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Enhancing qubit readout with Bayesian learning
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We introduce an efficient and accurate readout measurement scheme for single and multiqubit states. Our
method uses Bayesian inference to build an assignment probability distribution for each qubit state based on a
reference characterization of the detector response functions. This allows us to account for system imperfections
and thermal noise within the assignment of the computational basis. We benchmark our protocol on a quantum
device with five superconducting qubits, testing initial state preparation for single- and two-qubit states and
an application of the Bernstein-Vazirani algorithm executed on five qubits. Our method shows a substantial
reduction of the readout error and promises advantages for near-term and future quantum devices.
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Introduction. The promises of quantum computing as a
revolutionary technology are being challenged by severe tech-
nological limitations in the current hardware. The noise level
in the single- and two-qubit gates is undoubtedly one such
factor [1], if not the most important one at the moment.

On the one hand, this prevents the building of fault-tolerant
quantum computers and makes the current noisy intermediate-
scale quantum (NISQ) processing units of limited use,
especially when compared with classical (super)computers.
On the other hand, these limitations are fostering the emer-
gence of new research aiming at exploiting these devices
as they are [2–4]. Possible solutions range from improving
the design of quantum processing units (QPUs) [5,6] and
noise-resilient qubit registers [7–10] to improving the control
electronics, from increasing manufacturing quality [11] to
creating algorithms and software to optimize the data pre- and
postprocessing or recurring to quantum optimal control theory
[12–15].

Quantum error mitigation is the general framework group-
ing all techniques that aim to improve the performances of
NISQ processing units [16–20], typically by postprocessing
the data of the quantum computation to decrease noise impact
[21,22], but not without some fundamental limitation [23,24].

In a quantum processor, errors arise at all different stages
of computation alike in a classical one: (i) when loading data
(state preparation), (ii) during data processing (circuit execu-
tion), and (iii) at the moment of the readout (measurement).
Most of the focus has been on mitigating errors at the level
of the quantum circuit execution, e.g., zero noise extrapo-
lation [25–29]. However, several recent works have focused
on improving the readout fidelity [30–42]. These approaches
include a series of techniques aiming at improving the pulse
protocol before the measurement [43], finding the optimal
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readout time [44] for the wanted fidelity of the discrimina-
tion or the postprocessing of the counts [45]. Methods which
manipulate the outcomes statistics, with the inversion of the
confusion matrix, may attain the intended results but can yield
nonphysical values, an issue commonly addressed by incor-
porating a convex optimizer in the mitigation pipeline [46].
Additionally, the scalability of matrix inversion can become
challenging when dealing with higher dimensions. Some other
proposals to improve the discrimination between the two
states which are gaining attention are based on machine-
learning-based techniques [21], either in postprocessing [47]
or during the readout protocol [48–50].

In this work, we introduce a statistical readout frame-
work based on Bayesian inference, inspired by successful
application of Bayesian inference in quantum metrology and
sensing [51,52] or parameter estimation for quantum circuits
and states [53–60]. Our Bayesian learning readout (BaLeRO)
relies upon two steps: (i) characterization of the readout de-
vice to build the detector response functions, akin to detector
tomography [45,61], and (ii) postprocessing data obtained
from the circuit execution using a Bayesian update rule and

FIG. 1. (a) Typical qubit-state-dependent response functions.
(b) Sketch of the characterization step: circuits and fit of the response
functions Prg(x) and Pre(x).
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FIG. 2. (Top) Measurement clouds in IQ plane. (Bottom) Pro-
jected histograms and fitted response functions of IBM Quito Q4.

the functions obtained from the first step. Moreover, the
postprocessing algorithm’s input is the raw data from the
detector (e.g., quantum analyzer), and the output is some prob-
ability distribution for the occupation of the computational
basis (e.g., for a single qubit |0〉 and |1〉). Crucially, this
approach is not a single-shot discriminator but leverages all
measurement data to reconstruct the system density matrix.
Our method avoids nonphysical outcomes, offering stability
when extending to multiqubit scenarios, avoiding posterior
optimization and noise matrix inversion altogether with an
iterative approach. Our Bayesian readout constructs a prob-
ability distribution for qubit populations consistent with the
measured data, regardless of the system dimension. In what
follows, we first introduce the single-qubit framework as a
foundational step. Then, we show how to extend the method-
ology to operate in higher dimensions with a larger number
of qubits without suffering the issues arising in other methods
based on the inversion of the noise matrix.

We show that our algorithm can improve the results ob-
tained on actual QPUs for several quantum circuits and
algorithms. Although we primarily focus on superconducting
qubit devices, the approach could be applied to other plat-
forms which allow for the reconstruction of the readout device
response functions.

Embrace the noise. A qubit is encoded in a quantum system
with at least two distinguishable states, say, |g〉 (ground) and
|e〉 (excited). The readout procedure aims at assigning 0 or
1, depending on which of those states the qubit is in during
the measurement. However, detection is not perfect. Instead of
getting two distinguished and sharp signals depending on the
qubit’s two possible states, a detector’s typical response func-
tion is similar to the one in Fig. 1(a). The 0 or 1 assignment is
done through a separatrix which discriminates the state after
each measurement. The separatrix is calibrated beforehand
and might be either a curve in a two-dimensional space, like
the IQ-plane of Fig. 2 (top) for superconducting qubits [62], or
a threshold in a projected space as in Fig. 2 (bottom). Hence,
the standard readout method assigns either a 0 or 1 based

on the relative position of the physical value with respect
to the separatrix for each individual measurement. Once all
individual measurements are completed, they are aggregated
to yield the final count statistics. This approach is prone to
a significant error because of the overlap between the two
signals, which is caused by all possible noise sources.

To mitigate these issues, we develop a radically different
approach to the problem, which embeds the base readout noise
into the assignment process. We achieve the goal in two steps:
(i) characterization of the detector and (ii) postprocessing of
the data collected after the execution of a generic quantum
circuit through a Bayesian-like update rule. We characterize
the detector by performing two simple experiments: reset of
the qubit and measurement and flip of the qubit to the ex-
cited state and measurement. The two processes are depicted
as quantum circuits in Fig. 1(b) (left). We repeat these ex-
periments and collect enough data to build two probability
distributions Prg(x) and Pre(x). They can be interpreted as
the probability distributions of measuring the physical value
x (e.g., a voltage) when the qubit is in the ground or excited
state. We construct model fits for these distributions as shown
in Fig. 1(b) (right) and in Fig. 2 using bimodal Gaussian
distributions. We observe a finite interval of values of x for
which the two distributions overlap. For these detector out-
comes, assessing the qubit’s state and assigning the value 0
or 1 unambiguously is impossible. This is the primary source
of error in the separatrix-based assignment, regardless of the
error’s microscopic source. The second step is now to pro-
cess the outcomes of any quantum circuit. To formalize our
approach, we define two events: (1) the detector returns x
when measuring the state of the qubit and (2) the qubit’s
density matrix populations are {ρg ρe}, i.e., the probability that
a measurement performed in the computational basis will find
the system in |0〉 or |1〉, respectively. These two events are
dependent, and we leverage their statistical correlation to pro-
cess the readout outcomes. Using the model distributions, we
define the conditional probability for the detector measuring x
given that the qubit’s state is characterized by the pair {ρg, ρe}:

Pr(x|{ρg, ρe}) = ρgPrg(x) + ρePre(x)

ρg + ρe
. (1)

Likewise, from Bayes’ theorem, we can formally write the
conditional probability for the qubit’s state populations given
a measured value of x:

Pr({ρg, ρe}|x) = Pr(x|{ρg, ρe})Pr({ρg, ρe})

Pr(x)
. (2)

Contrarily to the common approach, our algorithm leverages
Eq. (1) and the full set of the detector’s measurement out-
comes x = x(1), ..., x(Nshots ) through a Bayesian update rule:

Pr({ρg, ρe}|x(n) ) ∝ Pr(x(n)|{ρg, ρe})Pr({ρg, ρe})

= [ρgPrg(x(n) ) + ρePre(x(n) )]Pr({ρg, ρe})

≈ [ρgPrg(x(n) ) + ρePre(x(n) )]Pr({ρg, ρe}|x(n−1)),

(3)

where Pr({ρg, ρe}) is the prior probability distribution and it
is updated after each iteration step with the posterior prob-
ability distribution Pr({ρg, ρe}|x(n−1)) at the previous step.
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FIG. 3. (a) and (b) Readout fidelity error using BaLeRO as a function of the number of shots for each qubit on IBM Quito and VTT
Helmi. The horizontal lines correspond to the errors reported by the service provider [63] (in the appropriate color scheme for each qubit).
(c) Ground-state population of Q1 (IBM Quito) after applying a Ry(θ ) gate. The solid black line corresponds to the ideal population, the dotted
gray one to the counts estimate, and the dashed orange to the BaLeRO estimate with 104 shots. (d) Average ground-state population error,
�ρg = 1/(2π )

∫
dθ | cos(θ/2)2 − ρg(θ )|, as a function of the number of shots for each qubit (IBM Quito). Dotted and dashed lines refer to the

counts and BaLeRO estimates, respectively [color scheme as in (a)].

When assuming no prior knowledge about the system state,
we start the iteration with a uniform probability distribution
Pr({ρg, ρe}|x(0) ).

Within this framework, we work with a probability dis-
tribution defined on the plane {ρg, ρe}, in the region which
satisfies ρg + ρe = 1. The result is the probability distribution
Pr({ρg, ρe}|x(Nshots ) ), which represents the probability distri-
bution for the qubit’s state populations coherent with the
collected raw measurement data. With this we can compute
the average value of any single qubit operator projected
onto the computational basis or simply recover an esti-
mate for the qubit populations via integration, i.e., ρest

g/e =∫
dρgdρeρg/ePr({ρg, ρe}|x(Nshots ) ).
The method is not limited to single-qubit readout, but it can

be applied to any multiqubit system following similar steps.
Given a system of Nq qubits, and Nq independent detectors
registering the set of measurement outcomes x = x1, ..., xNq

for each shot, the multidimensional response function de-
pends now on the population of each multiqubit state and is
written as

Pr(x|ρ ≡ ρ0, ..., ρ2Nq −1) =
∑

i

ρiPri(x), (4)

where ρi is the population of the ith state, e.g., |ρ0〉 =
|0...0〉, |ρ1〉 = |0...1〉 up to |ρ2Nq −1〉 = |1...1〉, and Pr0(x) =
Prg(x1)Prg(x2)...Prg(xNq ), Pr1(x) = Prg(x1)Prg(x2)...Pre(xNq ),
and so forth. The posterior probability distribution for the pop-
ulation of each state can be then reconstructed in a sequence
of single-shot measurements following the Bayes theorem as

previously introduced,

Pr(ρ|x(n) ) ∝
∑

i

ρiPri(x(n) )Pr(ρ|x(n−1)), (5)

within the parameters space which satisfies
∑

i ρi = 1. It is
worth mentioning that our approach shares some similarities
with the iterative Bayesian unfolding, which is a form of
regularized matrix inversion applied to the response matrix
[64,65]. Here, however, we bypass the faulty state-assignment
step and work on the continuous space of the physical
measurement.

Improvement of readout fidelities. We test our readout
scheme on two five-qubit quantum computers, the IBM Quito
and the VTT Helmi (QPU from IQM). We start by recon-
structing the reference response functions by running the
circuits depicted in Fig. 1(b) for Nshots = 105. A typical out-
come is the one displayed in Fig. 2 (top panel) where each
measurement is represented by a dot in the I-Q plane. The
clouds are then often rotated and projected onto one of the
axes to obtain the distributions shown in Fig. 2 (bottom panel).
We use these histograms to fit the probability distributions
Prg(x) and Pre(x) using bimodal Gaussians. We repeat the
characterization procedure for each qubit on the device and
then use the obtained response functions to analyze the as-
signment fidelity in subsequent experiments. In Figs. 3(a) and
3(b), we show the average error related to the readout fidelity
for each qubit as a function of the number of shots using
BaLeRO. Interestingly, we are able to attain a readout error
below 0.5% already below 104 shots, significantly improving
the readout error reported by the service provider, which is
typically of the order of � 5%. Strikingly, with our protocol,
the readout fidelity improves with an increasing number of
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FIG. 4. (a) Total population error �ρtot = ∑
i |ρexact

i − ρestimated
i | for each qubit pair (the first qubit is the control and the second one is the

target in the CNOT), and (b) populations of the pair Q4-Q2, for the Bell state |�+〉 measured using BaLeRO (orange) and count statistics
(gray), with 104 shots. (c) H2 ground-state energy measured using BaLeRO (orange) and count statistics (gray) using 103 shots on pair Q1-Q2,
compared with the theoretical prediction (black). Populations measured using BaLeRO (orange) and count statistics (gray) in the four qubits
system prepared in the state “0110” as output of the Bernstein-Vazirani algorithm in (d) and state preparation trough qubit flips in (e), both
measured with 104 shots. All the above demonstrations were performed on IBM Quito.

shots, while with usual readout methods, the readout fidelity
is mainly insensitive to the number of repetitions and depends
solely on the device’s calibration. It is worth noting that a
more in-depth analysis of the QPU setup has the potential
to result in more advanced models for the detector response
functions, ultimately leading to higher levels of fidelity.

To show the benefits of our approach to the execution of a
quantum circuit, we start by considering the application of a
single-qubit gate. We choose an arbitrary rotation around the
y axis, i.e., a Ry(θ ) gate, which results in the final popula-
tions ρg = cos(θ/2)2 and ρe = sin(θ/2)2 when applied to the
ground state. Interestingly, our method outperforms the stan-
dard readout scheme as it follows more closely the theoretical
prediction, as shown for one of the qubits in Fig. 3(c). In
Fig. 3(d), we quantify these improvements by displaying the
average error on the rotated ground-state population as a func-
tion of the number of shots. Our protocol achieves a smaller
error than the standard (nonmitigated) case for any number of
shots and each qubit. Although the error for the nonmitigated
case shows some improvement with an increasing number of
shots, saturating around 104 shots, our approach always offers
a dramatic improvement for all qubits.

Multiqubit use cases and scalability. A typical quantum
algorithm requires to perform two-qubit operations and com-
pute mean values of multiqubit observables. In this section,
we show how to employ BaLeRO in such cases and apply
it to specific algorithms. Therefore, as the first and simplest
extension, let us consider the preparation of the Bell state
|�+〉 = 1/

√
(2)(|00〉 + |11〉), which requires the application

of a Hadamard gate and a controlled-NOT (CNOT) gate. Thus,
we prepare such a state on each directly connected qubit pair,
and, as a figure of merit, we calculate the total population
error, i.e., deviation from the ideal case, and compare the

one resulting from our readout method with the one from
the standard scheme in Fig. 4(a). For each qubit pair, our
protocol outperforms the count statistics. As a qualitative
example, in Fig. 4(b), we compare the populations of one of
the experiments and see how our protocol greatly reduces the
populations from the erroneous states, getting closer to the
ideal two-qubit state.

In many practical applications, having access to an accu-
rate description of the two-qubit density matrix is crucial.
For example, calculating ground-state properties of many-
body systems, such as spin chains, requires at most two-body
operators. This also applies to simple molecular systems or
ferromagnetic models [66], which after “qubitization” have
a Hamiltonian with at most two-body operators. As proof of
principle, we consider the H2 molecule, whose ground-state
energy can be calculated through a simplified two-qubit sys-
tem [67,68]. In Fig. 4(c), we show the lower energy extracted
using the state preparation ansatz, and Hamiltonian data, of
Ref. [36] for Nshots = 103. Again, we see how our method out-
performs the nonmitigated one, confirming that the error on
the readout is a significant limiting factor in current devices.

Up to two-qubit quantities, the postprocessing algorithm
is computationally inexpensive. However, the computational
cost increases rapidly, actually exponentially, with the number
of qubits, making it unfeasible. For the sake of clarity, for
a system with Nq qubits, Eq. (5) requires handling, at each
iteration step of the learning, a multiparameter probability dis-
tribution Pr(ρ|x(n) ) where each variable, i.e., the 2Nq different
populations ρi, is sampled in the interval [0,1]. If each interval
is sampled simultaneously with np points, the total probability
distribution would require a mesh grid with n2Nq

p points, albeit
the normalization condition reduces the effective number of
independent coordinates.
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Therefore, it appears quite clear that in the multiqubit
scenario our approach is resource intensive and cannot be
used as it is, and it requires adaptation. Thus, we follow a
heuristic approach, and instead of working with the com-
plete multiparameter probability distribution, we demote all
the populations except two, namely, ρi and ρ j , to constant
estimates Rk , and define the conditional probability function

Pr(x|ρi, ρ j ) = ρiPri(x) + ρ jPr j (x) +
∑

k �=i, j

RkPrk (x). (6)

Using this, we apply the Bayesian cycle to build a posterior
distribution for the population pair in exam, which is then
used to compute some new estimates Ri and Rj . The algo-
rithm needs to be repeated for each population pair (ρi, ρ j )
and iterated to reach convergence. The convergence criterion
can be chosen at will; a simple rule of thumb is to stop
the iterations if the change in the posterior probabilities or
the obtained populations does not change with respect to the
previous iteration by an amount ε.

To further lighten the computational cost, we reduce the
number of parameters ρi included in the optimization proce-
dure. The strategy is to use the initial estimates Rk , which
at the beginning can be the result obtained via the count
statistics, to drop states which have a negligible population ac-
cording to a predefined threshold. In our test we drop from the
optimization the states for which we do not get initial counts.

While a highly entangled many-qubit state might still be
difficult to reconstruct, we apply our protocol to a quan-
tum algorithm whose theoretical output is a single bitstring,
i.e., the Bernstein-Vazirani algorithm [69–71]. In Fig. 4(d),
we compare the populations measured using our approach,
with parameter region restriction and Bayesian update applied
to population pairs, and the count statistics. We apply the
Bernstein-Vazirani algorithm on a five-qubit system to obtain
the four-qubit string 0110 as an output. Our protocol increases
the population of the correct output string, reducing the error
from ∼20% to ∼3%. The remaining erroneous populations
are mainly due to imperfections in the qubit gates. To confirm
it, we prepare the same string, 0110, with a simpler circuit,
i.e., by flipping the qubits. The count statistics shows errors

of the same order of magnitude as in the execution of the
Bernstein-Vazirani algorithm [Fig. 4(e)], while with BaLeRO
we get very close to the expected outcome, reducing the error
from ∼16% to ∼0.15%. It is worth mentioning that when
measuring multiple qubits simultaneously, the response func-
tions can be affected by a form of correlated noise, i.e., the
readout signal of one qubit might be affected by the simultane-
ous measurement of another. In principle, this correlated noise
might be accounted for when calibrating the detector response
functions at the cost of a more demanding calibration step.
However, in our multiqubit applications, where we performed
two-qubit and four-qubit measurements, we have seen a con-
siderable improvement in the readout fidelity, hinting that if
the crosstalk is not large, our scheme can correct it even when
the fitting functions are built via uncorrelated single-qubit
measurements only.

Conclusions. We have introduced an efficient readout
scheme, BaLeRO, which significantly improves the accuracy
of the readout step in quantum computers. The algorithm
employs Bayesian inference to build a probability distribu-
tion for each qubit-state population based on a reference
characterization of the detector response functions, thus in-
cluding noise and imperfections in the postprocessing of
the raw measurement outcomes. Importantly, by design, our
Bayesian framework avoids assigning unphysical values and
guarantees that the mitigated outcomes are consistent with
the experimental data. We tested BaLeRO on two five-qubit
quantum computers, demonstrating an accuracy improvement
of single- and up to four-qubit readout. It is worth stressing
that BaLeRO is not a single-shot postprocessing protocol but a
statistical method incorporating the readout noise in the post-
processing, thus improving the reconstruction of the quantum
state coherently with the actual measurement.

Finally, while already proving a reduction of the readout
error as it is, embedding our scheme within the calibration
process of each gate might further boost the performance of
NISQ and future devices.
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