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Bulk density signatures of a lattice quasihole with very few particles
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Motivated by the recent experimental realization of a two-particle fractional quantum Hall state of ultracold
atoms in a small optical lattice [J. Léonard, S. Kim, J. Kwan, P. Segura, F. Grusdt, C. Repellin, N. Goldman, and
M. Greiner, Nature (London) 619, 495 (2023)], we propose a minimal setup to create and observe a quasihole in
such a system. We find that clear signatures of a quasihole state with two or three atoms can be obtained through

a standard site-resolved density measurement provided that the system is appropriately modified with simple
additional potential profiles. By adding a single-site repulsive potential to pin the quasihole and superimposing
a harmonic trap on top of the optical lattice to keep the particles away from the system edge, we determine
via exact diagonalization an optimal range for system parameters such as the magnetic flux and the strengths
of the additional potentials that would favor the creation of the quasihole state. We hope that our results will
be a useful guide for a possible proof-of-principle experiment that will demonstrate controllable creation of a
simple quasihole state in a condensed-matter system, which will pave the way for the observation of the anyonic

statistics of quasiholes in a more complex system.

DOI: 10.1103/PhysRevA.108.L061302

Introduction. Starting with the discovery of the fractional
quantum Hall (FQH) effect in a two-dimensional electron gas
[1], the physics community has put great effort into observing
the theorized fractional statistics of its quasiparticles [2], and a
certain subgroup of these quasiparticles, the so-called Abelian
anyons, have recently been detected in electronic systems [3].
The more elusive type of non-Abelian anyons, which hold
promise for topological quantum computation [4], are yet to
be discovered [5]. In order to achieve a greater control in
the manipulation of these exotic quasiparticles, researchers
have been searching for the same physics in different sys-
tems like the ultracold atomic or polaritonic ones, which have
already been proved to be prolific platforms for quantum
simulations [6].

The search for fractional quantum Hall physics of ultracold
atoms, which started with the proposals to create an effective
magnetic field for neutral atoms both in a continuum and
in an optical lattice [7], has culminated in the realization of
this effective magnetic field [8] and a recent observation of
a two-particle FQH state [9]. The next logical steps seem to
be the realization of an FQH state with a larger number of
particles and the observation of fractionally charged quasi-
particles. It is our aim in this Letter to propose a minimal
setup for a possible proof-of-principle experiment to create
and detect such a quasiparticle in an experimentally realistic
small system.

Owing to certain advantages of optical lattices in the cre-
ation of the magnetic field and the enhancement of the energy
gap above the ground state, numerous studies have been per-
formed for the lattice, some using artificial periodic boundary
conditions to study the bulk properties [10] and some with
open (or hard-wall, box) boundaries to study the edge prop-
erties or rather to connect with realistic experiments [11].
In the case with open boundaries, the concept of the filling
fraction, that is the ratio of the number of particles to the
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number of magnetic flux quanta, which is a defining property
of an FQH state, is not well defined especially in a small
system. In this work, building on the ideas of our previous
works [12,13], we show that the lattice system can adjust the
filling factor properly by itself due to the competing effects of
the incompressiblity of the correlated FQH-like states and the
tendency of a superimposed harmonic potential to accumulate
the particle cloud in the center. We suggest that, by only
measuring the site densities in the presence and absence of a
repulsive potential localized at a lattice site to pin a quasihole,
one can construct two quantities, namely, the ratio between
the mean square radii of the clouds in the two cases and the
density depletion created due to the pinning potential, the
joint observation of which will be a clear-cut demonstration
of the quasihole state even with two or three particles. We also
provide phase diagrams for these quantities over a wide range
of parameters, which we hope will be a useful guide for future
experiments.

The model. The starting point of our exact diagonalization
study is the well-known Hofstadter-Bose-Hubbard Hamilto-
nian for bosonic particles in a tight-binding square lattice with
complex hopping phases and on-site interactions, modified
with the pinning and harmonic confinement potentials:
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where cj (c;) creates (annihilates) a boson at site i (j), n; =
cjci is the number operator, H.c. is the Hermitian conjugate,
and ¢ > 0 is the hopping amplitude between nearest-neighbor
sites (ij) with coordinates r; and r;. We adopt the sym-
metric gauge A = (B/2)(xy — yX) to make comparisons with

©2023 American Physical Society


https://orcid.org/0000-0002-7283-5803
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.L061302&domain=pdf&date_stamp=2023-12-28
https://doi.org/10.1038/s41586-023-06122-4
https://doi.org/10.1103/PhysRevA.108.L061302

R. O. UMUCALILAR

PHYSICAL REVIEW A 108, L061302 (2023)

the usual ansatz wave functions for the continuum and to

determine the experimentally relevant hopping phase ¢;; =

(1/¢0) f:"' A - dr, where the integration path is a straight line
J

and ¢y = h/qo is the magnetic flux quantum for an effective
charge go. This choice of the vector potential corresponds
to an effective perpendicular magnetic field along the z di-
rection with strength B, and the magnetic flux quantum per
unit cell of the square lattice with separation a is defined as
¢ = Ba?/¢,. The wave function of a particle traversing a loop
around the unit cell acquires the Aharonov-Bohm phase factor
exp(i2m ¢). This result and the density signatures we propose
are gauge invariant. However, if one uses a different gauge
A + VA(r) and wants to make a wave-function comparison,
the ansatz many-particle wave functions must be multiplied
by the factor exp[—i Zj A(r;)/¢ol.

The strength of the repulsive on-site interactions between
particles is quantified by U > 0 and that of the single-site
pinning potential located at the central site (i = 0) is given by
V > 0. This central site is also chosen to be the origin of our
coordinate system and the imposed harmonic potential with
strength 2 > 0.

Mean square radius and density depletion. In two of our
previous studies [13,14], we made use of the following rela-
tion between the mean square radius (r2) of the particle cloud
and the expected value of its total angular momentum (L;) in
order to extract information about the statistical phase due to
the braiding of quasiholes:

2
(r’) = vai(@h” +N), 2)

where ¢ = /¢o/27 B is the magnetic length and N is the
number of particles in the system. This relation has also been
made use of in later works to characterize certain quasiparticle
properties like the statistical phase, charge, and spin for vari-
ous FQH states including non-Abelian ones [15]. In Ref. [13],
we investigated a moderate-sized (16 x 16) lattice system
with a relatively large number of particles (N = 12 and 18)
via a tensor-network method. We also exploited the stabilizing
effect of an additional harmonic potential in obtaining the
Laughlin-type states (as we do in the present work); however,
we did not make a systematic study of the dependence of
results on the magnetic field and harmonic potential strengths
as such a study would be numerically very costly. Since
we were focused on the braiding phase, we also overlooked
the fact that an experimentally realistic system with edges
containing as few particles as N =2 and 3 could still be
interesting in its own right, especially as a showcase for a
simple demonstration of the ansatz Laughlin quasihole. Here,
we close that gap. We put forward two density signatures
to observe Laughlin-type physics, by comparing two cases
that differ only by the absence or presence of the pinning
potential. We see that in a wide parameter range (i) the ratio
between the mean square radii [Eq. (2)] in these two cases
turns out to be a very good indicator of this physics especially
when the number of particles is low [12] and (ii) the density
depletion caused by the introduction of the pinning potential is
very close to the expected continuum result. Measurement of
these two density-dependent observables together will be an

excellent indication that the created states are indeed
Laughlin-type states.

Let us briefly recall the ansatz wave functions Laughlin
suggested for a microscopic explanation of the FQH effect
[16]:
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where Wy, and Wy represent the Laughlin and one-quasihole
states, respectively, up to normalization, ¢; = x; + iy; is the
complex-valued coordinate of the jth particle, Q is the
complex-valued coordinate of the quasihole, and v = 1/m
is the Landau-level filling fraction. Laughlin originally used
these wave functions to explain the v = 1/3 effect but the
ansatz was shown in numerous studies to extend to other
fractions v = 1/m, m being an odd (even) integer for fermions
(bosons).

We focus on the m = 2 case for bosonic atoms and set the
quasihole coordinate to be Q = 0, supposing that it is pinned
at the origin, when it is pinned. For this configuration, the
continuum Laughlin and one-quasihole states are both total
angular momentum eigenstates with eigenvalues N(N — 1)
and [N(N — 1) + N1i = N?h, respectively. If we insert these
values in Eq. (2), we get

()L =2N€g, (r)on = 2(N + 1)¢. (5)
The relation £ = +/¢0/27nB = a/~/27 ¢ can be used to de-

termine the lattice counterparts of these quantities; however,
although for moderate ¢ (~0.15) and small enough Qa?/t
(~0.005) the results are pretty close to the continuum ones,
significant deviations develop outside of this regime [17].
Instead, as we did in a previous work in which we considered
a lattice with periodic boundary conditions [12], we propose
to use the ratio between the quantities in Eq. (5) as one of our
indicators of the lattice ground states, which turns out to be a
quite robust quantity:

Ridea = (r*)L/(r*)on = N/(N + 1). (©6)

The ratio in Eq. (6) compares (r?) =, r?(n;)/N for the
lattice Laughlin and one-quasihole states with the same N, ¢,
and €2; the only difference is that (rz)QH is to be measured in
the case where V # 0 so as to pin a quasihole. Our rationale
is that if the system ground state is very different from the
quasihole state, the ratio R = (r?)y—o/ (rz)vﬂ) significantly
deviates from Rigear, as we confirmed numerically. Note that
this value becomes indiscernible with the growing particle
number, and as such, R is well-suited only for the cases with
small particle numbers that we are investigating.

As for our second observable, the density depletion, we
again compare the two cases with and without a pinning
potential, other parameters being the same, and calculate how
much density is displaced outwards in a given region with
radius r by the repulsive pinning potential due to the incom-
pressiblity of the Laughlin state:

(An), =Y [(nidv=o — (mi)v0]. (7)

ri<r
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FIG. 1. Phase diagrams for N = 2 in the plane of the harmonic
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trap strength (2) and flux quanta per unit cell (¢). (a) Ratio R
between the mean square radii found for V = 0 and V # 0. Stars at
Qa*/t = 0.01 and ¢ = 0.06, 0.10, and 0.15 indicate the parameters
used for Fig. 4. (b) Maximum value An of the depleted density due
to the pinning potential, evaluated as in Eq. (7). Red lines surround
regions with 0.660 <R < 0.673 in panel (a) and 0.475 < An <
0.535 in panel (b).

0.05

In a system with periodic boundary conditions, this quantity
saturates at a certain value indicating the fractional density
depletion of the quasihole [18], but in a finite-sized droplet
it gradually rises to a maximum value and then gradually
vanishes as r grows to contain all particles. In our numerical
simulations, we take this maximum value An = max{(An),}
as the density depletion. For a large enough system it can be
proven that this quantity equals the filling fraction (v = 1/2),
but for a small number of particles, deviations from this value
occur, which can be determined by numerical integration of
the continuum densities.

Numerical results. In our numerical simulations for N = 2,
we considered an 11 x 11 lattice with open boundaries. Fix-
ing the interaction and pinning strengths at U = 7¢ (which
is close to the value in Ref. [9]) and V = 10¢, we made an
extensive parameter scan in the Q-¢ plane and constructed
“phase diagrams” for our indicators R and An [Fig. 1] (see
Ref. [17] for the effect of changing V). For the case of N = 3
particles in a 13 x 13 lattice, due to the large size of the
Hilbert space, we assumed that the interactions are hardcore
(at most one particle at a site) and tabulated the results for a
small number of points in the 2-¢ plane [17].
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FIG. 2. Density depletion (An), due to a pinned quasihole as
a function of the distance r from the pinning site for (a) N =2
(2=0.01, ¢ =0.15) and (b) N = 3 (2 = 0.007, ¢ = 0.125). Also
shown by red lines are the numerically integrated results using the
continuum wave functions Wy, on. Maximum values of this integra-
tion are An = 0.505 and 0.571, for N = 2 and 3, respectively.

In Fig. 2, we show two samples of (A,), for N = 2 and 3 as
a function of r together with the numerically integrated con-
tinuum counterparts, for which the distance unit is converted
to a using its relation to £p. For the chosen parameters, lattice
results agree well with the continuum ones, with apparent
discrepancy for small r as the region considered contains few
lattice sites. As we discussed in the previous section, we are
interested in the maximum value of (A,), and take it as the
missing density An at the position of the quasihole, which
is then used to generate Fig. 1(b). The agreement for this
maximum value between lattice and continuum results is quite
good as can be observed from Fig. 2.

Turning to the phase diagrams, in Fig. 1, it is remark-
ably seen that wide ranges of our indicators with nearly
constant values are separated with quite sharp boundaries,
for which we offer an explanation shortly. Red lines in the
figure delineate regions where the values of the indicators are
within a certain percentage of the expected values, namely,
1% around Rigea = 2/(2+ 1) =2/3 (N = 2) and 6% around
(An)igeas = 0.505 (found by numerical integration). Gener-
ally speaking, parameters in the roughly triangular upper left
region of the Q-¢ plane (whose lower corner starts from
¢ ~ 0.1) seem to be quite conducive to the realization of
the quasihole state; however, An seems to be more sensitive
to parameter changes and a more truthful choice could be
the smaller triangular region in Fig. 1(b) remaining inside
the delineated region of Fig. 1(a). In this region the overlaps
between the system ground states and the ansatz states are also
very high (~99%).

In order to understand the sharp boundaries better and also
to provide more evidence for the Laughlin-type physics, in
Fig. 3 we show the overlaps O, qou = |(GS|W¥L on) |> between
the numerical ground states |GS) and the corresponding con-
tinuum states projected onto the lattice given by |Wy qn)
> W ou(2r, ...,g“N)c;r1 .C;N|Vac), where the sum is over
all possible particle coordinates to be chosen at lattice sites.
While Fig. 3(a) displays the overlap with the Laughlin state
in the absence of a pinning potential (V = 0), Fig. 3(b) is for
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FIG. 3. Overlaps between the system ground states and the
ansatz states represented by Eqgs. (3) and (4) for N = 2 in the plane
of the harmonic trap strength (2) and flux quanta per unit cell
(¢) (1.0 corresponds to 100% overlap). (a) Laughlin-state overlap
O = [{GS|W)|* for V =0. (b) Quasihole-state overlap Oqy =
[{(GS|Wan)|* for V # 0.

the overlap with the quasihole state when V # 0. Comparison
of Figs. 1 and 3 clearly shows that the sharp boundaries in the
phase diagrams correspond to sudden changes in the overlaps;
the uppermost one is due to changes in the quasihole-state
overlap and the lower one is caused by changes in the
Laughlin-state overlap. We also checked that these sudden
changes in the overlaps are accompanied by the closing and
reopening of the energy gap above the ground state, which is
characteristic of topological transitions [17].

It can also be observed from the overlap diagrams that the
Laughlin state is a good description of the ground state over
a wider region of parameters in the absence of pinning than
the quasihole state when there is pinning. To have a feeling
of what the ground states look like in different regions of the
parameter space, we display site occupations (n;) in Fig. 4
for three sample points (with fixed €2) marked by stars in
Fig. 1(a). The left-hand panels of each row in Fig. 4 show
the case of V = 0 and the right-hand panels are for V # 0;
rows are organized from top to bottom in descending order
with respect to ¢. In the first row, where both Laughlin and
quasihole-state overlaps are high and our indicators are very
close to the expected values, one recognizes the expected
features of the density profiles upon a careful inspection. In
Fig. 4(a), one can see that the density at the central site is
almost ¢ /2, which is the expected value of the incompressible
plateau region that appears for a larger number of particles,
and there is a characteristic bump close to the cloud edge
here lying on the nearest and next-nearest neighbors of the
central site due to the smallness of the system. The quasihole
can also be seen to be successfully pinned at the central site
in Fig. 4(b), slightly pushing the particles outwards [one can
notice the slight density increase in Fig. 4(b) in the outer
lattice sites comprising the cloud edge in Fig. 4(a)] to let an
extra flux quantum in the center of the cloud. Figure 4(c) of
the second row with less flux still shows the same features of
the Laughlin state as in Fig. 4(a), but now slightly enlarged
in size to contain as much flux as necessary, which could also
be deduced from the high overlap with the Laughlin state (see
Fig. 3); however, in Fig. 4(d) the single-site pinning potential

0.02 0.04 0.06 0.08 0.1
(ni)

(@)

5

x/a x/a

FIG. 4. Site occupations (n;) for N = 2 particles with fixed har-
monic trap strength Qa?/t = 0.01 and three different flux quanta
per unit cell (a, b) ¢ =0.15, (¢, d) ¢ = 0.1, and (e, f) ¢ = 0.06,
corresponding to stars in Fig. 1(a). Panels on the left are for V =0
and those on the right are for V # 0.

does not seem to be efficient to localize the quasihole, creating
only a small depletion compared to that in Fig. 4(b), and the
cloud size remains almost the same as in Fig. 4(c). Actually,
in this case the ground state still has a considerable overlap
of ~70% with the Laughlin state [17]. Also, even if it had
been possible to pin the quasihole with a different pinning
profile, the expanded cloud would have touched the edges of
the system spoiling the fidelity anyway. In the last row with
still lower flux, it can be deduced that the incompressible state
does not even form, as the density profile without pinning
is rather Gaussian-like instead of having a more or less flat
central region as in Figs. 4(a) and 4(c). To summarize, we
observe in Fig. 4 the ability of the harmonic trap to keep
particles in the center of the system, which at the same time
enables the system to make an automatic adjustment of the
cloud size to enter into the FQH regime depending on the flux.

Conclusion. Creation and observation of lattice FQH states
of ultracold atoms is a long-sought-after goal, the first steps
of which have been taken in a recent experiment with the
creation of a two-particle FQH state. In this work, we claimed
that with the addition of a few ingredients to this setup
like the harmonic trap and a single-site pinning potential, a
quasihole state with very few particles, which can be quite
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successfully described by the paradigmatic Laughlin-type
wave function, can be created and unambiguously observed
through a standard density measurement. Making use of the
flux adjusting ability of the harmonic trap in an incompress-
ible state, we determined through an extensive parameter
search favorable regimes for the creation of the quasihole
state. Moreover, we suggested that the mean-square-radius
and density-depletion measurements taken together would
yield quite dependable signatures of this state even with

very few particles. We hope that our work will be a use-
ful guide for upcoming experiments that would clearly
reveal this fractionally depleted exotic state in a cold-atom
setup.
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