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Optimal energy storage in the Tavis-Cummings quantum battery
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The Tavis-Cummings (TC) model, which serves as a natural physical realization of a quantum battery,
comprises Nb atoms as battery cells that collectively interact with a shared photon field, functioning as the
charger, initially containing n0 photons. In this paper, we introduce the invariant subspace method to effectively
represent the quantum dynamics of the TC battery. Our findings indicate that in the limiting case of n0 � Nb

or Nb � n0, a distinct SU(2) symmetry emerges in the dynamics, thereby ensuring the realization of optimal
energy storage. We also establish a negative relationship between the battery-charger entanglement and the
energy storage capacity. As a result, we demonstrate that asymptotically optimal energy storage can be achieved
in the scenario where Nb = n0 � 1. Our approach not only enhances our comprehension of the algebraic
structure inherent in the TC model but also contributes to the broader theoretical framework of quantum batteries.
Furthermore, it provides crucial insights into the relation between energy transfer and quantum correlations.
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I. INTRODUCTION

Embracing the promising trend of device miniaturization,
quantum batteries (QBs) have been proposed to exploit quan-
tum features, thereby accelerating charging rates compared
to their classical counterparts. From a theoretical perspective,
QBs offer fundamental insights into the influence of quantum
correlations on extractable work, a pivotal concept in quantum
thermodynamics [1–16]. QBs, in conjunction with quantum
heat engines, offer a tangible approach to incorporate quantum
correlations, such as quantum entanglement and quantum co-
herence, into the field of quantum thermodynamics [17–26].

One notable characteristic of QBs is the phenomenon
known as “charging speedup” [27–29]. When connecting a
group of Nb QB cells to a shared charger, the charging rate
of the QB can potentially scale up to N2

b [30], indicating a
significant quantum advantage over classical batteries, whose
charging speed scales linearly with Nb. This quantum advan-
tage has been verified in various models, including Dicke
QBs [31–33], Sachdev-Ye-Kitaev QBs [34], spin-chain QBs
[35], cavity spin-chain QBs [36], and central-spin QBs [37].
Nevertheless, it is imperative to emphasize that a charging
speedup does not inherently ensure optimal energy storage.
Here, optimal energy storage denotes the complete transfer of
input energy from the charger to the battery. To enrich the
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theory of QBs, we will shift our focus towards an impor-
tant cavity quantum electrodynamics (cavity-QED) system,
the Tavis-Cummings (TC) model, to address the challenge of
achieving optimal energy storage.

The TC model serves as a foundational framework for
investigating the collective behavior of atoms or qubits in
the presence of electromagnetic fields [38–41]. It consti-
tutes a theoretical underpinning for the fields of quantum
optics and cavity QED [42–44]. Furthermore, it enhances our
comprehension of qubit manipulation and the generation of
entangled states, both of which are pivotal components in
the advancement of quantum computing and quantum infor-
mation processing technologies [45–52]. Moreover, the TC
model naturally lends itself to describing a QB, wherein
each of the Nb atoms serves as an individual battery cell
and the optical field serves as the charger, as illustrated in
Fig. 1(a). The eigenproblem associated with the TC model
can be exactly solved using the algebraic Bethe ansatz [53].
However, this approach does not alleviate the inherent chal-
lenges, the exponential wall [54], associated with calculating
quantum dynamics, which is at the core of investigating the
energy storage problem. Transitioning from the eigenproblem
to quantum dynamics is inherently challenging, not to men-
tion the complexity of solving the Bethe ansatz equations. For
instance, in Ref. [55] employing the Bethe ansatz approach,
numerical calculations were conducted for a scenario involv-
ing ten QB cells. The study concluded that the Fock state
is the optimal initial charger state for the maximum stored
energy capacity. Reference [2] utilized the PYTHON toolbox
QUTIP2 to numerically investigate cases in the TC battery
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FIG. 1. Schematic illustration of two charging schemes for the Tavis-Cummings battery. (a) Collective charging scheme: Nb battery cells
(atoms) commonly interact with a charger (a cavity photon field). (b) Parallel charging scheme: N single-atom TC models, known as the
Jaynes-Cummings model, are placed in parallel. At t < 0, the battery is in the ground state with the lowest energy. From 0 < t < τ , the
interaction Hamiltonian HI is activated to charge the battery. Finally, at the charging time τ , the interaction is turned off and the energy is
stored in the battery.

where the initial photon number equals the number of battery
cells. Their findings revealed that a polynomial increase in the
support of the battery state guarantees that the stored work
can be completely extracted. For a fixed number of QB cells,
Ref. [3] established a general inverse relationship between
the battery-charger entanglement and the extracted work in
incoherent QBs. Despite these productive findings, there re-
mains a need for a deeper understanding of the optimal energy
storage problem in the TC battery: (1) What conditions must
be met for a Fock state to achieve optimal energy storage? (2)
How should we address scenarios where the number of battery
cells is significantly greater than the initial photon number?
(3) Does the negative relation between the entanglement and
the energy storage capacity hold as the number of QB cells
varies?

In this paper, we address the aforementioned questions for
the TC battery. In Sec. II, we begin by introducing the TC
model and proceed to formulate the energy storage problem
mathematically. Subsequently, we introduce the invariant sub-
space method to overcome the exponential wall obstruction,
allowing us to deal with the dynamics of the TC battery when
the charger is chosen in a Fock state. In Sec. III, we first apply
the invariant subspace method to analyze the parallel charging
scheme. Subsequently, we delve into three collective charging
scenarios: n0 > Nb, Nb > n0, and Nb = n0. Our analysis rigor-
ously establishes that the emergence of SU(2) symmetry in the
limit of n0 � Nb or Nb � n0 guarantees the realization of op-
timal energy storage. Additionally, we provide a verification
of the negative correlation between the entanglement and the
energy storage capacity. Furthermore, we present numerical
evidence that, in the limit of Nb = n0 � 1, asymptotically
optimal energy storage can be attained. In Sec. IV, we provide
a discussion regarding the experimental implementation of
optimal energy storage within the TC battery and make a
conclusion.

II. TAVIS-CUMMINGS BATTERY

The TC battery consists of Nb battery cells, represented
by the total spin operators Sα = ∑Nb

j=1 σα
j /2 (α = x, y, z), and

a charger described by bosonic operators a and â. The TC
Hamiltonian is given by

H = Hb + Hc + λ(t )HI , (1)

Hb = ωbSz, Hc = ωca†a,

HI = g(S+a + S−a†),

where Hb, Hc, and HI correspond to the Hamiltonian of the
battery, charger, and their interaction, respectively. Here, the
parameter g characterizes the flip-flop interaction and S± =
Sx ± iSy represents the spin ladder operators. We always
consider the resonance condition, specifically ωb = ωc ≡ ω,
thereby guaranteeing the conservation of the total energy, i.e.,
[H, Hb + Hc] = 0.

The QB is initially prepared in a product state |ψ (0)〉 =
|0〉b|n0〉c, where the battery is in the ground state of Hb,
i.e., |0〉b ≡ | ↓, . . . ,↓〉 and the charger is in a Fock state
|n0〉c. At time t > 0, the interaction term HI is activated
to facilitate the transfer of energy from the charger to the
battery. Over a time interval [0, τ ], our objective is to max-
imize the amount of energy stored in the battery. This
optimal time duration τ is referred to as the “charging
time.”

A pivotal step in our analysis involves the calculation of
quantum dynamics for the battery state. Due to the U(1)
symmetry [H, Sz + a†a] = 0 and the local SU(2) symmetries
[H, Sα] = 0 (α = x, y, z), we observe that the TC battery dy-
namics can be effectively reformulated within the following
subspace,

B = span{|0〉b|n0〉c, |1〉b|n0 − 1〉c, . . . , |d〉b|n0 − d〉c}, (2)

where |m〉b denotes the Dicke state |Nb/2,−Nb/2 + m〉b, with
m = 0, . . . , Nb for the battery and |n〉c signifies the Fock
state for the charger. The parameter d is defined as d =
min{Nb, n0}.

Within the basis (2), we can express the Hamiltonian
(1) as a (d + 1) × (d + 1) matrix (details are available in
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Appendix A),

H =

⎛
⎜⎜⎜⎜⎝

0 u1

u1 0 u2
. . .

. . .
. . .

ud−1 0 ud

ud 0

⎞
⎟⎟⎟⎟⎠, (3)

where u j = g
√

j(Nb − j + 1)(n0 − j + 1). Assuming that H
is diagonalized by a unitary matrix U , i.e., H = UEU† where
E is a diagonal matrix, the matrix representation of the wave
function for the entire system at time t is given by

ψ(t ) = Ue−iEtU†(1 0 . . . 0)T . (4)

Consequently, the corresponding quantum state is

|ψ (t )〉 = ψ1(t )|0〉b|n0〉c + · · · + ψd+1(t )|d〉b|n0 − d〉c. (5)

This leads to the reduced density matrix of the battery state:

ρb(t ) ≡ Trc(|ψ (t )〉〈ψ (t )|)
= |ψ1(t )|2|0〉〈0| + · · · + |ψd+1|2|d〉〈d|. (6)

At time t , the energy stored in battery is given by

	E (t ) ≡ Tr[Hbρb(t )] − Tr[Hbρb(0)]

= Nb

2
ω +

d+1∑
j=1

(
j − Nb

2
− 1

)
|ψ j (t )|2ω. (7)

The definition of optimal energy storage encompasses the
following two scenarios:

(I) The battery absorbs all the energy initially stored in the
charger, resulting in zero charger energy after the charging
process.

(II) The battery absorbs some energy from the charger and
reaches a fully charged state | ↑, . . . ,↑〉b.

Case I corresponds to a situation where the initial energy
of the charger is less than the energy storage capacity of the
battery, i.e., n0 < Nb, while case II corresponds to the opposite
case where n0 > Nb. Referring to Eq. (5), optimal energy
storage implies that the evolved quantum state is |ψ (τ )〉 =
|d〉b|n0 − d〉c. In other words, the optimal condition can also
be expressed as

∃τ such that 	E (τ ) = ωd, (8)

where d = min{Nb, n0} and 	E (τ ) ≡ maxt 	E (t ) is called
the energy storage capacity. From the perspective of quantum
correlations, thus, optimal energy transport occurs when there
is no entanglement between the battery and the charger. We
will further elaborate on this point in the ensuing discussion.

It is worth noting that the dimension of the matrix (3) no
longer exhibits exponential growth with the number of battery
cells Nb but rather depends linearly on the minimum of Nb

and n0. As a result, compared to the Bethe ansatz approach
[55], our method offers greater numerical tractability. In the
subsequent sections, we will demonstrate that our approach
also provides profound insights into the algebraic structure of
the TC model, enabling us to analytically address the optimal
energy storage problem.

III. ENERGY TRANSPORT AND ENTANGLEMENT

A. Parallel charging: Nb = 1

The parallel charging scheme involves the assembly of N
Jaynes-Cummings (JC) models, each of which contains only
a single battery cell, as depicted in Fig. 1(b). The JC model
is a special case of the TC model by taking Nb = 1. In this
scenario, a straightforward calculation yields the following
evolved quantum state (5):

|ψ (t )〉 = cos(g
√

n0t )|0〉b|n0〉c − i sin(g
√

n0t )|1〉b|n0 − 1〉c.

It thus follows from Eq. (7) that the energy stored in the
battery is given by

	E (t ) = ω sin2(g
√

n0t ), (9)

which indicates that the battery state can be excited to its
highest-energy state, | ↑〉, at time τ = π/(2g

√
n0). Hence, we

can conclude that the optimal energy storage can be achieved
in the parallel charging scheme. However, we know that the
collective charging scheme offers a charging speedup [27–29].
Therefore, our primary focus will be on seeking optimal en-
ergy storage within the collective charging scheme, i.e., when
Nb > 1.

B. Collective charging: n0 > Nb

In this section, we consider the case where n0 > Nb, with
the expectation that the battery can be fully charged. For this
purpose, we first examine the simplest scenario of Nb = 2
and n0 > Nb to illustrate our analytical approach. Under this
circumstance, the Hamiltonian (3) can be represented as a
three-dimensional matrix:

H =

⎛
⎜⎜⎝

0 g
√

2n0 0

g
√

2n0 0 g
√

2(n0 − 1)

0 g
√

2(n0 − 1) 0

⎞
⎟⎟⎠. (10)

Its eigenproblem (4) can be solved straightforward as E =
diag(0, δ,−δ) and

U = 1

2
√

2n0 − 1

×

⎛
⎜⎝

2
√

n0 − 1
√

2n0
√

2n0

0
√

4n0 − 2 −√
4n0 − 2

−2
√

n0
√

2(n0 − 1)
√

2(n0 − 1)

⎞
⎟⎠, (11)

where δ = g
√

4n0 − 2. Substituting the above solution into
Eq. (4), we obtain

|ψ1(t )|2 = 1

(2n0 − 1)2
[n0 − 1 + n0 cos(δt )]2,

|ψ2(t )|2 = n0

2n0 − 1
[1 − cos2(δt )],

|ψ3(t )|2 = n0(n0 − 1)

(2n0 − 1)2
[1 − cos(δt )]2. (12)

Then, according to Eq. (7), we have

	E (t ) = ω

(2n0 − 1)2
[−n0 cos2(δt )

+ 4n0(1 − n0) cos(δt ) + n0(4n0 − 3)]. (13)
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FIG. 2. Negative relation between the battery-charger entangle-
ment S(τ ) and the energy storage capacity 	E (τ ) in the case of
n0 � Nb = 2. Other parameters are set to ω = 1 and g = 1.

The maximum of 	E (t ) is thus given by

	E (τ ) = ω

[
2 − 2

(2n0 − 1)2

]
, (14)

occurring at τ = π/[g
√

4n0 − 2]. From Eq. (14), it is evident
that the energy storage capacity 	E (τ ) becomes larger as the
number of initial photons, n0, increases. If n0 → ∞, optimal
energy storage can be realized.

As demonstrated in Ref. [3], the energy storage is con-
strained by the battery-charger entanglement. Hence, it is
anticipated that as n0 increases, the entanglement will de-
crease and eventually vanish as n0 → ∞. Utilizing the von
Neumann entropy and the expression for the reduced density
matrix of the battery in Eq. (6), we find that at time τ , the
entanglement entropy is given by

S(τ ) ≡ −Tr[ρb(τ ) log2 ρb(τ )]

= h

(
1

(2n0 − 1)2

)
, (15)

where h(x) = −x log2 x − (1 − x) log2(1 − x) represents the
binary Shannon entropy function. Since h(x) is an increasing
function when 0 � x � 1/2 and n0 > Nb = 2, we can con-
clude that entanglement decreases as n0 increases. Therefore,
we validate the negative relation between the energy storage
capacity and the entanglement (see Fig. 2).

A natural question that arises is whether optimal en-
ergy storage can be achieved under the condition n0 �
Nb, not limited to the specific case of Nb = 2 as dis-
cussed earlier. It appears challenging to address this ques-
tion by directly solving the eigenproblem of Eq. (3)
for arbitrary values of Nb. Fortunately, we observe that
under the condition n0 � Nb the matrix element u j =
g
√

j(Nb − j + 1)(n0 − j + 1) in Eq. (3) can be approximated
as u j � g

√
n0 − Nb/2 + 1/2

√
j(Nb − j + 1). With this ap-

proximation, the Hamiltonian (3) can be mapped to the
spin-Nb/2 operator (see Appendix B),

H � �Jx, (16)

0 0.5 1 1.5
0

1

2

3

4

5

FIG. 3. Comparison of analytical results of Eqs. (20) and (24)
with the numerical results. This comparison is valid for both the cases
of n0 = Nb/2 = 5 and Nb = n0/2 = 5. Other parameters are set to
ω = 1 and g = 1.

where � is the generalized Rabi frequency:

� = 2g

√
n0 − Nb − 1

2
. (17)

Now, the Hamiltonian Eq. (16) is just one of the generators
of the su(2) Lie algebra. Therefore, we can assert that SU(2)
symmetry emerges in this limiting case. By using Eq. (16), we
can reformulate Eq. (7) as

	E = Nbω

2
+ ψ†(0)Jz(t )ψ(0)ω, (18)

where Jz(t ) = exp(it�Jx )Jz exp(−it�Jx ).
Now, it is evident that our question has been reduced to

a Lie algebra problem, owing to the emergence of SU(2)
symmetry in the limit n0 � Nb. Using the Baker-Campbell-
Hausdorff formula, we have

Jz(t ) = sin(�t )Jy + cos(�t )Jz. (19)

By substituting Eq. (19) into Eq. (18), we obtain

	E (t ) = Nbω

2
[1 − cos(�t )], (20)

which is extremely accurate even in the finite case Nb =
n0/2 = 5 (see Fig. 3). Equation (20) indicates that optimal
energy storage 	E = Nbω can be achieved at τ = π/� when
n0 � Nb.

C. Collective charging: Nb > n0

In Sec. III B, we employed the invariant subspace method,
as given in Eq. (3), to reveal the fundamental algebraic struc-
ture that characterizes the quantum dynamical behavior of
the TC model. This approach was entirely applicable to the
case where Nb > n0. To delve deeper into the core of our
investigation, we will now proceed directly to explore the
scenario where Nb � n0 and claim that optimal energy storage
can be realized.
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FIG. 4. Negative relation between average entanglement s(τ ) ≡
S(τ )/Nb and average energy storage capacity 	ε(τ ) ≡ 	E (τ )/Nb in
the case of Nb = n0. Other parameters are set to ω = 1 and g = 1.

For Nb � n0, we can approximate u j as u j �
g
√

Nb − n0/2 + 1/2
√

j(n0 − j + 1) and then the Hamilto-
nian (3) can be approximated as a spin-n0/2 operator J̃

α
, i.e.,

H � �̃J̃
x
, (21)

where

�̃ = 2g

√
Nb − n0 − 1

2
. (22)

Thus, the energy transfer Eq. (7) can be repressed as

	E = n0ω

2
+ ψ†(0)J̃

z
(t )ψ(0)ω, (23)

where J̃
z
(t ) = exp(it�̃J̃

x
)J̃

z
exp(−it�̃J̃

x
). We see that these

equations are highly similar to the n0 � Nb case if we
exchange n0 and Nb. Therefore, we can deduce that

	E (t ) = n0ω

2
[1 − cos(�̃t )], (24)

which suggests that optimal energy storage 	E = n0ω can
be realized at charging time τ = π/�̃ in the case of Nb � n0.
Figure 3 shows the consistency of the limit result with the nu-
merical result obtained also in the finite case n0 = Nb/2 = 5.

D. Collective charging: n0 = Nb

The most economical charging scheme is preparing the
initial charger with the same energy as the energy storage
capacity of the battery, i.e., n0 = Nb. As we can see in
the case of n0 � Nb = 2 (Fig. 2), however, the energy stor-
age capacity is weakest for the n0 = Nb = 2 case. Hence, we
inquire whether, in the limiting case of n0 = Nb � 1, we can
approach optimal energy storage. Within this parameter range,
no evident approximations for Eq. (3) can be employed to
obtain analytical results. Nevertheless, we can also perform
an effective numerical calculation based on Eq. (3) to analyze
the charging behavior in the case of n0 = Nb.

Figure 4 illustrates the average entanglement s(τ ) ≡
S(τ )/Nb and the average stored energy 	ε(τ ) ≡ 	E (τ )/Nb

at the charging time τ for the scenario where Nb = n0. The

motivation for averaging these quantities stems from the fact
that the support of the reduced density matrix, Eq. (6), is
determined by min{n0, Nb} + 1, which equals (Nb + 1) in this
scenario. Therefore, average quantities enable us to compare
cases with varying values of Nb. Figure 4 shows that the
average energy storage capacity 	ε(τ ) initially decreases and
then increases with an increase in the size of the QB. Con-
versely, the average entanglement between the battery and
the charger displays opposite behavior compared to 	ε(τ ).
We have previously established a negative relation between
the energy storage and the entanglement for a fixed QB size
in Ref. [3]. Figure 4 demonstrates that this negative relation
persists even when the QB size is not fixed. It is important to
emphasize that as Nb becomes sufficiently large (>100), the
asymptotically optimal energy transfer [	ε(τ ) > 0.95] can be
achieved, as depicted in Fig. 4. It is worth noting that a specific
perturbation theory, based on polynomially deformed su(2)
algebras [56], can be applied to address the eigenproblem of
the TC model in the case of Nb = n0. Exploring the potential
applicability of this method to address QB problems is an
interesting topic for further discussion.

IV. DISCUSSION

In this paper, we have investigated the realization of opti-
mal energy storage in the TC battery. By selecting the Fock
state as the initial state of the charger, we have introduced
the invariant subspace method to investigate the quantum
dynamics of the TC model. This approach has enabled us
to demonstrate that SU(2) symmetry emerges in cases where
either n0 � Nb or Nb � n0. Consequently, under these two
conditions, optimal energy storage in the TC battery can be
achieved. In the scenario where Nb = n0, we have conducted
numerical investigations into the energy storage problem,
confirming the existence of a negative relation between the
battery-charger entanglement and the energy storage capac-
ity. Our numerical results have indicated the possibility of
asymptotically achieving optimal energy storage in the limit
Nb = n0 � 1.

It is worth noting that the TC battery is possibly realized
using the state-of-the-art solid-state technology through the
circuit/cavity QED [47,57–60]. Reference [47] reported an
ideal realization of the TC model in the absence of atom
number and coupling fluctuations by embedding a discrete
number of fully controllable superconducting qubits at fixed
positions into a transmission line resonator. Reference [60]
realized strong coupling between deterministic single-atom
arrays and a high-finesse miniature optical cavity. While our
theoretical starting point has been the Fock state as the ini-
tial charge, in experimental settings, coherent light can be
used as an approximation to the Fock state. This simplifies
the difficulty of experimentally preparing Fock states. Conse-
quently, our theoretical approaches to optimal energy storage
can be implemented in a well-designed circuit/cavity QED
system. Our work not only contributes to a profound under-
standing of the algebraic structure of the TC model but also
offers significant insights into the problem of optimal energy
storage. We anticipate that our approach can be extended
to address other quantum battery-related challenges in the
future.
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APPENDIX A: MATRIX EXPRESSION OF HAMILTONIAN
(1) IN THE INVARIANT SUBSPACE

According to the algebraic relations,

S+|m〉b =
√

(Nb − m)(m + 1)|m + 1〉b,

S−|m〉b =
√

m(Nb − m + 1)|m − 1〉b,

a†|n〉c = √
n + 1|n + 1〉c,

a|n〉c = √
n|n − 1〉c, (A1)

the matrix elements of the Hamiltonian (1) expressed in the
invariant subspace (2) are given by

H jk = 〈 j − 1|b〈n0 − j + 1|cH |k − 1〉b|n0 − k + 1〉c

= g〈 j − 1|b〈n0 − j + 1|c(S+a + H.c.)

× |k − 1〉b|n0 − k + 1〉c

= g〈 j − 1|bS+|k − 1〉b〈n0 − j + 1|ca|n0 − k + 1〉c

+ g〈 j − 1|bS−|k − 1〉b〈n0 − j + 1|ca†|n0 − k + 1〉c

= u j−1δ j−1,k + u jδ j+1,k, (A2)

where u j = g
√

j(Nb − k + 1)(n0 − j + 1) and j, k = 1,

2, . . . , min{Nb, n0}.

APPENDIX B: GENERATORS OF SU(2) ALGEBRA

The spin-d irreducible representation of the generators of
su(2) algebra is given by

Sx = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 f1

f1 0 f2

. . .
. . .

. . .

fd−1 0 fd

fd 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Sy = 1

2i

⎛
⎜⎜⎜⎜⎜⎜⎝

0 − f1

f1 0 − f2

. . .
. . .

. . .

fd−1 0 − fd

fd 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Sz =

⎛
⎜⎜⎜⎜⎜⎜⎝

−d 0
0 −d + 1 0

. . .
. . .

. . .

0 d − 1 0
0 d

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B1)

where f j ≡ √
j(2d − j + 1). If we take d = Nb/2, then Sα

(α = x, y, z) correspond to the operators Jα [see Eqs. (16),
(18), and (19)]. If we take d = n0/2, then Sα correspond to
the operators J̃

α
[see Eqs. (21) and (23)].
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