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Measurement sharpness and disturbance tradeoff
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Obtaining information from a quantum system through a measurement typically disturbs its state. The post-
measurement states for a given measurement, however, are not unique and highly rely on the chosen measurement
model, complicating the puzzle of information disturbance. Two distinct questions are then in order. First, what is
the minimum disturbance a measurement may induce? Second, when a fixed disturbance occurs, how informative
is the possible measurement in the best-case scenario? Here we propose various approaches to tackle these
questions and provide explicit solutions for the set of unbiased binary qubit measurements and postmeasurement
state spaces that are equivalent to the image of a unital qubit channel. In particular, we show there are different
tradeoff relations between the sharpness of this measurement and the average fidelity of the premeasurement and
postmeasurement state spaces as well as the sharpness and quantum resources preserved in the postmeasurement
states in terms of coherence and discordlike correlation once the measurement is applied locally.
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I. INTRODUCTION

The no-information-without-disturbance theorem is a sig-
nificant result of quantum mechanics, which asserts that
acquiring information from quantum systems is necessarily at
the cost of disturbing their states. Extensive research has been
done into the tradeoff between the obtained information and
consequent disturbance in a system [1–15].

In order to retrieve information, one has to measure the
system. Mathematically speaking, a quantum measurement
is a map from the set of quantum states to the classi-
cal ones, namely, probability distributions. This definition
generally leaves the system under the measurement with
various potential postmeasurement states depending on the
adopted measurement strategy [16] (see Fig. 1 for an approach
called indirect measurement [17]). The nonuniqueness of the
postmeasurement states, however, introduces additional dif-
ficulties in studying the disturbance within the state space
caused by measurements.

In a series of papers [18–21], Heinosaari et al. proposed
the seminal concept of channel-measurement compatibility to
address the nonuniqueness problem. This approach provides
a framework to consider both: all possible postmeasurement
states for a given measurement and all possible measurements
that may induce the same disturbance, i.e., the same postmea-
surement states.

Roughly speaking, any method employed to measure a
quantum measurement M leads to a specific overall dis-
turbance in the state space that is equivalent to applying a
quantum channel EM on the states. Henceforth, such a chan-
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nel is referred to as being compatible with the measurement
[18–21]. The set CM = {EM} of all channels compatible with
a given measurement M therefore encapsulates all the possi-
ble disturbances that measuring M may induce.

Conversely, the set DE = {ME} of all possible compatible
measurements with a channel E indicates what measurements
can be implemented, and therefore how much information
can be extracted, at the cost of the same disturbance in the
states. In fact, any quantum channel E admits different de-
compositions in terms of some completely positive and trace
nonincreasing operations �i, i.e., E = ∑

�i for different sets
of {�i}. Different Kraus representations are an example of this
notion. Each of such sets yields a set of possible output states
with some associated probabilities. These probabilities can be
assigned to a quantum measurement ME , which we called
compatible with the quantum channel E . Trivially, different
decompositions can give rise to different measurements ME .

It is worth mentioning that while this approach pro-
vides a structural framework, which works independently of
any specific quantification of disturbance-information relation
[19–21], the question of characterizing the sets CM for a given
M and DE for a given E is generally open. The necessary
and sufficient condition for compatibility of quantum mea-
surements and quantum channels is known only for binary and
unbiased qubit measurements and unital qubit channels [21].

Nevertheless, the consensus is that the most informative
measurements are included in the set of projective ones, i.e.,
sharp measurements. Thus, adding noise to these measure-
ments makes them unsharp and less informative with the
possibility of inducing less disturbance in the outputs. There
are different results on the postmeasurement disturbance;
however, a result quantifying such a relation between sharp-
ness and disturbance is lacking.

Here we address this question by applying the notion of
measurement-channel compatibility in the set of unbiased
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FIG. 1. To apply a measurement M on state ρ, one can apply
a joint unitary evolution on ρ and some ancillary system and then
measure the ancillary system by some pointer observable [17] (see
also Naimark’s dilation theorem). This setup contains nonuniqueness
in the postmeasurement states. For example, both unitary opera-
tors U1 equal to the SWAP operator and U2 = |0〉〈0| ⊗ I + |1〉〈1| ⊗
σx for τ = |0〉〈0| model the same projective measurement M =
{|0〉〈0|, |1〉〈1|}. Then the postmeasurement state space in the first
scenario is independent of ρ and includes only |0〉〈0| and in the
second scenario is the diameter of the Bloch ball on the z axis.

binary qubit measurements and unital qubit channels. For this
purpose, we first present explicitly the known generalization
of channel-measurement compatibility from the set of Pauli
channels to the set of unital qubit ones mentioned in Ref. [21].
Next, for the aforementioned sets of channels and measure-
ments, we show there are some tradeoff relations between
sharpness of the measurement and quantum properties of the
postmeasurement states. These properties are considered in
three different ways: (i) their average fidelity with premea-
surement states, (ii) their coherence, and (iii) their discordlike
correlations. The first one quantifies the proximity between
pre- and postmeasurement states, whereas the latter two char-
acterize the extent to which quantum features are preserved in
states after being measured.

We show that the sharper the measurement is, the more
quantum properties are lost in the postmeasurement states
and thus more disturbance is induced. Our results confirm
that in the extreme case of a projective measurement, which
is completely sharp, all the possible postmeasurement states,
independent of the realization method of the measurement,
are completely classical. On the other extreme, when the
measurement effects are proportional to identity and thus no
information can be extracted from the systems, one may adopt
a measuring method that preserves the quantum properties of
all states after the measurement.

The paper is organized as follows. We introduce in Sec. II
the preliminary information and mathematical background for
the problem we address. The main results are presented in
Sec. III, where we first state an explicit approach for the
known generalization of the channel-measurement compati-
bility to the set of unital qubit channels and then use this
generalization to investigate the sharpness-disturbance trade-
offs in Secs. III A and III B. The paper is summarized in
Sec. IV. Proofs of some of the results are presented in Ap-
pendixes B and C.

II. PRELIMINARIES

In the following three sections, we review the elemen-
tary definitions and present the mathematical background on

quantum measurements, quantum channels, and their compat-
ibility.

A. Quantum measurements

An N-outcome quantum measurement M, also known as a
positive-operator-valued measure (POVM) and an observable
in some literature, is a set of positive-semidefinite operators
satisfying the complementary relation, i.e., M = {Mi}N−1

i=0 ,
where Mi � 0 and

∑
Mi = I. A quantum measurement pro-

vides a map from the set of quantum states to classical ones,
meaning that measuring M on a quantum state ρ results in
the probability distribution pi = Tr(ρMi ) for the outcome i.
The positivity of the measurement elements implies the non-
negativity of probabilities pi and the complementary relation
guarantees that they sum to one. A special POVM, satisfying
the orthogonality condition MiMj = δi jMi ∀ i, j, is called a
projective-valued measure, or a projective measurement for
brevity.

Two characteristics for a given POVM are primarily con-
sidered in this paper, namely, biasedness and sharpness [22].
A quantum measurement M is called unbiased if TrMi =
d/N for all outcomes i. The sharpness, on the other hand,
defines how closely M resembles a projective measurement.
Different measures for biasedness and sharpness (sometimes
unsharpness) were introduced [22–26].

Here we are mainly concerned with unbiased binary (two-
outcome) qubit measurements. Such a POVM is defined as
Ms,n̂ = {M+, M−}, where its two effects are parametrized by

M± = 1
2 (I ± sn̂ · σ ), (1)

in which s ∈ [0, 1] carries the sharpness information and
n̂ ∈ R3, with ‖n̂‖ = 1, represents its direction. Being positive
operators of unit trace, M± correspond to a pair of points
inside the Bloch ball, lying symmetrically around the origin
on a diameter defined by n̂.

Trivially, Ms,n̂ for s = 1 is a projective measurement and
s = 0 gives a maximally noisy one. Generally, the sharpness
of Ms,n̂ can be quantified by s or some monotone functions
of s such as s2, which is in agreement with the unsharpness
quantifiers defined in [25,26]. In Appendix A we see that for
the unbiased binary qubit measurements, 1 − s2 is equal to the
unsharpness defined in [25,26].

B. Quantum channels

A quantum channel is a completely positive and trace-
preserving map acting on quantum states. A Pauli channel E �p
is a special example of a qubit channel, which is defined by

E �p(ρ) =
3∑

j=0

p jσ jρσ j, (2)

where σ0 is the identity matrix and σ j for j ∈ {1, 2, 3} is a
Pauli matrix. Also, the probability vector �p ∈ R4 satisfies 0 �
pi � 1 and

∑3
i=0 pi = 1. Hence, a regular tetrahedron in R3

[27] can represent the set of Pauli channels. The set of Pauli
channels, denoted by P , is a measure zero subset of the unital
ones, denoted by U , which map identity to itself.

Three different features of quantum channels are con-
sidered in this paper: (i) input-output fidelity [28,29], (ii)
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quantumness [30], and (iii) local quantum uncertainty [31]
of the Choi-Jamiołkowski state [32,33]. In what follows we
briefly review these properties.

(i) Input-output fidelity. The input-output fidelity is a mea-
sure of the performance of a quantum channel obtained by
taking the fidelity between the input and the corresponding
output states after evolving by E averaged over the Haar
measure of pure states

FE =
∫

〈ψ |E (|ψ〉〈ψ |)|ψ〉dψ. (3)

This is equal to one only for the identity channel that does
nothing on the state space. Generally, for E acting on d-
dimensional states, this quantity respects the bounds 1

d+1 �
FE � 1. Moreover, one may improve this fidelity for a chan-
nel E by concatenating it with some other channels. In that
case, the corrected fidelity FE is given by [28,29]

FE : = max
E ′

F (E ′◦E ) = max
E ′′

F (E◦E ′′ ) (4)

= max
E ′,E ′′

F (E ′◦E◦E ′′ ).

For a Pauli channel E �p, these fidelities are [28,29]

FE �p = 1
3 (1 + 2p0), (5)

FE �p = F (Wm◦E �p) = 1
3 (1 + 2pm), (6)

where pm = max{p0, p1, p2, p3} and Wm(ρ) = σmρσm is the
unitary Pauli channel corresponding to pm.

(ii) Quantumness of quantum channels. Quantumness of
a channel E is defined as the average quantum coherence of
the state space after the channel acts on, minimized over all
orthonormal basis sets [30]

QE = NC min
{|i〉}

∫
C[E (ρ)]dμ(ρ), (7)

where C is a proper coherence measure and NC is its associ-
ated normalization constant chosen such that for the identity
map the quantumness achieves unity. Trivially, QE quantifies
the coherence preserved in the states undergoing a channel.
It is restricted to 0 � QE � 1. The upper and lower bounds
are satisfied with equality only by a unitary channel and
a quantum-classical (QC) channel [34], respectively, which
completely erases the quantum coherence of all states [30].
Moreover, it was shown [30] that for any channel E ,

QE = Q(V2◦E◦V1 ), (8)

where V1 and V2 are any pair of unitary channels. Using the
squared l1-norm of coherence [35] as the coherence measure,
the quantumness of the Pauli channels then reads [30]

QE �p = (p↓
0 − p↓

1 )2 + (p↓
2 − p↓

3 )2, (9)

where �p↓ is obtained by rearranging �p components in nonin-
creasing order.

(iii) Local quantum uncertainty of the Choi-Jamiołkowski
state. Another approach to factor in the quantum features of
a channel is to consider the quantum correlation the channel
leaves in a bipartite state when the channel acts locally on the
state. A natural choice for such a bipartite state is a maximally

entangled one. Thus, the quantum correlation of the Choi-
Jamiołkowski state associated with a quantum channel reveals
the quantum features of the channel. Using the notion of local
quantum uncertainty (LQU) [31] as a measure of nonclassical
correlation, we measure the quantum correlation of the Choi-
Jamiołkowski state associated with a given channel.

The LQU is defined as the minimum skew information [36]
achievable on a single local measurement and has a closed
form with respect to subsystem A of a qubit-qudit state �AB

as [31]

L�AB|A = 1 − λmax{WAB}. (10)

Here λmax denotes the maximum eigenvalue of the 3 × 3
symmetric matrix WAB whose entries for i, j ∈ {1, 2, 3} are
defined by

(WAB)i j = Tr[
√

�AB(σi ⊗ I)
√

�AB(σ j ⊗ I)]. (11)

It is straightforward to show that the LQU of the Choi-
Jamiołkowski state �E of a quantum channel E satisfies 0 �
L�E |A � 1 with equality on the lower bound only for QC
channels and on the upper bound only for the unitary ones.
Also, this measure is invariant under unitary transformations
of the map, i.e., for all channels E , and unitary maps V1

and V2,

L�E |A = L�(V2◦E◦V1 )|A. (12)

For a Pauli channel E �p, the Choi-Jamiołkowski state is
given by

�E �p : = (E �p ⊗ I )|ψ+〉〈ψ+|

= 1

2

⎛
⎜⎜⎜⎜⎝

p0 + p3 0 0 p0 − p3

0 p1 + p2 p1 − p2 0

0 p1 − p2 p1 + p2 0

p0 − p3 0 0 p0 + p3

⎞
⎟⎟⎟⎟⎠,

(13)

where I is the identity channel and |ψ+〉 = (|00〉 + |11〉)/
√

2
is a maximally entangled state. The Choi-Jamiołkowski state
�E �p is therefore a Bell diagonal state for which WAB =
diag{P1, P2, P3}, where

Pi = 2(
√

p0 pi + √
p j pk ), (14)

with (i, j, k) different choices of (1,2,3). The LQU of �E �p then
reads

L�E �p
= 1 − Pmax, (15)

with Pmax = max{P1, P2, P3}, and quantifies the amount of
discordlike correlation preserved in a maximally entangled
state evolved by a Pauli channel. Above, we dropped A in
the subscript for brevity because of the symmetry that Bell
diagonal states possess on quantum correlation with respect
to subsystems A and B, i.e., L�E �p

= L�E �p |A = L�E �p |B.

C. Channel-measurement compatibility

The concept of compatibility of a channel and a quantum
measurement is aimed at aggregating possible disturbances
a given measurement may cause and possible measurements
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may be applied with the same disturbance. The following is
the formal definition of channel-measurement compatibility.

Definition 1 (channel-measurement compatibility [21]). A
channel E and a measurement M = {Mi} are compatible if
there exist completely positive trace-nonincreasing operations
�i such that for any i and any input state ρ,

E (ρ) =
∑

�i(ρ), Tr[Miρ] = Tr[�i(ρ)]. (16)

It has been shown in Ref. [21] that the measurement Ms,n̂

is compatible with the Pauli channel E �p if and only if it
holds that

s2n2
1

P2
1

+ s2n2
2

P2
2

+ s2n2
3

P2
3

� 1, (17)

where Pi is given in Eq. (14). For this inequality to hold, if
Pi = 0, its corresponding term must necessarily vanish.

For a given Ms,n̂, we define by PMs,n̂ ⊂ CMs,n̂ the subset
of the Pauli channels in the set of its compatible channels.
Similarly, we refer to DE �p as the set of unbiased binary qubit
measurements compatible with a given Pauli channel E �p. For
future reference, we mention that UMs,n̂ and DEu denote the
compatible set of unital qubit channels with a given Ms,n̂ and
the set of measurements Ms,n̂ compatible with a unital qubit
channel Eu, respectively.

An immediate consequence of the inequality (17) is that if
it holds for a POVM with orientation n̂ and sharpness s, it also
holds for all POVMs having the same direction but smaller
sharpness [21]. Remarkably, the set of channels compatible
with a sharp POVM in the n̂ direction is also compatible with
a POVM having the same direction, but arbitrary sharpness,
that is to say, PM1,n̂ ⊆ PMs,n̂ ⊆ PMs′ ,n̂ for any s′ � s.

By applying the Lagrange multiplier method, one can show
Pi � 1 for any i where the equality holds if and only if p0 = pi

and p j = pk . Moreover, for Pmax = max{P1, P2, P3}, the com-
patibility inequality (17) gives rise to

s � Pmax � 1. (18)

Both bounds of the above inequality are tight, meaning that
in the set of compatible Pauli channels for any measurement
Ms,n̂, there always exists a channel satisfying the right in-
equality and a channel satisfying the left one. The maximally
depolarizing channel, located at the center of the tetrahedron
of Pauli channels with p j = 1

4 for all j, satisfies the right
inequality. As for the left inequality, there are four channels
in PMs,n̂ introduced in the following remark.

Remark 1. For any measurement Ms,n̂, with its effects
given by Eq. (1), there exist at least four compatible channels
E �p on the boundary of PMs,n̂ where Pi, mentioned in Eq. (14),
is equal to s for any i. These channels are characterized by
a probability vector �p with p0 = 1 − 3p1, p1 = p2 = p3 =
1
8 (1 + s − √

1 + 2s − 3s2), and three different permutations
of this vector.

On the other hand, for a fixed Pauli channel E �p, that is, for
a fixed Pmax, there always exists a compatible measurement
in DE �p which satisfies with equality the left-hand side of
the Eq. (18). Trivially, this is the measurement with sharp-
ness equal to Pmax along the ith principal axis determined by
the i that maximizes Pi. For a given measurement Ms,n̂ the
set PMs,n̂ , obtained through Eq. (17), is represented by the

FIG. 2. Tetrahedron of Pauli channels and the subset of com-
patible channels with a measurement Ms,n̂, where s = 0.85 and
(a) n̂ = x̂ = (1, 0, 0) and (b) n̂ = 1√

3
(1, 1, 1). Here Ei(ρ ) = σiρσi for

i = 0, 1, 2, 3 is a unitary Pauli channel. The compatibility polytope

s introduced in Definition 2 is also presented and, as proved in
Lemma 2, it is a superset of the compatible set of Pauli channels.

intersection of a deformed tetrahedron and the tetrahedron of
Pauli channels (see Fig. 2). In specific cases, this set collapses
to a line or a point. To see this, note that from 1/P2

i � 1 we
get

∑3
i=1 n2

i /P2
i � 1. Accordingly, in the particular case of a

sharp POVM, i.e., s = 1, the inequality (17) reduces to the
equality

n2
1

P2
1

+ n2
2

P2
2

+ n2
3

P2
3

= 1. (19)

The above shows that the convex combination of some num-
bers 1/P2

i � 1 is equal to one. This holds only if for each
nonzero component ni of a sharp POVM we have Pi = 1.
Now, if a sharp measurement is directed along a principal
axis, say, x̂ = (1, 0, 0), then P1 = 1. According to the above
discussion, it holds for all the channels with p0 = p1 and
p2 = p3 where p0 + p2 = 1

2 . This geometrically leads to a
line segment across two opposite edges of the Pauli tetrahe-
dron. On the other hand, when n̂ has at least two nonzero
components, two of the Pi’s are equal to one. This enforces
the third one to be equal to one as well. Therefore, Eq. (19)
has a single solution Pi = 1 for i = 1, 2, 3, occurring at the
center of the tetrahedron, i.e., p0 = p1 = p2 = p3 = 1

4 .
Alternatively, the set DE �p of POVMs compatible with a

given channel E �p is generally described as an ellipsoid inside
the Bloch ball with semiaxes P1, P2, and P3 [see Eq. (17)]. The
ellipsoid coincides with the whole ball if and only if Pi = 1 for
all i, or equivalently pj = 1

4 for all j. It collapses to the center
of the Bloch ball if and only if Pi = 0 for all i, or equivalently
p j = δ jk for some k, i.e., when the Pauli channel becomes a
unitary evolution.

III. RESULTS AND DISCUSSION

In this section we will present our results for the following
two questions: (i) What is the minimum possible disturbance
a given measurement with sharpness s may induce and (ii)
given a fixed disturbance in postmeasurement state space,
what is the sharpest measurement one might have applied,
i.e., how close could one have come to achieving a projective
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measurement? Before presenting our main points, we note
that to use the generalization of channel-measurement com-
patibility from the set of Pauli channels P to the set of unital
qubit ones U mentioned in Ref. [21], we first need an explicit
presentation of the generalization in order to become suitable
for our purpose. Therefore, we will apply the following lemma
from Ref. [21].

Lemma 1 (Proposition 1 of Ref. [21]). A quantum channel
E is compatible with the measurement M if and only if V2 ◦
E ◦ V1, for two unitary channels V j (ρ) = VjρV †

j ( j = 1, 2), is

compatible with the POVM V †
1 MV1 := {V †

1 MiV1}.
Now to generalize, recall that any unital qubit channel Eu

can be decomposed into Eu = V2 ◦ E �p ◦ V1 for two unitary
channels V1 and V2. We emphasize this decomposition is not
unique. The freedom, however, at the level of Pauli channels
allows only for the permutations of �p and not any other
change. Thus, it is enough to find one such decomposition for
a unital channel Eu. Applying the above lemma, to determine
whether Eu and Ms,n̂ are compatible, the compatibility of the
corresponding E �p and Ms,n̂′ = V1Ms,n̂V †

1 should be checked.
This induces on n̂ a rotation RV1 corresponding to the unitary
operator V1 through SU(2) − SO(3) homomorphism, i.e.,

n̂′ = RV1 n̂. (20)

Applying the compatibility inequality (17) for the measure-
ment Ms,n̂′ , we find the set of Pauli channels compatible with
this measurement denoted by PMs,n̂′ . Then by using the above
lemma we get the set of all unital qubit channels compatible
with a measurement Ms,n̂ as

UMs,n̂ = {V2 ◦ PMs,n̂′ ◦ V1 : ∀V1,V2 ∈ unitary channels},
(21)

where n̂′ is given in Eq. (20). By concatenation of a channel
and a set, we mean the concatenation of the channel and all
members of the set.

Alternatively, among the unbiased binary qubit measure-
ments Ms,n̂, those compatible with a unital qubit channel Eu

belong to

DEu = V †
1 DE �pV1, (22)

where by multiplication of a matrix and a set we mean
multiplication of the matrix with each element of the set.
Equation (22) gives a rotation, by RV †

1
, of the ellipsoid of

the compatible measurements DE �p in the Bloch ball (see
Sec. II C).

A. Minimum disturbance caused by a fixed POVM

In this section we study the extent to which a fixed mea-
surement Ms,n̂ can maintain the state space and its quantum
resources, specifically coherence and discordlike correlations.
To present our results, we make use of the following definition
and technical lemma.

Definition 2 (compatibility polytope 
s). For any s ∈ [0, 1],
the compatibility polytope, denoted by 
s, is the convex hull
of Pauli channels corresponding to the probability vectors
given by

�q1 =
(

1 + √
1 − s2

2
,

1 − √
1 − s2

2
, 0, 0

)
, (23a)

�q2 =
(

1 + √
1 − s2

2
, 0,

1 − √
1 − s2

2
, 0

)
, (23b)

�q3 =
(

1 + √
1 − s2

2
, 0, 0,

1 − √
1 − s2

2

)
, (23c)

and their other nine different permutations.
Geometrically, 
s is obtained by truncating all four ver-

tices of the regular tetrahedron of Pauli channels (see Fig. 2).
For s = 0, 
0 coincides with the Pauli tetrahedron; however,
for s = 1, 
1 reduces to a regular octahedron. We use this
definition in the following lemma, the proof of which is given
in Appendix B.

Lemma 2. The set PMs,n̂ of compatible Pauli channels
with a given measurement Ms,n̂ is always included in the
compatibility polytope 
s. Moreover, the edges of 
s can be
touched by the compatible set of channels if and only if the
corresponding POVM is directed along a principal axis.

As previously mentioned, different methods exist to
measure a given POVM, which results in different postmea-
surement state spaces. Depending on the specific operational
objective one has for the postmeasurement states, the best
method for the measurement can be defined. A natural choice,
however, is to have the postmeasurement states as similar as
possible to the premeasurement ones. This similarity can be
quantified by employing the notion of average fidelity be-
tween pre- and postmeasurement states. Since the compatible
channels EM model the postmeasurement state spaces for a
given measurement M, the best similarity, in the above sense,
is then equivalent to

FC (M) := max
CM

FEM , (24)

where FEM is defined in Eq. (3). Hereafter, we refer to this
quantity as the best fidelity over CM. Obviously, once CM is
the whole set of compatible channels, the above gives the best
fidelity of M overall. For the unital channels considered in
this paper, we can define the best fidelity over UMs,n̂ by

FU (Ms,n̂) := max
UMs,n̂

FE . (25)

Now we present our first main result on a tradeoff relation
between the sharpness and disturbance in the next theorem.
Informally, it shows that the sharper a given POVM is, the
less similar pre- and postmeasurement states, in the best-case
scenario, can be.

Theorem 1. Assume a measurement Ms,n̂ and its all com-
patible unital qubit channels. Then the best fidelity over UMs,n̂ ,
Eq. (25), satisfies the following tradeoff relation with sharp-
ness:

[3FU (Ms,n̂) − 2]2 + s2 = 1. (26)

Before proceeding with the proof, let us examine the the-
orem for two extreme cases of a projective measurement
and the maximally noisy POVM. The first implies that the
best measurement strategy, as far as being restricted to the
set of unital channels, definitely disturbs the states because
FU (M1,n̂) = 2

3 and cannot achieve its maximum value of
unity equal to one. This amount of fidelity corresponds to
the second method mentioned in the caption of Fig. 1. On the
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other hand, FU (M0,n̂) = 1, which is a trivial bound showing
it can be measured without any disturbance.

Proof. To prove the theorem, by applying Eqs. (20) and
(21) we get

FU (Ms,n̂) = max
UMs,n̂

FE = max
V2,V1

max
PMs,n̂′

F (V2◦E �p◦V1 )

= max
m̂

max
PMs,m̂

FE �p = max
m̂

max
PMs,m̂

1
3 (1 + 2pm)

= 1
3 (2 +

√
1 − s2). (27)

Here the first equality in the second line is due to Eqs. (4)
and (6), which implies that for a Pauli channel the corrected
fidelity is achievable by a unitary map. The subsequent equal-
ity is also a result of Lemma 2, implying one can always find a
direction to get, and never exceed, pm = (1 + √

1 − s2)/2 for
a compatible Pauli channel. �

While the above theorem shows that the disturbance due
to measuring an informative POVM is inevitable, for practical
reasons, one may wonder how quantum resources are affected
by such a POVM. Strictly speaking, an alternative approach
to defining the best measurement strategy can be the one that
preserves more quantum resources in the state space. Here
we study two important characteristics of such quantum re-
sources, namely, quantum coherence and quantum correlation
once the measurement is applied locally. We consider for
the former the average coherence of the postmeasurement
state space and for the latter the LQU of a maximally en-
tangled state measured locally by M. The best measuring
strategy then is the one that maximizes one of these two, de-
pending on the practical intentions. Following the discussion
before Theorem 1, for a measurement M, these amounts are
given by

QC (M) := max
CM

QEM , (28)

LC (M) := max
CM

L�EM |A, (29)

respectively, where QEM is the quantumness (7) of the chan-
nel EM compatible with M which quantifies the average
coherence preserved in the postmeasurement state space.
Also, �EM is the Choi-Jamiołkowski state of the compatible
channel EM whose LQU, represented by L�E |A, quantifies the
discordlike correlations preserved in the maximally entangled
state after being measured locally by M. Henceforward, we
call the first the best quantumness over CM and the latter the
best LQU over CM. Restricting the set to unital channels, we
define the best quantumness and the best LQU over UMs,n̂ as

QU (Ms,n̂) := max
UMs,n̂

QE , (30)

LU (Ms,n̂) := max
UMs,n̂

L�E , (31)

respectively. Similar to Theorem 1, the next theorem presents
a tradeoff relation between the sharpness of a given Ms,n̂ and
its best quantumness and LQU over UMs,n̂ .

Theorem 2. Consider an unbiased binary qubit measure-
ment Ms,n̂ and restrict its set of compatible channels to the

unital qubit ones. The best quantumness and the best LQU
over UMs,n̂ , defined by Eqs. (30) and (31), satisfy

QU (Ms,n̂) + s2 = 1, (32)

LU (Ms,n̂) + s = 1. (33)

We give the proof of this theorem in Appendix C, where we
also show that the equality in (32) reduces to the inequality
less than or equal to one if the best quantumness is defined
over the Pauli channels instead of the unital ones. An excep-
tion however exists, namely, for three measurements for which
n̂ is directed along one of the principal axes x̂, ŷ, and ẑ. In these
particular cases, the equality (32) is still satisfied even for the
best quantumness over the Pauli channels.

This theorem significantly proves for a projective mea-
surement, i.e., s = 1, that the postmeasurement state space,
independent of measuring strategy, becomes entirely classical.
That means all postmeasurement states become compatible.
On the other hand, any informative measurement does destroy
quantum resources to a degree determined by the sharpness of
the measurement.

B. Sharpest measurement for a fixed disturbance

In this section we delve into the inverse problem. We be-
gin with a predetermined level of disturbance and examine,
among the measurements with this specific postmeasurement
state space, their maximum sharpness. Having the set of
measurements compatible with a given quantum channel, the
above is equivalent to starting with a quantum channel and
then finding the maximum sharpness a measurement, in its
compatible set, possesses. We will give some tradeoff rela-
tions in what follows, proving that the more disturbance exists
in the postmeasurement space, the sharper the measurement
might have been.

Let SM define a measure for the sharpness of a given quan-
tum measurement M. Following the terminology method
employed in the preceding section, we introduce the notion
of the best sharpness over DE as the maximum sharpness of a
measurement M ∈ DE compatible with E , i.e.,

SD(E ) := max
DE

SM. (34)

Various measures of sharpness can be employed; however,
in the specific case of an unbiased binary qubit measurement
that we are considering, a natural choice is s, as we discussed
after Eq. (1). Recalling Eq. (18) and the discussion after Re-
mark 1, for a Pauli channel the best sharpness of E �p over DE �p
is precisely equal to Pmax,

SD(E �p) := max
DE �p

s = Pmax. (35)

As mentioned at the beginning of this section, the set DEu

is obtained from DE �p by some rotation (22). This does not
change the maximum sharpness in the set of compatible mea-
surements. Thus, we have

SD(Eu) := max
DEu

s = Pmax. (36)

In what follows, we discuss how SD(Eu) is related to the
input-output fidelity that measures the disturbance of the post-
measurement space.
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The next theorem presents a tradeoff relation between the
sharpness of a unital qubit channel with all positive-signed
singular values [27] and its input-output fidelity. It proves
that, for a given postmeasurement state space, the greater the
fidelity between the premeasurement and postmeasurement
state spaces, the lower the sharpness of the measurement that
maps them, in the optimal scenario.

Theorem 3. Assume a unital qubit channel Eu = V2 ◦ E �p ◦
V1 corresponding to a Pauli channel E �p. Also, let the largest
component of �p exceed 1

2 , i.e., pm � 1
2 . Assigning the image

of Eu to the outputs of a measurement Ms,n̂, the following
tradeoff relation applies to the corrected fidelity FEu given by
(4) and the best sharpness over DEu defined by Eq. (36):

(3FEu − 2)2 + [SD(Eu)]2 � 1. (37)

Proof. For �p↓ being �p rearranged in nonincreasing order,
Pmax is given by Eq. (C2). Hence, for any map E �p appearing in
the decomposition of Eu, independent of the decomposition,
Pmax is fixed. The upper bound for the channels with p↓

0 =
pm � 1

2 is obtained by

SD(E �p) = Pmax = 2(
√

p↓
0 p↓

1 +
√

p↓
2 p↓

3 )

� 2

(√
p↓

0 p↓
1 + 1 − p↓

0 − p↓
1

2

)

� 2
√

p↓
0 (1 − p↓

0 ). (38)

Here, by optimizing the term in the second line with respect
to p↓

1 and considering the assumption of p↓
0 � 1

2 , the last

inequality is obtained for p↓
1 = 1 − p↓

0 . Replacing p↓
0 = pm

from Eq. (6) will complete the proof. �
The term (3FEu − 2)2 in Eq. (37) for 1

2 � pm � 1, i.e.,
for 2

3 � FEu � 1, monotonically increases from 0 to 1. This
theorem shows, at a cost of certain disturbance in the post-
measurement space, how sharp the measurement might have
been.

The technical reason why the above theorem is restricted
to the channels with pm � 1

2 is obvious: While the best sharp-
ness over DEu, determined by Pmax, depends on �p totally, the
corrected fidelity relies only on its largest component. For
pm � 1

2 , it is always possible to find a channel with Pmax = 1.
An example is the channel that corresponds to pm = p0 =
p1 = 1

2 − x and p2 = p3 = x, where x � 1
4 is the deviation of

p0 from 1
2 . Thus, it is unexpected to formulate such a tradeoff

relation for pm < 1
2 .

To address this issue and take other notions of postmea-
surement disturbance in terms of states’ resourcefulness into
account, we give in the next theorem two tradeoff relations
between the quantumness and LQU of a given Eu and its best
sharpness over DEu .

Theorem 4. Let Eu be a unital qubit channel and restrict its
set of compatible measurements to the unbiased binary qubit
ones. Then the best sharpness over DEu [Eq. (36)] respects

QEu + [SD(Eu)]2 � 1, (39)

L�Eu
+ SD(Eu) = 1, (40)

where QEu and L�Eu
are the quantumness and LQU of Eu,

respectively, defined in Sec. II B.
Proof. We begin the proof by noting the decomposition

of Eu = V2 ◦ E �p ◦ V1 and the fact that both QE and L�E are
invariant under such unitary evolutions [see (8) and (12)].
Therefore, the proof of Eq. (39) is a straight consequence
of the fact that QEu = QE �p , Eq. (36), and 1 − P2

max � QE �p as
proved in Eq. (C2). On the other hand, the proof of Eq. (40) is
an immediate result of the equality L�Eu

= L� �p and Eqs. (15)
and (36), which completes the proof of the theorem. �

This theorem proves if a POVM destroys a certain amount
of quantum resources in the state space, it cannot possess
an arbitrary sharpness. From both Theorems 2 and 4 it is
now obvious that a POVM of the form Ms,n̂ is sharp if
and only if its compatible set of unital channels includes
only QC channels, i.e., the postmeasurement states are clas-
sical with respect to some basis. This implies that for any
unsharp measurements, one can find some measurement
strategies to maintain some quantum resources in the state
space.

IV. CONCLUSION

In this paper we have considered the question of how
gaining information by a measurement can affect the states
of the system and their quantum resourcefulness. To address
this question, we used channel-measurement compatibility as
a framework that characterizes all possible disturbances that
might have been caused by a given measurement. The frame-
work allows also for identifying all possible measurements
inducing a given disturbance.

Restricted to unbiased binary qubit measurements and
unital qubit channels, we proved in Theorem 1 that any in-
formative POVM inevitably changes the states, whereas in
Theorem 2 we showed this change is necessarily destructive
in terms of quantum resources measured by coherence and
discordlike correlations. Specifically, the amount of coherence
and discordlike correlations, when the measurement is local,
in the postmeasurement states is less than the premeasurement
states to the extent determined by the measurement sharpness.
In the extreme case of a projective measurement, which rep-
resents the most informative measurements, all these quantum
resources are entirely erased.

The study of the inverse problem, i.e., the question of how
informative the measurement might have been for a certain
disturbance, resulted in Theorem 3, which proved that the
best informativity is bounded by the degree of the similar-
ity between the pre- and postmeasurement states. Theorem
4, however, presented the tradeoff relation between the best
informativity and quantum resources preserved in the post-
measurement state space.

An obvious approach for further work is to extend the re-
sults to a larger class of measurements and postmeasurement
models rather than unbiased binary Ms,n̂ and unital qubit
channels U . For such a generalization, an immediate candidate
can be the set of binary qubit measurements that are not
necessarily unbiased, i.e., M = (M1, M2) with TrM1 �= TrM2.
In this case, we expect to have tradeoff relations based on the
disturbance and the measurement sharpness and biasedness.
This is because the extreme case of a projective measurement
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M = (I, 0) which is trivially sharp [22] is not informative
and thus destructive. So the POVM sharpness is not the only
effective factor.
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APPENDIX A: SHARPNESS MEASURES

Considering the unsharpness measures defined previously,
for instance, in [25,26], we will show that for the unbiased bi-
nary qubit measurements both quantifiers reduce to 1 − s2, up
to a normalization factor. Accordingly, the related sharpness
measures are given simply by s2. As s2 is a monotonically
increasing function of s, we can take s also as a measure of
sharpness.

For a general measurement M = {Mi}N−1
i=0 , the unsharp-

ness quantifier based on the uncertainty is defined by [25]

f (M) = ‖F (M)‖1,

where ‖X‖1 = ∑
i, j |Xi j | denotes the l1-norm of the ma-

trix X = [Xi j], and F (M) = [ri j] with ri j = 1
d [δi jTr(Mi ) −

Tr(MiMj )]. For an unbiased binary qubit measurement
Ms,n̂ = {M+, M−}, we get

f (Ms,n̂) = ‖F (Ms,n̂)‖1 =
2∑

i, j=1

|ri j | = 1 − s2.

As such, 1 − f (Ms,n̂) = s2 gives the sharpness of the unbi-
ased binary qubit measurements.

Another unsharpness measure based on Luder’s instrument
is defined as [26]

EL(M) =
∥∥∥∥∥I −

∑
i

M2
i

∥∥∥∥∥,

where ‖ · ‖ denotes the operator norm. For an unbiased binary
qubit measurement Ms,n̂ we obtain

EL(Ms,n̂) = 1
2 (1 − s2),

which is, up to a normalization factor, the same as the above
measure and so leads to the same sharpness s2 for the unbiased
binary qubit measurements.

APPENDIX B: PROOF OF LEMMA 2

To prove the first part of the lemma, we will show that
PMs,n̂ never crosses the boundaries of 
s. To see that, con-
sider a channel defined by a convex combination of three
vertices mentioned in Eq. (23), say,

�p = w1 �q1 + w2 �q2 + w3 �q3, (B1)

with non-negative wi satisfying
∑

wi = 1. For different
choices of probabilities wi, these vectors construct a boundary

of 
s that is not in common with boundaries of the tetra-
hedron (see Fig. 2). We will show that the Pauli channel
E �p corresponding to the probability �p mentioned above can
be compatible with Ms,n̂ only in an extreme case. For this
channel, we get from Eq. (14)

Pi = s
√

wi + (1 −
√

1 − s2)
√

w jwk. (B2)

This however implies

Pmax � s
√

wmax + (1 −
√

1 − s2)

(
1 − wmax

2

)
, (B3)

which in turn means Pmax � s with the equality possible only
for the case with wmax = 1. This generally contradicts Eq. (18)
except at some vertices. The same is true for the other three
comparable boundaries of 
s. This completes the proof of the
first part.

To prove the second part, suppose the POVM is di-
rected along a principal axis, say, x̂ = (1, 0, 0). In this case,
the inequality (17) leads to s � 2(

√
p0 p1 + √

p2 p3). For
the edge defined by p2 = p3 = 0, the inequality reduces to
s � 2

√
p0 p1, which touches the line segment between the

points �q1, given by Eq. (23a), and its permutation �q ′
1 =

( 1−√
1−s2

2 , 1+√
1−s2

2 , 0, 0), on the edge. The same occurs at the
edge defined by p0 = p1 = 0. A similar result holds for the
measurements along the other two principal axes ŷ and ẑ.

To complete the proof, we show that if PMs,n̂ intersects
with 
s at its edges, the corresponding measurement is neces-
sarily directed along a principal axis. Assume the case where
both sets intersect at the edge defined by p2 = p3 = 0. This
implies that P2 = P3 = 0 and, accordingly, n2 = n3 = 0. This
means the measurement is along x̂. The same result holds for
the intersection on other edges and other principal axes as
well, which completes the proof.

APPENDIX C: PROOF OF THEOREM 2

We start the proof by proving Eq. (32). To this end, we first
show that

QP (Ms,m̂) := max
PMs,m̂

Q(E �p) � 1 − s2 ∀ m̂, (C1)

that is to say, the best quantumness over PMs,m̂ is upper
bounded with a tight bound achievable for some directions
m̂. The proof of (32) is then an immediate consequence of
the invariance of Q(E ) under unitary channels [see Eqs. (8)
and (21)].

To prove Eq. (C1), let �p↓ denote �p rearranged in nonin-
creasing order. It is then easy to show among the Pi’s given by
Eq. (14), the largest one is

Pmax = 2(
√

p↓
0 p↓

1 +
√

p↓
2 p↓

3 ). (C2)

Moreover, for any E �p to belong to PMs,m̂ , a necessary condi-
tion is to satisfy Eq. (18), which in turn implies that

1 − s2 � 1 − P2
max = Q(E �p) + 1

2

(
T 2

2 + T 2
3

)
, (C3)

where Ti = 2(
√

p↓
0 p↓

i −
√

p↓
j p↓

k ) for i, j, k being different
choices of (1,2,3). Since this has to hold for any compatible
channel, it must hold for the compatible channel with maxi-
mum quantumness. This completes the proof of Eq. (C1). To
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see its tightness, consider m̂ to align with a principal axis.
Being a tight bound is then a result of Lemma 2, implying that,
for a POVM along a principal axis, four of the extreme points
of 
s also belong to the set of compatible channels, while the
bound is tight for all extreme points of 
s. Equation (32) is
now obtained directly from the fact that one can always find a
unitary map V1 to put n̂ along a principal direction while Q is
unitarily invariant (8).

The proof of Eq. (33) is an immediate result of the in-
variance of LQU under unitary channels [Eq. (12)], noting
that any unital channel is unitarily equivalent to a Pauli one,
whereas Eq. (15) gives the LQU for the latter. Restricted to the
set of Pauli channels compatible with Ms,n̂, Eq. (18) implies
that the maximum achievable LQU for a compatible Pauli
channel is 1 − s, and Remark 1 guarantees that this bound is
tight, which completes the proof of Eq. (33) and Theorem 2.
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