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Single-atom quantum heat engine based on electromagnetically induced transparency
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The single-atom version of the quantum heat engine based on electromagnetically induced transparency is
theoretically investigated in this paper. In contact with a hot and a cold bath, the atom trapped in an optical
cavity is coherently coupled by a coherent field, thus generating photons as output through a process that mimics
a heat engine. Using semiclassical theory, we obtain the conditions for the classical gain parameter being positive.
Then by taking a full quantum approach, we discuss the statistical property of the generated photons depicted by
the photon number distribution and Wigner function, and show that it can be effectively tuned by the coupling
field. Investigations on the energy and entropy balances of the heat engine process lead to an interesting result
that the power of the engine is simply the energy per time provided by the hot reservoir. The coupling field plays
a critical role in supporting the heat-engine process. However, the energy that it provides is all dumped into the
cold reservoir. The total energy exchange conforms to the first law of thermodynamics. The efficiency of the
engine depends on the temperatures of the two reservoirs and the strength of the coupling field. The entropy
change of the heat-engine process suggests that when working far above the threshold of lasing, the efficiency
approaches that of its atomic-ensemble-based partner.
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I. INTRODUCTION

Heat engines convert heat or other forms of energy into
mechanical work, while quantum heat engines are similar
devices but use quantum objects as working materials. It is
widely believed that the concept of the quantum heat engine
was first introduced in a paper published in 1959, in which
Scovil and Schulz-DuBois show that a three-level maser can
be regarded as a heat engine (the SSDB heat engine) that takes
the Carnot efficiency as its maximum [1]. This paper is also
regarded as the starting point of quantum thermodynamics.

Just as studies on the Carnot heat engine led to the
establishment of the first and second law of the classical
thermodynamics, quantum heat engines offer good models
to study the relation between thermodynamics and quantum
mechanics [2–4]. The concepts of work, heat, and entropy
are extended into the field of quantum optics [5–8]. In the
meantime, quantum correlation [9–12], coherence [13–15],
quantum interactions [16,17], and statistics [18,19] are ex-
plored as new resources to improve the performance of the
engine. A quantum heat engine can be operated in cycles
[20–22] or in a continuous fashion [23–26]. The example
of the former one is the quantum Otto engine [27–29], and
the previously mentioned SSDB heat engine belongs to the
continuous ones.

Another continuous quantum heat engine that we focus
on in this paper is the one first studied by Harris [30]. The
model is based on electromagnetically induced transparency
(EIT) [31] and is composed of a group of ultracold atoms
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and a coherent laser. When contacting with two heat baths,

the engine initiates a series of transitions |1〉 Th−→ |3〉 Tc−→
|2〉 ωc−→ |3〉 ωa−→ |1〉 [see Fig. 1(a)], leading to the generation
of the photons at frequency ωa. Here Th is the temperature of
the hot reservoir which acts as a source of energy, and Tc is
the temperature of the cold reservoir that serves as an entropy
tank. Such interaction between the light and the atoms behaves
just like an engine, and it has an efficiency that could break the
Carnot-engine limit. After proposed in 2016, the engine was
demonstrated in laser-cooled 85Rb atoms a year later [32].

In the original model, the generated field (output of the
engine) is treated as a classical light, and the features of the
system are studied in terms of the linear gain and absorp-
tion [30]. As for the quantum characteristic of the generated
photons, it can be revealed only using the theory of quan-
tization. Recently the quantum statistics of the single-atom
SSDB heat engine have been investigated using the Scully-
Lamb approaches [33]. This motivated us to investigate the
single-atom EIT engine. To the best of our knowledge, the
quantum statistics, efficiency, and power of such an engine are
not studied yet. We show in this paper that such a single-atom
engine behaves quite differently than its semiclassical partner.

Our model is an atom trapped in an optical cavity with the
generated photons coupled into a cavity mode. The semiclas-
sical results show that the gain parameter is not a monotonic
function of the thermal occupation number of the hot reser-
voir, since a larger thermal occupation number leads to faster
decoherence process and in turn hampers the effect of EIT.
When the generated field is quantized, the cases (distinguished
by the intensity of coupling field and temperature of hot bath)
with the same gain parameter actually have different quantum
statistics. Additionally, the properties of the quantum statistics
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FIG. 1. (a) Single-atom (blue dot) quantum heat engine. Powered
by a black-body radiations at temperature Th and cooled by another
at temperature Tc, the atom generates photons in a particular mode at
ωa (dashed wavy line) of an optics cavity, which is regarded as the
output of the engine. A strong coupling field at frequency ωc is used
to eliminate the absorption of the generated photons in virtue of EIT.
(b) Atomic configuration of the heat engine.

can be controlled by the coupling field. The efficiency of the
engine is not a constant as well; it depends on how the engine
is powered. In the extreme situation when the engine is far
above the lasing threshold, the generated light becomes clas-
sical, and the efficiency turns into that of the original engine,
which is not bounded by the Carnot efficiency.

The remainder of this article is organized as follows. In
Sec. II we introduce the model of the engine in detail. The
gain and saturation parameters are obtained via a semiclas-
sical analysis. The full quantum calculation is carried out in
Sec. III. By solving the master equations, we are able to depict
the photon number distribution of the generated photons and
its Wiger function as well. The thermodynamics of the engine
is investigated in Sec. IV, and we conclude with a summary in
Sec. V.

II. MODEL AND CLASSICAL GAIN

Let us consider a single atom interacting with a particular
electromagnetic mode of an optical resonator as shown in
Fig. 1(b). The atom is assumed to be a three-level system
driven by a laser field at frequency ωc with a Rabi frequency
of �c and pumped by two incoherent fields, i.e., black-body
radiations with thermal occupation numbers

n̄h = 1

exp

(
h̄ω31

kbTh

)
− 1

, (1a)

n̄c = 1

exp

(
h̄ω32

kbTc

)
− 1

, (1b)

respectively. Here ωαβ is the resonant frequency of the tran-
sition |α〉 ↔ |β〉, with α, β ∈ {1, 2, 3} labeling the atomic
energy levels. Th and Tc are the temperatures of the cor-
responding black bodies. Similar to the heat engine using
that atomic ensemble [30], the atom in the cavity supports

the process |1〉 Th−→ |3〉 Tc−→ |2〉 ωc−→ |3〉 ωa−→ |1〉 as well, and
the output photons are generated in a cavity mode at ωa. In the
interaction picture, under the electric-dipole approximation
and the rotating-wave approximation, the Hamiltonian of our

system is

V̂ = −h̄(�cσ̂32 + �∗
c σ̂23 + gaâσ̂31 + gaâ†σ̂13), (2)

where σ̂αβ = |α〉〈β| is the atomic transition operator, while â
is the annihilation operator of the cavity mode at frequency
ωa. ga is the vacuum Rabi frequency of the cavity mode. We
assume that the cavity mode and the coupling field resonate
with their corresponding transitions, and the dynamics of this
cavity-QED system is described by the master equation

∂

∂t
ρ = i

h̄
[ρ, V̂ ] + Lh(ρ) + Lc(ρ) + Lcav(ρ), (3)

with

Lh(ρ) = 	+
h

(
σ̂31ρσ̂13 − 1

2 {σ̂11, ρ})
+	−

h

(
σ̂13ρσ̂31 − 1

2 {σ̂33, ρ}), (4a)

Lc(ρ) = 	+
c

(
σ̂32ρσ̂23 − 1

2 {σ̂22, ρ})
+	−

c

(
σ̂23ρσ̂32 − 1

2 {σ̂33, ρ}), (4b)

Lcav(ρ) = κ
(
âρâ† − 1

2 â†âρ − 1
2ρâ†â

)
. (4c)

Here Lh[ρ] and Lc[ρ] describe the contributions from the hot
and cold reservoirs, respectively, and

	+
h = 	31n̄h, 	−

h = 	31(n̄h + 1),

	+
c = 	32n̄c, 	−

c = 	32(n̄c + 1).

	αβ stands for the rate of radiative decay of the transition
|α〉 ↔ |β〉, and Lcav[ρ] describes the light leaking from the
cavity at a rate of κ . Based on Eq. (3), the following equa-
tions for the averaged values of the transition operators and
the annihilation operator of the cavity mode are obtained:

d〈σ̂11〉
dt

= −	+
h 〈σ̂11〉 + 	−

h 〈σ̂33〉 + iga[〈σ̂13â†〉 − H.c.],

(5a)

d〈σ̂22〉
dt

= −	+
c 〈σ̂22〉 + 	−

c 〈σ̂33〉 − i[�c〈σ̂32〉 − H.c.],

(5b)

d〈σ̂12〉
dt

= −γ12〈σ̂12〉 + i�∗
c〈σ̂13〉 − iga〈σ̂32â〉, (5c)

d〈σ̂13〉
dt

= −γ13〈σ̂13〉 + i�c〈σ̂12〉 − iga〈(σ̂33 − σ̂11)â〉,
(5d)

d〈σ̂23〉
dt

= −γ23〈σ̂23〉 − i�c〈σ̂33 − σ̂22〉 + iga〈σ̂21â〉, (5e)

d〈â〉
dt

= −κ

2
〈â〉 + iga〈σ̂13〉. (5f)

The decoherence rates in the above equations are γ13 =
(	+

h + 	−
h + 	−

c )/2, γ23 = (	−
h + 	−

c + 	+
c )/2, Most impor-

tantly

γ12 = 	+
h + 	+

c

2
= 	31n̄h + 	32n̄c

2
. (6)

Increasing the thermal occupation number (equivalently the
temperature) of either the hot bath or the cold one leads
to a larger decoherence rate between ground levels. The
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higher temperature of the hot reservoir effectively weakens the
phenomenon EIT and increases the absorption on generated
photons, and consequently lowers the efficiency of the engine
(discussed in Sec. IV).

Instead of seeking exact solutions, we employ the
semiclassical approximation, 〈σ̂αβ â〉 � 〈σ̂αβ〉〈â〉 and 〈σ̂αβ â†〉
� 〈σ̂αβ〉〈â†〉, to examine the general features of the system.
This means that the cavity mode is treated as a classical
field, and we define the amplitude of it as E := 〈â〉. Then
Eqs. (5a)–(5e) become the exact equations used in Ref. [30].

Instead of using the perturbation method to find the absorption
and emission cross sections that depict the linear response
of the atomic system, we manage to solve the equations di-
rectly by assuming that atomic system reaches its steady state
(d〈σ̂αβ〉/dt = 0) quickly due to the fast decay of the atom and
gE 	 �c. Finally we have

dE
dt

= −κ

2
E + iga〈σ̂13〉 = 1

2

(
G

1 + S|E |2 − κ

)
E, (7)

with

G = 2g2 |�c|2
[
	+

h (	−
c + 	+

h ) − 2γ21	
−
h

] + γ21γ32	
+
c (	+

h − 	−
h )(|�c|2 + γ21γ31

)[
2|�c|2(	−

h + 2	+
h ) + γ32	+

c (	−
h + 	+

h ) + γ32	−
c 	+

h

] , (8)

S = g2 γ31	
+
c 	−

h + 2γ21γ32(	−
c + 2	+

c ) + γ31	
+
h (	−

c + 	+
c ) + 2|�c|2(4γ21 + 	−

c + 	−
h )(|�c|2 + γ21γ31

)[
2|�c|2(	−

h + 2	+
h ) + γ32	+

c (	−
h + 	+

h ) + γ32	−
c 	+

h

] . (9)

Thus E grows from zero exponentially with respect to time, if
G identified as the lasing gain is larger than κ . As it acquires
a significant value, the overall amplification effect is further
limited by the saturation parameter S. In our system, G and
S are determined by the coupling field, thermal occupation
numbers of the baths, and the decay rates.

We plot the value of G/κ for different �c and n̄h in
Fig. 2(a). The contour line of G/κ = 1 corresponds to the
lasing threshold of our system for the parameters that we
choose. One interesting feature of G is that it is not always
positive. A negative G means that the atomic system alone is
passive, indicating that the oscillation of the cavity mode is
effectively damped by the atom. On the contour line of G = 0
(white line) in Fig. 2(a), �c satisfies the relation

�c = A0

√
	23nc(	23nc + 	31nh)

nh(	23 − 	31) − 	23nc
, (10)

with A0 = √
(	23 + 	31 + 2	23nc + 	31nh)/2. Note that the

square root operation in Eq. (10) is valid only if

nc <
nh(	23 − 	13)

	23
. (11)

FIG. 2. (a) Lasing gain G with unit of κ obtained from Eq. (8)
and (b) cavity photon number 〈na〉 obtained from Eq. (13) for dif-
ferent thermal occupation number of the hot reservoir and the Rabi
frequency of the coupling field. 	13 = 32 κ , 	23 = 4 	13, n̄c = 0.05,
and ga = 35 κ . Black dots mark the particular points (n̄h, �c) which
are used in Fig. 3 for the photon number probability and Wigner
function.

Thus one can assert that G would remain negative if the
above condition is not satisfied. It tells us that in order to
start the heat-engine process, one cannot use a cold bath
having a higher energy density that could break the con-
straint of the condition (11). This is a quite natural result,
especially from point of view of classical thermodynamics
that a cooler tank is preferred when it is used as a cold
reservoir.

Another even more interesting characteristic the condition
(11) reveals is that the radiative decay rate of the transition
|3〉 ↔ |2〉 must be larger than that of |3〉 ↔ |1〉, otherwise
the system definitely remains passive. A similar property is
found in the classical EIT engine, that only under the condi-
tion of 	23 � 	13 can the relevant interaction be categorized
as a heat-engine process from the angle of entropy; see the
discussions in [30] on Eq. (8) and (10) therein.

III. PHOTON NUMBER STATISTICS

A classical description presented in the previous sec-
tion provides a way to estimate the intensity of the output.
A steady output of the engine suggests that dE/dt is zero,
thus one can assert based on the expression in the parentheses
in Eq. (7) that the intensity of the output electric field from
the engine is proportional to (G − κ )/(Sκ ). However, a more
precise and rigorous description can be obtained only from a
fully quantum description. Using the Fock basis |n〉 of the cav-
ity mode, we can write the density operator ρ in Eq. (3) in a set
of equations which take ραβ;mn = 〈α, m|ρ|β, n〉 as unknowns.
Here |α〉, |β〉 = |1〉, |2〉 and |3〉, representing the energy levels
of the atomic system, and |m〉, |n〉 = |0〉, |1〉, |2〉 · · · denoting
the Fock states of the cavity mode:

d

dt
ρ11;mn = D (ρ11;mn) − 	+

h ρ11;mn + 	−
h ρ33;mn

− iga(
√

nρ13;m,n−1 − √
mρ31;m−1,n), (12a)

d

dt
ρ22;mn = D (ρ22;mn) − i�cρ23;mn + i�∗

cρ32;mn

−	+
h ρ22;mn + 	−

h ρ33;mn, (12b)
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d

dt
ρ33;mn = D (ρ33;mn) + i�cρ23;mn − i�∗

cρ32;mn

− iga(
√

n + 1ρ31;m,n+1 − √
m + 1ρ13;m+1,n)

+	+
h ρ11;mn − (	−

h + 	−
c )ρ33;mn

+	+
c ρ22;mn, (12c)

d

dt
ρ32;mn = D (ρ32;mn) − γ23ρ32;mn + i�cρ22;mn

+ iga

√
m + 1ρ12;m+1,n − i�cρ33;mn, (12d)

d

dt
ρ31;mn = D (ρ31;mn) − γ13ρ31;mn + i�cρ21;mn

− iga(
√

nρ33;m,n−1 − √
m + 1ρ11;m+1,n), (12e)

d

dt
ρ21;mn = D (ρ21;mn) − γ12ρ21;mn + i�∗

cρ31;mn

− iga
√

nρ23;m,n−1. (12f)

In the above equations, the term D (ραβ;mn) stands for the
decays due to the cavity leaking, and D (ραβ;mn) = − κ

2 (m +
n)ραβ;mn + κ

√
(m + 1)(n + 1)ραβ;mn.

The state of the cavity mode is depicted by � = tra(ρ)
where tra represents the partial trace over the atomic space.
Then the value of Pn ≡ �nn = ρ11;nn + ρ22;nn + ρ33;nn denotes
the probability of finding n photons in such a cavity mode.
Due to the presence of the classical coupling field, there are no
single-excitation subspaces for these equations, and we have
to solve them numerically. The results of Pn with the Fock
states truncated at n = 12 are given as column (a) in Fig. 3.
Through Pn, one can easily compute the cavity photon number

〈n̂a〉 =
∞∑

n=0

nPn. (13)

Then using 〈n̂a〉 we plot the Poisson distribution PPsn
n =

e−〈n̂a〉〈n̂a〉n/n! and the thermal distribution PTher
n = 〈n̂a〉n/(1 +

〈n̂a〉)n+1 in the subfigures for comparison. If the distribution
function becomes close to PPsn

n , the output photons resemble
the coherent light and the engine must be working far above
the lasing threshold, otherwise it is similar to a thermal light
source. In Fig. 3(a1) we set n̄h = 0.2, �c = 12.5 κ (point A
in Fig. 2) and the corresponding gain parameter G = −1.5 κ ,
meaning that the system is completely passive, and as we
can see in Fig. 2(b), the brightness of the output (i.e., 〈n̂a〉)
is approximately 0.26, and the photon number distribution
looks like a thermal one, although the Poisson and thermal
distributions are very similar to each other at lower 〈n̂a〉.

Fixing n̄h at 0.2 and increasing �c to 23.6 κ and 66.3 κ

lead to the results in Figs. 3(a2) and 3(a3), respectively. The
gain parameters at these two points [see B and C in Fig. 2(a)]
have the same value of G = 1.5 κ . However, the photon dis-
tributions are quite different. The comparison reveals the most
significant contrast between the classical and quantum results,
and it is also shown vividly in Fig. 2(b) that the structures of
G and 〈n̂a〉 are not exactly the same: 〈n̂a〉 at point C is clearly
above unity while 〈n̂a〉 at point B is lower.

FIG. 3. Photon number probability P(n) (blue dots) for (a1) n̄h =
0.2, �c = 12.5 κ , (a2) n̄h = 0.2, �c = 23.6 κ , (a3) n̄h = 0.2, �c =
66.3 κ , (a4) n̄h = 0.5, �c = 40.0 κ . The gain parameter G = −1.5 κ

in (a1), and it takes the same value of 1.5 κ in (a2) and (a3). G = 3.5κ

in (a4). The red (green) line is the Poisson (thermal) distribution
with the same mean photon number 〈na〉. The other parameters are
	13 = 32 κ , 	23 = 4 	13, n̄c = 0.05, and g = 35 κ . The correspond-
ing Wigner functions are given, respectively, as column (b).

We also manage to find the maximal value of G in Fig. 2(a),
which corresponds to point D. The averaged photon num-
ber 〈n̂a〉 reaches 1.8, and the resultant photon distribution is
plotted in Fig. 3(a4). Again one can clearly notice that the
point of the maximal value of G does not corresponds to that
of 〈n̂a〉 in the n̄h-�c plane. Similar to the result of Fig. 3(a3),
the photon distribution in (a4) is very close to the Poisson
distribution, indicating that the system is about to generate a
laser.

The Wigner function W (q, p) is calculated from the re-
duced density matrix �̂. The results are presented as column
(b) in Fig. 3. With the part of atom traced out, �̂ manifests
itself as a diagonal matrix in the Fock basis. The correspond-
ing Wigner function is centrosymmetric with respect to the
origin. For the lower 〈n̂a〉 as shown in Figs. 3(b1) and 3(b2),
the Wigner function is a single peak at origin indicating the
system is not oscillating. As 〈n̂a〉 get larger [see Figs. 3(b3)
and 3(b4)] a dip appears at the origin, and the overall struc-
ture of the Wigner function resembles a phase diagram of a
classical harmonic oscillator with constant energy.
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IV. THERMODYNAMICS OF THE ENGINE

The performance of the engine is normally characterized
by the power and efficiency, which in turn relate to the first and
second law of thermodynamics. In this section we investigate
what the laws of thermodynamics look like in such a single-
atom engine and show the features of its performance.

The first law of the thermodynamics can be examined from
the the energy of the unperturbed atomic system, that is,
Ĥ0 = ∑3

i=1 h̄ωi|i〉〈i|, with ωi being the eigenfrequency of the
corresponding atomic level. Considering that the operator Ĥ0

does not depend on time, then the changing rate of such energy
E = tr(ρĤ0) with respect to time is

dE

dt
= tr

(
∂ρ

∂t
Ĥ0

)
. (14)

Substituting Eq. (3) into the above equation we have

dE

dt
= Pc − Q̇out + Q̇h − Q̇c. (15)

The positive sign (prefactor signs in the above equation)
means that energy transfers into the system. Pc and Q̇out re-
sult from the first term on the right-hand side of the master
equation (3): − i

h̄ tr{[H0,V ]ρ} = Pc − Q̇out, with

Pc = ih̄ω32�c(〈σ̂32〉 − H.c.), (16a)

Q̇out = ih̄ω31ga(〈σ̂13a†〉 − H.c.). (16b)

Pc represents the energy per second that the system absorbs
from the coupling field, and Q̇out is the power of the engine’s
output. The hot reservoir provides the energy at the rate

Q̇h = tr{Lh(ρ)Ĥ0}
= h̄ω31	13[n̄h〈σ̂11〉 − (n̄h + 1)〈σ̂33〉]. (16c)

The waste energy is transferred into the cold reservoir at
the rate

Q̇c = −tr{Lc(ρ)Ĥ0}
= h̄ω32	23[(n̄c + 1)〈σ̂33〉 − n̄c〈σ̂22〉]. (16d)

Using the above definitions, the quantities Pc, Q̇h, Q̇c, and Q̇out

are all positive when the heat-engine process dominates the
interaction between the light and atom. Comparing the result
(16b) and (16c) with Eq. (5a) we find that in the steady state
(d〈σ̂i j〉/dt = 0),

Q̇out = Q̇h. (17)

Additionally, Eq. (5b) suggests that

Pc = Q̇c. (18)

Equations (17) and (18) indicate that the output energy of
the engine is simply the energy taken from the hot bath. The
flow of the energy is supported by the coherent coupling field,
and the energy absorbed from which is exactly the amount
used by the engine to compensate for the energy dumped into
the cold bath. Note that whether the semiclassical approxi-
mation is adopted or not, the relations always hold. Overall,
the energy that goes into the atomic system is equal to the
energy that goes out (dE/dt = 0), which is the first law of
thermodynamics.

FIG. 4. Efficiency η (a), average photon number 〈n̂a〉 [red line
in (b)], and variance σ 2 [blue line in (b)] plotted against thermal
occupation number of the hot bath. Other parameters are 	13 = 32 κ ,
	23 = 4	13, n̄c = 0.05, and g = 35 κ .

We can also inspect the balance of engine through the
energy of the output photons Ea = tr(ρĤa) with Ĥa being
the free Hamiltonian of the cavity mode Ĥa = h̄ω31â†â. Sim-
ilarly to the atomic part, dEa/dt = tr( ∂ρ

∂t Ĥa) is composed of
two part as well. The first part is the energy converted into
photons per second by the engine − i

h̄ tr{[Ha,V ]ρ}, which is
ih̄ω31g[〈σ̂13a†〉 − H.c.]. Note that this is just Q̇out in Eq. (16b).
The second part is the energy leaking out of an optical cavity
at the rate of tr{Lcav(ρ)Ĥa}, which is −h̄ω31κ〈n̂a〉. Using the
last equation in Eq. (5) we can write the dynamics of the
brightness as

∂〈n̂a〉
∂t

= −κ〈n̂a〉 + ig[〈σ̂13a†〉 − H.c.]. (19)

Then the steady-state condition ∂〈n̂a〉/∂t = 0 indicates that
these two parts cancel each other and lead to the balance of
energy in the generated field. Finally, the output power of the
engine can be written in terms of the brightness as

Q̇out = h̄ω31κ〈n̂a〉. (20)

The engine is powered by the hot reservoir and the coupling
field; then the efficiency of the system can be written as

η = Q̇out

Q̇h + Pc
= Q̇h

Q̇h + Q̇c
, (21)

if the relations (17) and (18) are considered.
The efficiency depends on how the engine is powered.

Figure 4(a) shows that η increases as n̄h gets larger, and after
it passes a certain value, the efficiency begins to drop. This
is mainly because the decoherence rate between the ground
levels increases with the thermal occupation numbers of the
thermal bath [see Eq. (6)]. The higher temperature of the
hot bath makes the atomic coherence fade more quickly and
consequently reduces the efficiency.

The second law of thermodynamics allows us to get a
clear picture of the maximal efficiency of the system. As we
can see, the engine system is composed of five parts, which
are the hot and cold baths, the coupling field, the generated
photons, and the cavity (including the atom). Let us assume
that the entropy of the cavity is S, then the entropy production
function is [6]

δ = dS

dt
− Q̇h

Th
+ Q̇c

Tc
+ Q̇out

Tout
, (22)

where we use Tα with α ∈ {h, c, out} to represent the flux
temperature of the corresponding radiation. The reciprocal
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of flux temperature is the entropy flow rate per unit power
[34,35]. For the hot and cold baths assumed as black-body
radiations, Tα = 3

4 Tα with α ∈ {h, c}. The derivation in detail
about this relation can be found in Ref. [36]. Since the clas-
sical coupling field is assumed to be an ideal laser with flux
temperature approaching infinity, absorbing photons from it
does not change the entropy of the whole system. Considering
the cavity always returns to its initial state for each generated
photon, thus dS/dt = 0. Then according to the second law
of thermodynamics, the total entropy change of such a closed
system must be greater than or equal to zero:

− Q̇h

Th
+ Q̇c

Tc
+ Q̇out

Tout
� 0. (23)

If we further assume that the system is far above the threshold
of lasing, Tout will approach infinity as well. Together with
Eq. (21), we find the maximal efficiency is

ηmax = Th

Tc + Th
. (24)

This actually is the efficiency of the atomic-ensemble based
EIT heat engine proposed by Harris, and it is far above that of
the single-atom system we discuss in this paper.

We present the average photon number 〈n̂a〉 and the vari-
ance σ 2 = 〈n̂2

a〉 − 〈n̂a〉2 in Fig. 4(b). Similar to the efficiency,
the average photon number, which is also the power of the
engine, and the variance both increase first with the increasing
n̄h and then decrease. But the variance is always larger than
the average photon number, indicating that the statistics of
the generated photon is super-Poissonian. In a realistic laser
system there are more than one atom in the cavity. With N
being the number of atoms, the coupling strength is effectively
enhanced by

√
N times. Then one would expect a Poisson

distribution and efficiency approaching Eq. (24).
The vanishing entropy suggests that the energy coming

from the coupling field should be considered as (input) work
[13,36]. The energy of the generated photons is the output
work if the engine is lasing. Then we can change our perspec-
tive on efficiency by considering that the output work is the
amplification of the input work, with a “net” efficiency:

ηnet = Q̇out − Pc

Q̇h
= Q̇h − Q̇c

Q̇h
= 1 − Tc

Th
, (25)

which is the Carnot efficiency showing the maximal attainable
amount of work we can extract (as the amount of increment)
from the heat bath.

V. SUMMARY

We have investigated a single-atom version of the quantum
heat engine based on electromagnetically induced trans-
parency. Using both the semiclassical and full quantum ap-
proaches we showed the dependence of the classical gain and
power of the engine on the thermal occupation number and the
Rabi frequency of the coupling field. Calculations suggest that
the difference choices of hot-bath temperatures and coupling
Rabi frequencies can lead to the same classical gain, but
different quantum statistics of the output photons. In our cal-
culation, values of the parameters having a unit of frequency,
such as the Rabi frequencies and the decay rates, are given
as multiples of the cavity-loss rate, forming the conclusions;
e.g., quantum statistics shown in Fig. 3 do not depend on a
particular choice of the cavity-loss rate. When the temperature
of the hot bath is relatively low, it appears that the power of
the engine increases with it. But relatively strong pumping of
the hot bath leads to poor performance of the engine due to the
fact that the effect of EIT is also weakened by such incoherent
coupling. When the first and second law of thermodynamics
are applied to the engine process we found that the power of
the output is simply the energy per time absorbed from the
hot reservoir, and the energy released to the cold reservoir
comes from the coupling field. If the engine is operated far
above the threshold of lasing, then the entropy balance of the
system suggests that the efficiency of the engine depends only
on the temperature of the hot and cold bath, which resembles
the original model using an atomic ensemble.
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