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Quantum engines with interacting Bose-Einstein condensates
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We consider a quantum Otto cycle with an interacting Bose-Einstein condensate at finite temperature. We
present a procedure to evolve this system in time in three spatial dimensions, in which closed (adiabatic)
strokes are described by the Gross-Pitaevskii equation and open (isochoric) strokes are modeled using a
stochastic Ginzburg-Landau equation. We analyze the effect on the thermodynamic efficiency of the strength of
interactions, the frequency of the harmonic trap, and the temperatures of the reservoirs. The efficiency has little
sensitivity to changes in the temperatures but decreases as interactions increase. However, stronger interactions
allow for faster cycles and for substantial increases in power.
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I. INTRODUCTION

Quantum thermodynamics [1,2] has emerged as a captivat-
ing field of research that bridges the fundamental principles
of quantum mechanics and the laws of thermodynamics. In
recent years, there has been growing interest in the study
of quantum thermal machines [3–6], which are devices that
utilize quantum systems to convert heat into work and vice
versa. In this context, how genuine quantum effects, such
as quantum coherence [7,8], correlations [9], and measure-
ments [10–12], can be exploited to improve the performance
of these machines has been the subject of intense study.
In addition to these theoretical studies, several experimental
implementations of different quantum thermodynamic cycles
have also been carried out using single quantum systems, such
as trapped ions and atoms [13–15].

Quantum many-body systems have also been proposed as
the working medium for engines and refrigerators [16].

In this context, Bose-Einstein condensates (BECs) have
emerged as a prominent candidate due to their remarkable
macroscopically observable quantum properties and control-
lability. BECs are formed by cooling a gas of bosonic particles
to extremely low temperatures and are characterized by a high
degree of coherence, in which a significant fraction of the
particles occupy the same quantum state. The precise control
achieved over BECs through techniques such as laser cooling
and magnetic trapping allows for the manipulation of their
properties and opens up exciting possibilities for exploring
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quantum thermodynamics. Recent works designed various en-
gines that utilize BECs to extract work. For instance, Ref. [17]
considered an endoreversible Otto cycle with a noninteracting
Bose gas, showing that the power output can be enhanced in
a regime when the working medium is in the BEC phase. In
[18], an interacting BEC engine was explored, and its perfor-
mance was addressed through the experimental determination
of the equation of state, while in [19] an experimental real-
ization of a quantum Otto cycle was performed. Interacting
BECs were also considered in [20,21] for a cycle working
with a particle reservoir at zero temperature and where the
interaction strength between atoms is controlled by Feshbach
resonances. Reference [22] outlined a strategy for using a
mixture of two atomic gases as a quantum refrigerator. Ad-
ditionally, Ref. [23] proposed building quantum engines using
one-dimensional ultracold gases and illustrated their use in the
cooling process. BEC engines with spin-orbit coupling have
also been proposed [24].

In this paper, we study a quantum Otto cycle using a
three-dimensional interacting Bose-Einstein condensate as a
working medium. To do so we perform direct numerical simu-
lations in which the closed (adiabatic) strokes are described by
the Gross-Pitaevskii equation (GPE), and the open (isochoric)
strokes, which occur at finite temperature, are modeled using
a stochastic Ginzburg-Landau equation. This approach allows
us to obtain the complete dynamics of the BEC during the
whole cycle and provides a highly detailed description of the
quantum many-body engine. Therefore, we not only obtain
the whole thermodynamic description of the system but also
are able to track the evolution of the different contributions
to the energy, as well as the state of the BEC, consistently.
We aim to uncover the underlying principles governing the
efficiency, power output, and other relevant features of these
machines. By employing advanced theoretical models and
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numerical simulations, we systematically analyze how vari-
ous parameters, such as the interaction strength, frequency
of the harmonic trap, and reservoir temperatures, affect the
performance of a quantum Otto cycle. This work presents a
different approach for studying quantum thermal machines
with interacting BECs since we adopt a methodology devel-
oped for the problem of quantum turbulence that allows us
to describe the working medium of the engine with a great
level of detail and to obtain both thermodynamic magnitudes
as well as information regarding the microscopic degrees of
freedom. In this way, we can obtain a complete description
even in situations far from equilibrium.

II. METHODS

A. Thermodynamic cycle

We consider a finite-time Otto cycle using an interacting
Bose-Einstein condensate as a working medium. The ther-
modynamic cycle starts with the gas at temperature Th in
a spherical trap with frequency ωh. The first stroke is an
adiabatic expansion that changes ωh to ωc, with ωh > ωc,
thus expanding the condensate. During the second stroke the
system is put in contact with an external cold source, and the
gas cools down to reach a thermalized state at temperature
Tc < Th in an isochoric process. The third stroke is an adia-
batic compression, changing the trap potential from ωc to ωh.
Finally, in the last stroke the system undergoes an isochoric
process in contact with a hot source at temperature Th. Thus,
the cycle is completely described by prescribing the time
taken during each of the strokes, τe (for the expansion), τcold,
τc (for the compression), and τhot, respectively, together with
the time dependence of the trap potential during the adiabatic
strokes. In the following, we will use the same expansion and
contraction times so that τe,c = τe = τc.

We can define Wc and We as the work extracted in the
compression and the expansion, respectively, and Qh as the
heat absorbed in the isochoric hot process,

Wc,e = E (i)
c,e − E ( f )

c,e , (1)

Qh = E ( f )
e − E (i)

c . (2)

Here E is the system total energy, the subindices e and c
denote, respectively, the expansion and contraction strokes,
and the superindices i and f denote, respectively, the initial
and final states of these strokes. The efficiency of a heat engine
is defined as the net yielded work (W = Wc + We) divided by
the absorbed heat.

In practice, extended systems display heat fluctuations and
variations in the work as the cycle is repeated. The efficiency
of the cycle is defined as

η = W

Qh
. (3)

This efficiency will fluctuate in different realizations of the
cycle, so one usually is concerned with the mean efficiency.

For noninteracting condensates in the adiabatic regime, the
efficiency reduces to the Otto efficiency [17]

ηO = 1 − ωc

ωh
. (4)

B. Adiabatic evolution

We will describe the state of the Bose-Einstein condensate
in terms of a single wave function ψ (r, t ). For the expansion
and contraction strokes we numerically solve the GPE with a
time-dependent harmonic trapping potential V (r, t ),

ih̄
∂ψ (r, t )

∂t
=

[
− h̄2∇2

2m
+ g|ψ (r, t )|2 + V (r, t )

]
ψ (r, t ).

(5)
Here m is the atomic mass, the interaction is controlled by g =
4πah̄2/m, and a is the s-wave scattering length. The spherical
potential is given by V (r, t ) = mω2(t )(x2 + y2 + z2)/2, and
the frequency ω(t ) during the adiabatic strokes changes lin-
early in time from the initial to the final value. In order to
evaluate the total energy of the condensate we consider the
Hamiltonian associated with Eq. (5):

H[ψ,ψ∗] =
∫

d3r′
[

h̄2

2m
|∇ψ |2 + g

2
|ψ |4 + V (r, t )|ψ |2

]
,

(6)

where the asterisk denotes the complex conjugate.

C. Thermal baths

During the isochoric strokes the system is coupled to a
thermal bath, and in principle, it can exchange both particles
and energy. Under these conditions the possible equilibria will
be characterized by a volume V , a chemical potential μ, and a
temperature T . The probability of these equilibrium states is
then given by the grand-canonical ensemble,

P = e−β(H−μN )

Z , (7)

where β = 1/(kBT ), kB is the Boltzmann constant, Z is the
grand-canonical partition function, and N is the number of
particles in the system.

The evolution of the system towards these equilibria, while
in contact with a thermal bath at temperature T , can be
done in terms of the approach described in [25,26]. Thus, by
adding white noise to Eq. (5) we solve the following stochastic
Ginzburg-Landau equation:

∂ψ

∂t
=

[
h̄

2m
∇2 − g

h̄
|ψ |2 − V (r) + μ

h̄

]
ψ

+
√

2

V h̄β
ζ (r, t ). (8)

Here ζ (r, t ) is a δ-correlated random process such
that 〈ζ (r, t )ζ ∗(r′, t ′)〉 = δ(r − r′)δ(t − t ′), and the factor√

2/(V h̄β ) controls the amplitude of the fluctuations through
the temperature T . This equation can be obtained by perform-
ing a Wick rotation t → it on Eq. (5) and by adding both the
chemical potential and the δ-correlated random forcing term.
In the absence of forcing this equation evolves into solutions
that are stationary solutions of the GPE [27]. Note that the
Ginzburg-Landau equation is also used to study nonisolated
dissipative dynamics, e.g., in superconductivity [28]. The ran-
dom forcing in the stochastic case accounts for the random
nature of the system coupled to a thermal reservoir. This
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equation and other descriptions using the stochastic truncated
Gross-Pitaevskii equation provide a classical description of
thermal fluctuations that approximate the quantum field of
highly occupied modes by a classical field (see, e.g., [29,30]).

We can explicitly verify that the solutions of Eq. (8) re-
sult in equilibria compatible with Eq. (7). Defining the free
energy F = H − μN , Eq. (8) can be written as a Langevin
equation for the evolution of each Fourier mode of ψ [25],

∂ψ̂ (k, t )

∂t
= − 1

V h̄

∂F

∂ψ̂∗(k, t )
+

√
2

V h̄β
ζ̂ (k, t ), (9)

where F = F [{ψ̂ (k, t ), ψ̂∗(k, t )}] (i.e., it is a functional of
the set of Fourier amplitudes of ψ , where a Galerkin trun-
cation up to a maximum wave number is applied to the set
of Fourier modes such that |k| < kmax). The resulting stochas-
tic process has a total state probability P [{ψ̂ (k, t ), ψ̂∗(k, t )}]
whose evolution is described by a corresponding multivariate
Fokker-Planck equation [31],

∂P

∂t
=

∑
|k|<kmax

∂

∂ψ̂k

[
1

V h̄

∂F

∂ψ̂∗
k

P + 1

V h̄β

∂P

∂ψ̂∗
k

]
+ c.c., (10)

where ψ̂k is shorthand for ψ̂ (k, t ) and c.c. denotes the
complex conjugate. This equation evolves into the grand-
canonical distribution in Eq. (7) provided that βF is positively
defined. Thus, by numerically integrating Eq. (8) we can
evolve the system towards states with different temperatures
T under the grand-canonical constraints.

For the isochoric strokes, the system evolves at constant
volume V and fixed number of particles N (or, equivalently,
at fixed mean density ρ̄ in the total volume that contains the
gas). This corresponds to working on the canonical ensemble
and can be achieved by solving Eq. (8) coupled with [25,26]

∂μ

∂t
= −γ (ρ̄ − ρm). (11)

This equation adjusts the chemical potential such that the
mean density ρ̄ remains close to the target mean density in the
trap ρm; γ is a parameter that controls how fast convergence
to the desired mean density takes place.

It is worth noting that other formulations to describe con-
densates at finite temperature exist, such as the stochastic
Gross-Pitaevskii equation [32,33] and coupled kinetic equa-
tions [34]. While the method used here generates the correct
thermal states and has long been used to study the dynamics
of dissipative systems at finite temperature [35], a stochastic
Gross-Pitaevskii or kinetic formulation could better describe
nonequilibrium dynamics, although at a larger computational
cost. For a comparison between these methods see [36].

D. Energetics

The total energy of the system can be decomposed into
several components that provide information on excited or-
dered and disordered modes in the gas, such as potential and
internal energies, or a compressible kinetic energy that can be
associated with sound waves and phonons. To this end we use
the Madelung transformation,

ψ (r, t ) =
√

ρ(r, t )/m eiS(r,t ), (12)

which maps the GPE to the Euler equation for an isentropic,
compressible, and irrotational gas with an extra term that ac-
counts for quantum pressure [27]. This allows for a continuum
medium description of the system. In Eq. (12) the transforma-
tion ρ(r, t ) is the fluid mass density, and S(r, t ) is the phase
of the order parameter. Using the momentum density

j(r, t ) = − ih̄

2
(ψ∗∇ψ − ψ∇ψ∗), (13)

the gas velocity can then be defined as v(r, t ) =
j(r, t )/ρ(r, t ) = (h̄/m)∇S(r, t ).

Thus, in terms of the fluid mass density, the total energy of
the system per unit volume [see Eq. (6)] can be decomposed
as

E = Ek + Eq + Eint + EV, (14)

where the kinetic energy is Ek = 〈ρv2〉/2, the quantum energy
is Eq = h̄2/(2m2)〈(∇√

ρ )2〉, the gas internal (or interaction)
energy is Ei = g/(2m2)〈ρ2〉, and the trap potential energy is
EV = 〈ρV 〉. In all cases the angle brackets denote the vol-
ume average. Using the Helmholtz decomposition (

√
ρv) =

(
√

ρv)(c) + (
√

ρv)(i) [27], where the superindices c and i
denote, respectively, the compressible and incompressible
components [i.e., such that ∇ · (

√
ρv)(i) = 0], the kinetic en-

ergy can be further decomposed into the compressible, E (c)
k ,

and incompressible, E (i)
k , kinetic-energy components. This

decomposition is used to study classical compressible gases
[37], as well as quantum fluids [26,38,39], and thus provides
information that can be compared with the classical picture of
thermal engines.

E. Numerical methods

We numerically solve Eqs. (5) and (8) to simulate the adia-
batic and isochoric strokes of the cycle, respectively. In order
to do so we use a pseudospectral Fourier-based method in a
spatial grid of N3 = 643 points, with the 2/3 rule for dealias-
ing, a fourth-order Runge-Kutta method for the time evolution
of GPE, and a Euler time-stepping method for the stochastic
Ginzburg-Landau equation. In all cases we use the parallel
code GHOST, which is publicly available [40], in a cubic
domain of dimensions [−π, π ]L × [−π, π ]L × [−π, π ]L, so
that the domain has length 2πL (with L being a unit length).
To deal with the nonperiodic trapping potential in the Fourier
representation while avoiding the Gibbs phenomenon, we use
the continuation method described in [39,41].

Results are shown in units of a characteristic speed U
(the speed of sound), the unit length L (proportional to the
condensate mean radius), and a unit mean density ρ0. Tem-
peratures are written in units of Tλ, the condensate critical
temperature (see the Appendix for its estimation and for
the range of temperatures considered in this study). Except
when explicitly stated (e.g., when we study the effect of
varying Th), we consider Th ≈ 0.012Tλ and Tc ≈ 0.003Tλ.
Thus, the simulations have T 	 Tλ. The speed of sound is
c = (gρ0/m)1/2 = 1U , and the condensate healing length is
ξ = h̄/(2mρ0g)1/2 = 0.0707L, except in simulations in which
we artificially decrease the interaction strength. In most sim-
ulations we use trapping frequencies ωc ≈ 0.334638U/L and
ωh = 0.337613U/L. These frequencies are chosen to be close

012202-3



ESTRADA, MAYO, RONCAGLIA, AND MININNI PHYSICAL REVIEW A 109, 012202 (2024)

enough to reduce the computational cost of performing the
slow expansions and contractions, and we indicate explicitly
when other values of ωc and ωh are used. Quantities can be
scaled using dimensional values for U , L, and M. In exper-
iments typical dimensional values are L ≈ 10−4 m and c =
U ≈ 2 × 10−3 m/s [42]. This results in ξ ≈ 1.12 × 10−6 m
and a mean trap frequency ω ≈ 6.7 Hz. For the typical mass
of a gas of 87Rb atoms in a BEC, peak densities of ≈1013 cm−3

atoms are also compatible with our simulations and with
experiments [43]. As a reference, the adiabatic time in the
quantum Otto cycle for noninteracting particles with these
parameters is 1/ωc ∼ 0.15 s.

For a given set of parameters, each cycle is repeated four
times. This results in several values for the energies E ( j)

i (with
i = c or e and j = i or f ) and thus for W and Qh at the
end of each cycle. To compute efficiencies we assume these
quantities have a Gaussian distribution and use a Monte Carlo
method to generate a random set of W and Qh values com-
patible with the fluctuations observed in the four explicitly
integrated cycles. From these values, the distribution of the
efficiency η and its mean value are finally obtained.

Each realization of the cycle is performed with the fol-
lowing protocol: Given a state at temperature Th (which can
be generated for the first cycle by integrating the stochastic
Ginzburg-Landau equation or can be the result of the final
state of a previous cycle), we integrate the expansion stroke
using the GPE. The frequency of the trap is decreased lin-
early in time from ωh to ωc with a time step dt = 2.5 ×
10−3L/U ; the length of this simulation depends on the speed
of the expansion. When the expansion finishes, the system is
evolved towards the lower temperature Tc using the stochas-
tic Ginzburg-Landau equation. Time integration is performed
until the system reaches a stationary regime. Then, the con-
traction is integrated using GPE with a linear ramp in the
trap frequency from ωc to ωh, with the same dt and total
time as in the expansion. Finally, the system is again coupled
to the hot source at temperature Th and integrated using the
stochastic Ginzburg-Landau equation until a new stationary
state is reached.

III. RESULTS

A. Analysis of the system evolution on a cycle

We first analyze the evolution of the system in each stroke
and the evolution of the different energy components for
the set of parameters introduced in Sec. II E. Then, we evalu-
ate the efficiency of the cycle in terms of the variation of these
parameters.

A diagram of several consecutive cycles in the energy-
frequency plane and their time evolution (with the time t = 0
set arbitrarily at the beginning of each cycle expansion and
with the time given in units of the inverse of the frequency
difference �ω = ωh − ωc) is shown in Fig. 1. The numerical
simulations agree with the usual picture of an Otto cycle. An
abrupt change in energy can be seen as soon as the condensate
comes in contact with the thermal sources. The full dynamics
allows us to see fluctuations in both the energy after the
adiabatic phases and those produced by the thermalization
process. These fluctuations also result in slightly different

FIG. 1. Top: Energy as a function of the trap frequency ω for
several consecutive cycles. Expansions and contractions are plotted
in gray; cooling and heating strokes are in cyan and orange, respec-
tively. Bottom: Time evolution (with time in units of the inverse of
�ω = ωh − ωc) of the total energy in the same cycles, setting time
t = 0 for all cycles at the beginning of the expansion. The inset
shows the probability density function (PDF) of the condensate mass
density in the trap at different times; colors of the lines match the
times of the diamond markers in the main plot.

values of the energy along each of the expansions and con-
tractions in the different cycles.

During the isochoric strokes a long integration time is
necessary for the system to thermalize at the new temperature.
The inset in Fig. 1 shows the tails of the probability density
functions (PDFs) of the mass density in the trap at different
times after the system is coupled to the cold source. At early
times, as the condensate is still hot, the PDF displays strong
tails, associated with strong fluctuations in the mass density.
Shortly after these regions with strong fluctuations disappear
and as the condensate cools down, the PDFs converge to
new stationary solutions with weaker tails. Similar results are
obtained for the evolution with the hot source. In the next
section we vary the strength of the interaction in the BEC and
verify that even for weak interactions the system thermalizes.
We also ensured that the isochoric branches were integrated
long enough to achieve stationary and accurate convergence
of the PDFs.

The final states of the isochoric strokes are shown in
Fig. 2. The top panels show the mass density in a two-
dimensional slice in the xy plane at the end of the hot and
cold branches solved with the stochastic Ginzburg-Landau
equation. At higher temperature the gas displays stronger
fluctuations in the mass density at the center of the trap as
well as in the borders of the condensate where irregularities
can be seen. Density fluctuations are associated with more
energy in compressible modes (sound waves or phonons) and
with an increase in the quantum energy (caused by gradients in
the mass density). The bottom panel shows the compressible
kinetic-energy spectrum in both cases. Note that this spectrum
measures the energy in sound waves. Two interesting fea-
tures are worth mentioning. First, the spectra are proportional
to a k2 power law, which corresponds to the equipartition
of energy in three-dimensional modes (i.e., thermalization).
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FIG. 2. Top: Two-dimensional slices of the mass density in the xy
plane, ρ(x, y, z = 0), for temperatures Th/Tλ ≈ 0.012 and Tc/Tλ ≈
0.003. Bottom: Spectrum of the compressible kinetic energy in the
hot and cold cases. An ∼k2 power law corresponding to equipartition
of compressible three-dimensional modes is shown as a reference.

Second, the amplitude of sound waves increases with temper-
ature.

Now we analyze the behavior of the energy compo-
nents during the adiabatic strokes. Naturally, this depends
on whether we consider a compression or an expansion, as
well as on the speed of the stroke. For the sake of clarity
we here consider shorter strokes than in Fig. 1 (i.e., faster
compressions and expansions), as they result in more evident
effects. Figure 3 shows the time evolution of the different
energy components, averaged over four cycles. The energy
variations are normalized by the absolute value of the total
energy difference during the stroke. During the expansion,
the interaction and trap potential energies decay rapidly as
the condensate expands. Both quantities also oscillate with
the frequency of the breathing mode of the condensate in
the trap and have, due to the nature of each energy, almost
opposite phases. Meanwhile, the compressible kinetic energy
grows as sound waves are excited during the expansion. The
incompressible and quantum energies remain almost constant.
During the compression, the interaction and trap potential
energies grow as the condensate contracts. In this case the
compressible kinetic energy remains almost constant, with
a small increase in the quantum energy as density gradients
grow due to the contraction.

Finally, we consider the isochoric strokes. Note that our
integration method for these strokes does not properly de-
scribe the system evolution. Therefore, in order to analyze
the changes in the different components of the energy during
these strokes, we consider only energy changes between the
initial and final states of the strokes, as shown in Fig. 4. In
both the hot and cold isochores, the interaction energy is the

FIG. 3. Time evolution of the different energy components, aver-
aged over an ensemble of four cycles, during the adiabatic expansion
(left) and contraction (right). The value of each energy component
at the beginning of the strokes (here arbitrarily labeled as t = 0)
is subtracted from the energies, and the energy variations are then
normalized by the absolute value of the total energy difference during
the entire stroke.

one responsible for the majority of the energy exchange. This
highlights the relevance of interactions in this system.

B. Efficiency

We now analyze the efficiency of the cycle. In particular,
we focus on its behavior in terms of the speed of the expansion
and compression (i.e., τe,c), the temperature, and the interac-
tion strength.

Let us first consider the impact of the speed of the adiabatic
stroke. To this end, for the set of parameters introduced in
Sec. II E, we performed several cycles with adiabatic strokes
of different lengths τe,c (longer τe,c corresponds to slower

FIG. 4. Energy variations for each energy component (Eint , Eq,
E (i)

k , E (c)
k , and EV ) during the isochoric strokes when in contact with

the hot and cold sources. Each component is normalized by the total
change of energy during the stroke, resulting in a fraction of the total
change.
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FIG. 5. Efficiency of the cycles in units of the ideal Otto effi-
ciency ηO as a function of τe,c for the parameters listed in Sec. II E.
The shaded areas indicate the PDFs of the efficiencies, and the
error bars indicate the minimum and maximum efficiencies obtained.
The vertical dashed line indicates the time ω−1

c . In a noninteracting
condensate, the expansion and contraction times must be much larger
than this value to achieve adiabaticity. As a reference, for a gas of
87Rb atoms as discussed in Sec. II E, ω−1

c ≈ 0.15 s, and τe,c�ω ≈
0.03 corresponds to times of ≈0.5 s.

expansions and contractions). In this case, we expect to at-
tain the utmost efficiency for greater values of τe,c since the
dynamics gets closer to the adiabatic limit. Figure 5 shows
the efficiency distribution of the cycles for different values
of τe,c (in units of �ω−1). As expected, we find that the
mean efficiency grows with this time, and for times τe,c much
longer than the characteristic time associated with the adi-
abatic limit for noninteracting gases (∼ω−1

h ), the efficiency
reaches a value that is independent of τe,c. In this regime, the
efficiency is roughly half that of the ideal Otto efficiency for a
noninteracting gas.

On the other hand, when only the temperature of the hot
reservoir Th is varied, we find that the efficiency remains
approximately constant (i.e., within error bars; see Fig. 6), as
expected for an Otto cycle [17,44]. However, increasing Th

(and therefore the difference between Th and Tc) results in a
reduction in fluctuations. Thus, larger temperature gradients
lead to a better determination of the averaged efficiency. Note
that this is also what happens with the ideal Otto cycle, where
the efficiency is independent of the temperatures.

FIG. 6. Efficiency (in units of the ideal Otto efficiency) as a
function of the hot temperature Th using the same parameters as in
Sec. II E. Labels for the markers are the same as in Fig. 5.

FIG. 7. Efficiency of the cycle η as a function of ηO = 1 − ωc/ωh

as we vary ωc/ωh (symbols with the same color). For an ideal Otto
cycle we expect η = ηO. Different colors of the symbols correspond
to different interaction strengths: gray for α = 1 (g = g0) and purple
for α = 0.064 (g = 0.064g0). Two slopes are indicated as references.

We will now analyze the efficiency in terms of the inter-
action strength. In this case, we expect that in the limit of
a noninteracting gas the efficiency should approach ηO, as
defined in Eq. (4) [17]. However, our method can attain this
limit only asymptotically. This is due to the fact that when the
interaction is removed, g = 0, the thermalization time extends
to infinity (as illustrated in Fig. 1). Therefore, we evaluate
the efficiency as the interaction strength is reduced. Reducing
the interaction strength leads to a decrease in the speed of
sound and an increase in the healing length (i.e., a more dilute
gas). In the following, we express the results with respect to a
coefficient α, defined as

g = αg0, (15)

where 0 < α � 1 and g0 corresponds to setting the speed
of sound c = (g0ρ0/m)1/2 = 1U and ξ = h̄/(2mρ0g0)1/2 =
0.0707L (i.e., the value used so far in this work).

First, we performed several cycles with different values of
ωc/ωh, varying ωc for two interaction strengths, α = 1 and
α = 0.064 (the other parameters are the same as in Sec. II E).
Figure 7 shows the efficiency as a function of the ideal Otto
efficiency ηO = 1 − ωc/ωh. We can see that it remains smaller
than the Otto efficiency (which is indicated for reference by
an orange dashed line). However, it still scales linearly with
1 − ωc/ωh and also gets closer to ηO when α decreases. In-
terestingly, the behavior in Figs. 6 and 7 indicates that the
efficiency is independent of the temperature and the depen-
dence on α can be factorized. This, at least in the regime of
parameters that we are exploring, suggests that efficiency for
the interacting gas is proportional to the ideal noninteracting
Otto efficiency, with a proportionality factor that decreases
with the interaction strength.

Then, we fix the value of ωc/ωh and vary the interaction
strength. Note that the volume of the condensate depends on g.
In this case, as we consider repulsive interactions, the volume
decreases with g at a fixed potential. We considered two differ-
ent situations: one in which the total mass of the condensate is
kept constant as the interaction strength is changed and one in
which the density in the center of the trap is kept constant.
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FIG. 8. Top: Efficiency in units of ηO for different interaction
strengths α = g/g0. We compare situations in which the total mass in
the condensate is constant (labeled M) and in which the density in the
center of the trap is constant (labeled ρ0). Labels for the markers are
the same as in Fig. 5. Bottom: Mean work extracted by the engine as
a function of α in units of the work W ∗ for the fully interacting case
with α = 1.

We can appreciate from the top panel of Fig. 8 that both
cases display similar efficiencies. However, when the mass is
constant, the fluctuations are larger than when the density is
kept constant. This stems from the fact that as the interaction
strength is reduced, the concentration of particles at the center
of the trap decreases substantially, thus increasing the number
of fluctuations. In general, we observe that the efficiency
grows slowly for small α. In both cases, as α decreases, the
efficiency increases, attaining a mean value ≈65% of ηO for
the minimum α considered in the simulations. As previously
stated, we are unable to reduce the value of α any further as
calculating isochoric strokes becomes excessively expensive
with a progressively increasing thermalization time.

Finally, we analyze the power of this engine. Let us first
look at the bottom panel of Fig. 8, where the mean ex-
tracted work as a function of the interaction strength α is
shown. In this case, we compare the extracted amount of
work for a given value of α with the work W ∗ extracted
in the fully interacting case with α = 1. Note that W/W ∗
increases by ≈50% for decreasing α and becomes approxi-
mately constant for α < 10−1. The actual power of the cycle
is determined by the ratio of the work to the time required to
complete the cycle. As it occurs in both numerical simulations
and real gases, we consider that the thermalization times in
the isochoric strokes are longer than the times required for
the expansion and compression. Thus, we can approximate the
length of the cycle as twice the length of the thermalization
process. Note that in our simulations we use the stochas-
tic Ginzburg-Landau equation as a multivariate Fokker-Plank
equation to obtain the new equilibria (at a given temperature)
of the grand-canonical ensemble; therefore, the time in the
simulation should not be directly associated with an actual
thermalization time. However, in the noninteracting limit the
thermalization time effectively goes to infinity, as the time
between collisions diverges.

FIG. 9. Mean value for different times of the mean density in the
center of the trap as a function of the temperature for thermal states.
The shaded part shows where all the temperatures mentioned in this
work lie, showing that they are far away from the transition, so the
noncondensed fraction can be neglected.

We can still estimate the order of the thermalization time
for the interacting case from kinetic theory. Note that g ∼ a;
that is, it is linearly proportional to the scattering length, and
thus, g ∼ a ∼ √

σ , where σ is the collision cross section.
As σ ∼ 1/τ , where τ is the time between collisions, for a
fixed number of particles the time it takes for the system to
thermalize with α = 1 compared with the time when α < 1 is
proportional to the ratio of the times between collisions,

τ0

τ
∼

(
g

g0

)2

= α2, (16)

where τ0 is the value of τ when α = 1. This indicates (in
qualitative agreement with the results from the numerical
simulations) that interactions allow for much faster cycles and
extraction of significantly more power (e.g., from the cycles
in the plateau of W for α < 10−1 in Fig. 8, even with the re-
duction in the extracted work of ≈50% with respect to α = 1).
In other words, interacting gases allow us to get higher power
in a finite time cycle. Moreover, in principle by adjusting the
interaction strength of the condensate, a power enhancement
at nearly constant efficiency can be achieved (see Figs. 7
and 8).

IV. CONCLUSIONS

In this work, we performed numerical simulations of quan-
tum Otto engines that have an interacting BEC as the working
medium. We were able to recover not only the thermody-
namics of the system but also its complete dynamics, which
enabled us, in turn, to perform a detailed analysis of the
engine, analyzing, for instance, the different contributions to
the energy along the adiabatic strokes.

We characterized the efficiency of the engine by perform-
ing several simulations in which we independently changed
the temperatures, the trap frequencies, and the interaction
strength of the gas. We found that the efficiency is independent
of the temperature. However, fluctuations in the efficiency and
in other observables are reduced as the difference between the
temperatures of the reservoirs increases. Also, their depen-
dence on the trap frequencies turns out to be similar to that
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in the noninteracting case, but with a proportionality factor
that depends on the interaction strength.

We also showed that the efficiency and work output of
the engine decrease as the interaction strength of the BEC
becomes larger. However, the timescale it takes the system
to thermalize is inversely proportional to the square of the
interaction strength. Thus, for small interactions, we found a
regime in which increasing the interaction of the BEC allows
for a considerable increase in power, while the efficiency is
only slightly reduced. Since the interaction strength of the
BEC can be experimentally tuned, our results provide a possi-
ble way to improve the power of a quantum engine at a small
cost in efficiency.
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APPENDIX: ESTIMATION OF Tλ

In order to estimate the critical temperature Tλ of the
condensate, we performed a series of simulations of the

stochastic Ginzburg-Landau equation with parameters as
listed in Sec. II E (i.e., the most interacting case in our paper)
at constant frequency of the trap ωc while varying the tempera-
ture T . In mean-field theory, the critical temperature decreases
with increasing interaction, a result that has been confirmed
experimentally where higher-order corrections were also ob-
served [45,46]. This guarantees that temperatures used in this
study, as they are far below Tλ of the most interacting case, are
sufficiently small that all the simulations are below the critical
temperature. This is enhanced by the fact that to determine
Tλ we use the smallest value of ω for the trap. To obtain the
condensed fraction in the gas as a function of the temperature
we use an approach similar to that used in experiments [47].
We consider the mean mass density in the vicinity of the
center of the trap as the order parameter, 〈ρ0〉, averaged in
time once the system reaches equilibrium.

Figure 9 shows the result as a function of the temperature.
Temperature is shown in units of the transition temperatures
Tλ; that is, it is rescaled in such a way that the transition
in the behavior of 〈ρ0〉 happens at T/Tλ = 1. Note that this
parameter has an abrupt change in behavior at this temperature
as it decreases from 1 monotonically and then remains ap-
proximately constant. This is compatible with a second-order
phase transition. All the temperatures considered in this study
lie in the light-blue shaded region of Fig. 9, i.e., far away from
the phase transition.

[1] S. Vinjanampathy and J. Anders, Contemp. Phys. 57, 545
(2016).

[2] F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso,
Fundam. Theor. Phys. 195, 1 (2018).

[3] N. M. Myers, O. Abah, and S. Deffner, AVS Quantum Sci. 4,
027101 (2022).

[4] M. T. Mitchison, Contemp. Phys. 60, 164 (2019).
[5] S. Bhattacharjee and A. Dutta, Eur. Phys. J. B 94, 239

(2021).
[6] O. Fialko and D. W. Hallwood, Phys. Rev. Lett. 108, 085303

(2012).
[7] P. A. Camati, J. F. G. Santos, and R. M. Serra, Phys. Rev. A 99,

062103 (2019).
[8] R. Dann and R. Kosloff, New J. Phys. 22, 013055 (2020).
[9] A. Hewgill, A. Ferraro, and G. De Chiara, Phys. Rev. A 98,

042102 (2018).
[10] C. Elouard, D. Herrera-Martí, B. Huard, and A. Auffeves, Phys.

Rev. Lett. 118, 260603 (2017).
[11] C. Elouard and A. N. Jordan, Phys. Rev. Lett. 120, 260601

(2018).
[12] A. N. Jordan, C. Elouard, and A. Auffèves, Quantum Stud.:

Math. Found. 7, 203 (2020).
[13] J. Roßnagel, S. T. Dawkins, K. N. Tolazzi, O. Abah, E.

Lutz, F. Schmidt-Kaler, and K. Singer, Science 352, 325
(2016).

[14] O. Abah, J. Rossnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler,
K. Singer, and E. Lutz, Phys. Rev. Lett. 109, 203006 (2012).

[15] D. von Lindenfels, O. Gräb, C. T. Schmiegelow, V. Kaushal, J.
Schulz, M. T. Mitchison, J. Goold, F. Schmidt-Kaler, and U. G.
Poschinger, Phys. Rev. Lett. 123, 080602 (2019).

[16] L. M. Cangemi, C. Bhadra, and A. Levy, arXiv:2302.00726
[17] N. M. Myers, F. J. Peña, O. Negrete, P. Vargas, G. De Chiara,

and S. Deffner, New J. Phys. 24, 025001 (2022).
[18] I. Reyes-Ayala, M. Miotti, M. Hemmerling, R. Dubessy, H.

Perrin, V. Romero-Rochin, and V. S. Bagnato, Entropy 25, 311
(2023).

[19] E. Q. Simmons, R. Sajjad, K. Keithley, H. Mas, J. L. Tanlimco,
E. Nolasco-Martinez, Y. Bai, G. H. Fredrickson, and D. M.
Weld, Phys. Rev. Res. 5, L042009 (2023).

[20] T. Keller, T. Fogarty, J. Li, and T. Busch, Phys. Rev. Res. 2,
033335 (2020).

[21] J. Li, T. Fogarty, S. Campbell, X. Chen, and T. Busch, New J.
Phys. 20, 015005 (2018).

[22] W. Niedenzu, I. Mazets, G. Kurizki, and F. Jendrzejewski,
Quantum 3, 155 (2019).

[23] M. Gluza, J. Sabino, N. H. Y. Ng, G. Vitagliano, M. Pezzutto,
Y. Omar, I. Mazets, M. Huber, J. Schmiedmayer, and J. Eisert,
PRX Quantum 2, 030310 (2021).

[24] J. Li, E. Y. Sherman, and A. Ruschhaupt, Phys. Rev. A 106,
L030201 (2022).

[25] G. Krstulovic and M. Brachet, Phys. Rev. E 83, 066311
(2011).

[26] J. A. Estrada, M. E. Brachet, and P. D. Mininni, AVS Quantum
Sci. 4, 046201 (2022).

[27] C. Nore, M. Abid, and M. E. Brachet, Phys. Fluids 9, 2644
(1997).

[28] R. S. Severino, P. D. Mininni, E. Fradkin, V. Bekeris, G.
Pasquini, and G. S. Lozano, Phys. Rev. B 106, 094512
(2022).

[29] M. J. Davis and P. B. Blakie, Phys. Rev. Lett. 96, 060404 (2006).

012202-8

https://doi.org/10.1080/00107514.2016.1201896
https://doi.org/10.1007/978-3-319-99046-01
https://doi.org/10.1116/5.0083192
https://doi.org/10.1080/00107514.2019.1631555
https://doi.org/10.1140/epjb/s10051-021-00235-3
https://doi.org/10.1103/PhysRevLett.108.085303
https://doi.org/10.1103/PhysRevA.99.062103
https://doi.org/10.1088/1367-2630/ab6876
https://doi.org/10.1103/PhysRevA.98.042102
https://doi.org/10.1103/PhysRevLett.118.260603
https://doi.org/10.1103/PhysRevLett.120.260601
https://doi.org/10.1007/s40509-019-00217-2
https://doi.org/10.1126/science.aad6320
https://doi.org/10.1103/PhysRevLett.109.203006
https://doi.org/10.1103/PhysRevLett.123.080602
https://arxiv.org/abs/2302.00726
https://doi.org/10.1088/1367-2630/ac47cc
https://doi.org/10.3390/e25020311
https://doi.org/10.1103/PhysRevResearch.5.L042009
https://doi.org/10.1103/PhysRevResearch.2.033335
https://doi.org/10.1088/1367-2630/aa9cd8
https://doi.org/10.22331/q-2019-06-28-155
https://doi.org/10.1103/PRXQuantum.2.030310
https://doi.org/10.1103/PhysRevA.106.L030201
https://doi.org/10.1103/PhysRevE.83.066311
https://doi.org/10.1116/5.0123277
https://doi.org/10.1063/1.869473
https://doi.org/10.1103/PhysRevB.106.094512
https://doi.org/10.1103/PhysRevLett.96.060404


QUANTUM ENGINES WITH INTERACTING … PHYSICAL REVIEW A 109, 012202 (2024)

[30] N. P. Proukakis and B. Jackson, J. Phys. B 41, 203002 (2008).
[31] N. Van Kampen, Stochastic Processes in Physics and Chemistry,

3rd ed. (Elsevier, Amsterdam, 2007).
[32] C. Gardiner, J. Anglin, and T. Fudge, J. Phys. B 35, 1555

(2002).
[33] E. Calzetta, B. Hu, and E. Verdaguer, Int. J. Mod. Phys. B 21,

4239 (2007).
[34] E. Zaremba, T. Nikuni, and A. Griffin, J. Low Temp. Phys. 116,

277 (1999).
[35] A. Schmid, Phys. Kondens. Mater. 5, 302 (1966).
[36] N. G. Berloff, M. Brachet, and N. P. Proukakis, Proc. Natl.

Acad. Sci. USA 111, 4675 (2014).
[37] S. Kida and S. A. Orszag, J. Sci. Comput. 5, 85 (1990).
[38] V. Shukla, P. D. Mininni, G. Krstulovic, P. C. di Leoni, and

M. E. Brachet, Phys. Rev. A 99, 043605 (2019).
[39] J. Amette Estrada, M. E. Brachet, and P. D. Mininni, Phys. Rev.

A 105, 063321 (2022).

[40] P. D. Mininni, D. Rosenberg, R. Reddy, and A. Pouquet,
Parallel Comput. 37, 316 (2011).

[41] M. Fontana, O. P. Bruno, P. D. Mininni, and P. Dmitruk,
Comput. Phys. Commun. 256, 107482 (2020).

[42] A. C. White, B. P. Anderson, and V. S. Bagnato, Proc. Natl.
Acad. Sci. USA 111, 4719 (2014).

[43] E. A. L. Henn, J. A. Seman, G. B. Seco, E. P. Olimpio, P.
Castilho, G. Roati, D. V. Magalhães, K. M. F. Magalhães, and
V. S. Bagnato, Braz. J. Phys. 38, 279 (2008).

[44] R. Kosloff and Y. Rezek, Entropy 19, 136 (2017).
[45] R. P. Smith, R. L. D. Campbell, N. Tammuz, and Z. Hadzibabic,

Phys. Rev. Lett. 106, 250403 (2011).
[46] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Phys. Rev. A 54,

R4633 (1996).
[47] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten,

D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. 75,
3969 (1995).

012202-9

https://doi.org/10.1088/0953-4075/41/20/203002
https://doi.org/10.1088/0953-4075/35/6/310
https://doi.org/10.1142/S0217979207045475
https://doi.org/10.1023/A:1021846002995
https://doi.org/10.1007/BF02422669
https://doi.org/10.1073/pnas.1312549111
https://doi.org/10.1007/BF01065580
https://doi.org/10.1103/PhysRevA.99.043605
https://doi.org/10.1103/PhysRevA.105.063321
https://doi.org/10.1016/j.parco.2011.05.004
https://doi.org/10.1016/j.cpc.2020.107482
https://doi.org/10.1073/pnas.1312737110
https://doi.org/10.1590/S0103-97332008000200012
https://doi.org/10.3390/e19040136
https://doi.org/10.1103/PhysRevLett.106.250403
https://doi.org/10.1103/PhysRevA.54.R4633
https://doi.org/10.1103/PhysRevLett.75.3969

