKING SEQUENCE

The dynamical equation under the spin-locking sequence
is given by,

dρS

dt
= −i[Hsec, ρS] − τc[Hsec, [Hsec, ρS]], (A1)

Here, Hsec = H sec
x + H sec

dd . The representation of the symmet-
ric observables is given by,

Mα = Trs[(Iα ⊗ I + I ⊗ Iα )ρs]

Mαβ = Trs[(Iα ⊗ Iβ + Iβ ⊗ Iα )ρs], ∀ α �= β

Mαα = Trs[(Iα ⊗ Iα )ρs]. (A2)

Here, α, β ∈ {x, y, z}. In the presence of Hsec, the dynam-
ical equations can be divided into two subgroups. Each
group contains four observables, {Mx, Myy, Mzz, Myz} and
{My, Mz, Mxy, Mxz}. The dynamical equations for the first

group are given by,

Ṁx = − 9
4ω2

d0
τcMx + 6ω1ωd0τcMzz − 6ω1ωd0τcMyy

− 3ωd0 Myz (A3)

Ṁzz = 3
4ω1ωd0τcMx − 2ω2

1τcMzz + 2ω2
1τcMyy + ω1Myz

(A4)

Ṁyy = − 3
4ω1ωd0τcMx + 2ω2

1τcMzz − 2ω2
1τcMyy − ω1Myz

(A5)

Ṁyz = 3
4ωd0 Mx − 2ω1Mzz + 2ω1Myy

− (
4ω2

1 + 9
4ω2

d0

)
τcMyz. (A6)

There exist several conserved quantities in this block, which
are given by,

3ωd0 Ṁzz + ω1Ṁx = 0 (A7)

Ṁyy + Ṁzz = 0 (A8)

Ṁxx = 0. (A9)

For the demonstration of the DTC phase, the loss of x mag-
netization must be very small in each cycle of the evolution.
Otherwise, Mx(t ) will vanish after a few cycles. Such con-
dition will be satisfied if ω1 > ωd . From the below plot
(Fig. 10), the evolution of {Mzz, Myy, Myz} are negligible
compared to Mx in the limit ω1 > ωd . The dynamical equa-
tions for the other group are written as,

Ṁz = −ω2
1τcMz + ω1My + 3ω1ωd0τcMxz (A10)

Ṁy = −ω1Mz − (
ω2

1 + 9
4ω2

d0

)
τcMy + 3ωd0 Mxz + 3ω1ωd0τcMxy (A11)

Ṁxz = 3
4ω1ωd0τcMz − 3

4ωd0 My − (
ω2

1 + 9
4ω2

d0

)
τcMxz + ω1Mxy (A12)

Ṁxy = 3
4ω1ωd0τcMy − ω1Myz − ω2

1τcMxy. (A13)
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As there exist no conserved quantities involving the observables from this group, all the observables will vanish at the steady
state even if they have any initial nonzero values. There is no closed analytical form for the observables. Hence we provide the
plot of the observable Mpre

z (Mα, t ) by numerically solving Eqs. (A10)–(A13) for a different choice of τ1, τc. Here, Mz|t→0 = Mα .
Other observables are not relevant for this case.
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