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Atomic emitter ensembles couple collectively to the radiation field. Although an excitation on a single emitter
may be short lived, a collection of them can contain a photon several orders of magnitude longer than the single
emitter lifetime. We provide the exact conditions for optimal absorption, long-lived and dispersionless storage,
and release, of a single photon in a subwavelength one-dimensional lattice of two-level emitters. In particular, we
detail two storage schemes. The first is based on the uncovering of approximate flat sections in the single-photon
spectrum, such that a single photon can be stored as a wave packet with effective zero group velocity. For the
second scheme we exploit the angular dependence of the interactions induced between the emitters and mediated
via exchange of virtual photons, which on a ring gives rise to an effective trapping potential for the photon. In
both cases, we are able to obtain, within current experimentally accessible parameters, high-fidelity photon
storage for times hundreds of times longer than the single emitter lifetime.
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Introduction. When an ensemble of emitters is coupled to
a common environment, its dynamics is subject to collec-
tive phenomena [1–3]. Exchange of virtual photons induces
dipole-dipole interactions among the emitters. Moreover,
spontaneous emission of photons from the ensemble becomes
either enhanced (superradiance) or inhibited (subradiance),
depending on the collective state in which the photons are
stored in the ensemble. These effects are particularly promi-
nent, dominating the dynamics of the system, when the
distance between the emitters is smaller than the wavelength
of the considered light [4–16], in ensembles with many emit-
ters [17–20], and in the presence of structured environments,
such as nanophotonic waveguides [21–29], cavities [30–33],
and resonators [34]. Owed to the high degree of experimental
control available in cold atomic and solid-state systems, these
collective phenomena are now in the vanguard of research on
quantum information processing and metrology [35].

The existence of subradiant, i.e., long-lived, states offers
the opportunity of storing light in emitter ensembles for times
that exceed the lifetime of a single emitter by several orders
of magnitude. Many theoretical and experimental works have
been put forward in the last few years aiming to use this
phenomenon for photon storage and release [13,14,16,22,36],
enhanced quantum metrology [37], atomic optical mirrors
[38–42], and entangled state preparation [43,44], among oth-
ers. The main challenge with subradiant states lies in their
preparation as, by their very definition, they possess lit-
tle overlap with typical electric field radiation modes. In a
subwavelength periodic arrangement of emitters, subradiant
states possess intricate phase patterns, making their laser
excitation highly involved, requiring, for example, phase im-
printing protocols or spatially dependent external electric and
magnetic fields [14,16,45–47].

In this work, we present two schemes for subradiantly
storing a single photon in a one-dimensional (1D) lattice that

overcome the above challenge and that, moreover, allow for
the dispersionless storage of the photon. The first is based
on the preparation of a subradiant wave packet with zero
group velocity by finding an optimal ratio between the lat-
tice constant and the photon wavelength such that a large
section of the spectrum displays an approximately flat disper-
sion relation. The second scheme exploits the strong angular
dependence of the dipole-dipole interactions. By placing the
emitters on a ring geometry, we find that the spatial variation
of the interactions creates an effective trapping potential for
the photon. By analyzing the eigenstates of this potential,
we identify the conditions to ensure the long-lived and high-
fidelity photon storage.

System and master equation. We consider an ensemble
of N emitters trapped in a one-dimensional configuration—a
chain or a ring—with lattice constant d (see Fig. 1). We
consider here two-level systems, where the ground and excited
states, |g〉 and |e〉, respectively, are separated by an energy
h̄ωa = hc/λ. All emitters are coupled to the free radiation
field. Under the Born-Markov and secular approximations, the
dynamics of the emitters’ degrees of freedom, included in the
density matrix ρ, is described by the master equation

ρ̇ = − i

h̄
[H, ρ] +

∑
α,β

�αβ

(
σβρσ †

α − 1

2
{σ †

ασβ, ρ}
)

, (1)

with H = −h̄
∑

α �=β Vαβσ †
ασβ , where σα = |gα〉〈eα| and σ †

α =
|eα〉〈gα|. The first term of Eq. (1) represents the dipole-dipole
interactions between emitters, which, for emitters α and β,
occur at a rate Vαβ . The second term represents the dissipation
(spontaneous emission of photons into the radiation field),
which possesses a collective character: while the diagonal ele-
ments of matrix �αβ represent the single-emitter spontaneous
decay rate �αα = γ , collective single-photon decay modes
(the eigenvectors of �αβ) arise due to the presence of nonzero
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FIG. 1. Dispersionless photon trapping. Single photon stored as
a subradiant wave packet in a 1D lattice of two-level systems. (a)–
(b) In a chain, the nearest-neighbor distance d is chosen such that the
wave packet is localized in a region where the dispersion relation is
flat and outside the radiative region (gray shaded areas). (c)–(d) In
a ring, the spatial variation of the nearest-neighbor interaction Vnn

creates an effective trapping potential for the photon.

off-diagonal elements. When the associated decay rate of a
collective mode is larger (smaller) than γ , the mode is said to
be superradiant (subradiant).

Given an environment, both dipole-dipole and dis-
sipation rates can be obtained in terms of the real
and imaginary part of the Green’s tensor Ḡ(rα, rβ, ωa)
evaluated at the positions rα and rβ of the emitters

[24,48] as �αβ = 2ω2
a

h̄ε0c2 d∗
αIm{Ḡ(rα, rβ, ωa)}dT

β and Vαβ =
ω2

a
h̄ε0c2 d∗

αRe{Ḡ(rα, rβ, ωa)}dT
β , where dα is the dipole transition

vector corresponding to emitter α (note that we consider all
dipoles to be aligned, i.e., dα = dβ ≡ d). In this work, we will
concern ourselves with the situation where all the emitters are
in free space. Here, the Green’s tensor is analytically given by

Ḡ0(x j, ka) = eikar j

4πk2
ar3

j

[(
k2

ar2
j + ikar j − 1

)
1

+(− k2
ar2

j − 3ikar j + 3
)x j ⊗ x j

r2
j

]
, (2)

where x j=α−β ≡ rα − rβ are the separation vectors between
the emitters, r j = |x j |, and ka = ωa/c = 2π/λ.

Flat dispersion relation. We first focus on the situation
where all components of the Green’s tensor are translation-
ally invariant, e.g., on an infinite one-dimensional chain, or

on a ring where the dipoles are pointing perpendicularly
to the ring’s surface. Here, a Fourier transform G̃0(k, ka) =∑

j e−ikx j Ḡ0(x j, ka), with x j = jd and k ∈ [0, 2π/d] diag-
onalizes the Green’s tensor. We will focus specifically on
the Green’s tensor’s component Gδ

0(x j, ka) relevant when the
dipole moments form an angle δ with respect to the chain. The
real and imaginary parts of this Fourier-transformed compo-
nent are proportional to the energies and decay rates of the
eigenmodes in the system, V δ

k and �δ
k , respectively.

Let us start by analyzing the collective decay rates �δ
k for

an infinite one-dimensional chain [Fig. 2(a)]. Independently
of δ, �δ

k = 0 for all values 2π/d − ka > k > ka, i.e., all states
that lie between the so-called light lines, are completely sub-
radiant [22,36]. Outside of these lines, i.e., ka � k � 0 and
2π/d � k � 2π/d − ka, the states are typically superradiant,
i.e., �δ

k > γ = k3
a |d|2/(3π h̄ε0). Since we are interested in cre-

ating excitations that are long lived, we will focus only on
the creation of states that have a large support with the states
within this subradiant region.

We study now the real part of the Green’s tensor in Fourier
space, which yields the spectrum or dispersion relation shown
in Fig. 2(b). For wave packets that are localized in k space, the
derivative of V δ

k with respect to k gives us the group velocity
vδ

g with which the wave packet travels in real space. This
group velocity is always zero at k = k0 = π/d and k = 0,
as imposed by the continuity of the dispersion relation at the
border of the first Brillouin zone. As explained in detail in the
Supplemental Material [49], in order to find an approximate
flat dispersion relation for a large (and subradiant) section of
the spectrum, typically hard to obtain in photonic systems
[50,51], we calculate the values of d/λ where k = k0 becomes
a saddle point. As displayed in Fig. 2(c), for all values of
δ ∈ (arccos 1/

√
3, π/2] we obtain a df (δ) that leads to such

a flat dispersion relations [illustrated in Fig. 2(b) for δ = π/2
and the inset of Fig. 2(c) for δ = 3π/8]. In particular, we
find df ≡ df (π/2) = 0.2414λ [see Fig. 2(c)], which has also
been found to maximize the lifetime of the subradiant states
[11,26,34]. Note that similar results can be found for a ring
lattice with δ = π/2, a translationally symmetric problem
also for a finite number N of emitters. Here, subradiant states
frozen in real space may be already created for very small
system sizes (see Supplemental Material [49]).

Our aim is now to show that the existence of a flat disper-
sion relation allows for high-fidelity and subradiant storage
of a photon. To do so, we investigate the dynamics of a

FIG. 2. Flat dispersion relation. (a) Decay rates and (b) spectrum for an infinite 1D lattice with d/λ = 0.2 (orange), 0.2414 (red), and
0.26 (light blue). Independently of the angle δ between the dipole moment and the chain, completely subradiant modes (�δ

k = 0) can be
found between the light lines, i.e., for all 2π/d − ka > k > ka = 2π/λ. For δ = π/2, the spectrum can become approximately flat around
k = k0 = π/d . (c) Lattice spacing df (δ) (blue line), where the second derivative of V δ

k vanishes at k = k0 giving rise to spectra with a flat
region. The maximal lattice spacing with a flat dispersion is df ≡ df (π/2) = 0.2414λ (red dashed line). The inset shows the flat region in the
spectrum at df (3π/8) ≈ 0.2λ.
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FIG. 3. Single-photon time evolution. (a) Survival probability as
a function of d/λ and time t of a photon stored as a wave packet (3)
with σ = 0.1π/d and δ = π/2 on a lattice with N = 50 emitters.
(b) Psur (tfinal ) for γ tfinal = 100 (dashed line) and γ tfinal = 500 (solid
line). (c)–(d) Same as (a)–(b) for the fidelity F (t ). Inset in (c): Time
evolution of 〈nα〉 at d = df .

single-photon wave packet. In k space, one can write
such a state generally as |0〉 = ∑2π/d

k=0 f (k, ks, σ )|k〉, where
f (k, ks, σ ) is a function centered around ks and width σ , with
2π/d − ka > ks > ka and σ � 2|π/d − ka| in order to ensure
that the wave packet is subradiant. In particular, if we consider

a Gaussian wave packet, i.e., f (k, ks, σ ) = e− (k−ks )2

4σ2 /
√√

2πσ ,
the wave packet in real space is also a Gaussian that reads

|0〉 =
√

σ√
2π

N∑
α=1

e−iksxα e−x2
ασ 2 |eα〉. (3)

Note that we have chosen such wave packet for illustration
purposes. In general, if the wave packet is centered around
ks with a small width in Fourier space, it will be subradiant
and its time evolution dispersionless. In the Supplemental
Material [49], the high-fidelity storage is demonstrated for a
wave packet excited by a Gaussian laser beam.

The time evolution of the initial state ρ0 ≡ ρ(t = 0) =
|0〉〈0| is obtained by solving the master equation (1) on
a finite one-dimensional lattice with N emitters in the single
excitation regime [36]. In order to evaluate the subradiant
character of the storage, we calculate the survival probability
of the photon, defined as

Psur (t ) =
N∑

α=1

Tr [ρt nα] =
N∑

α=1

〈nα〉t , (4)

with nα = |eα〉〈eα| and ρt ≡ ρ(t ). For a single atom in free
space, this survival probability is a decaying exponential,
Psur (t ) = e−γ t . We moreover evaluate the degree of dispersion
of the initial wave packet by means of the fidelity [52], defined
here as

F (t ) = [
Tr

√√
ρ0ρt

√
ρ0

]2
. (5)

In Fig. 3 we show the time evolution of the survival probabil-
ity and the fidelity for an initial wave packet with ks = k0 =
π/d and σ = 0.1π/d created on a finite one-dimensional
lattice of N = 50 emitters and δ = π/2, varying the ratio
between the lattice spacing and the light’s wavelength, d/λ.

FIG. 4. Trapped states. (a) In an emitter ring, the angle θ between
the dipole moments and the separation vectors varies with the posi-
tion of the emitter. (b) Nearest-neighbor interactions Vnn for a ring of
N = 50 emitters and d = 0.234λ around θ = 0. (c) Time evolution
of two initial wave packets, centered at ks = k0 and ks = k0(1 −
3/25) (above and below, respectively) and width σ = 0.103π/d .
Note that d = 0.234λ is not a necessary condition for the trapping,
which can also be demonstrated for other values of d .

In order to avoid edge effects, the wave packet is created at
the center of the lattice. One can observe in Fig. 3(a) that the
survival probability reaches a maximum –Psur (tfinal ) = 0.9997
for tfinal = 100/γ –, ensuring a subradiant storage, provided
that d/λ is close to the value df/λ predicted above [26].
While the range of d/λ values for which Psur (tfinal ) ≈ 1 is
quite broad at tfinal = 100/γ , this distribution becomes even
more peaked around df/λ for longer times [see Fig. 3(b)].
On the other hand, in Figs. 3(c) and 3(d), we can see that the
fidelity is already maximum F (tfinal ) = 0.98 around df/λ even
at tfinal = 100/γ . Hence, we have shown that a lattice constant
d = df (δ) allows for an optimal subradiant and dispersionless
photon storage.

Trapped states. We will now present a second stor-
age mechanism of the single-photon state (3), which is
not based on the presence of a flat dispersion relation.
Given the overall form of the Green’s tensor (2), both
coherent and incoherent interactions depend not only on
the reduced distance r/λ between the emitters, but also
on the angle θ between the two dipoles and the vec-
tor that separates them. Let us consider a ring where the
dipole moments are contained in the plane of the ring [see
Fig. 4(a)]. Here, the angle θ and hence the nearest-neighbor
interactions change as a function of the position on the
ring. In particular, in the vicinity of θ = 0 these interac-
tions can be approximated as Vnn(d, θ ) ≈ −3γ /4{[A(d ) −
3B(d )]θ2 + 2B(d )}, with A(d ) = cos kad/(kad ) and B(d ) =
cos kad/(k3

ad3) + sin kad/(k2
ad2), an approximately quadratic

potential whose depth depends on the value of d/λ [see
Fig. 4(b)]. Making the simplifying assumption that only near-
est neighbors interact, the Hamiltonian of the system can be
approximated as a tight binding model

H ≈ HTB =
∑

j

Vnn(d, θ j )(| j〉〈 j + 1| + H.c.). (6)

We find that the Gaussian wave packet (3) with ks = k0 has a
large overlap with one of the eigenstates of HTB. This overlap
can be maximized choosing an optimal value of the width σ .
Here, the state (3) becomes effectively an eigenstate of HTB,
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FIG. 5. Subradiant excitation creation and release. Creation of
the subradiant single-photon state (3) with ks ≈ k0 realized in two
steps: (a) Laser excitation of a single-photon spin wave exploiting
the strong interactions between atoms on a Rydberg state |r〉 and
(b) mapping of this spin wave to the low-lying excited state |e〉.
(c) The subradiant state (3) is Raman transferred into a superradiant
one with ks < ka, outside the light lines.

while being almost completely subradiant. Consequently, as
we show in Fig. 4(c) (above), the wave packet remains trapped
while keeping its shape orders of magnitude longer than the
single emitter lifetime. Similarly, for a value of ks slightly
deviating from k0, the wave packet can be decomposed as
a superposition of a few eigenstates of HTB, which can be
identified in the dynamics by the dispersion and eventual
revival of the wave packet [Fig. 4(c) below]. Note that here
the dynamics is obtained by solving the (exact) master equa-
tion (1), including all long-range interactions.

Subradiant state preparation and release. Finally, we pro-
pose a scheme for the laser excitation of the initial state (3).
We face two challenges: to efficiently store exactly one photon
avoiding the absorption of a second one, and to imprint a
central momentum ks ≈ k0, to ensure its subradiant charac-
ter. To achieve this, we will consider two additional levels
for each atom: a Rydberg state |r〉, with a high principal
quantum number n � 1, and an intermediate low-lying state
|s〉 [see Fig. 5(a)]. Two laser fields drive the |g〉 → |s〉 and
|s〉 → |r〉 transitions, with Rabi frequencies and momenta
�gs, �sr and kgs, ksr , respectively. The |s〉 state is far detuned
(� � �gs,�sr), such that the ground state is coupled to the
Rydberg state via a two-photon transition.

Thanks to the strong long-ranged interactions between
atoms in a Rydberg state [53–55], inside an area with Nb

atoms determined by the so-called blockade radius rb (typ-
ically much larger than d), only one Rydberg excitation
can exist. Hence, a π pulse on this two-photon transition
for a time τr = π/�eff , with �eff = √

Nb�gs�sr/2� will
produce the state |r〉 = ∑Nb

α=1 e−x2
ασ 2

e−i(kgs+ksr )·xα |rα〉/√Nb,
which contains exactly one excitation (for the effects of using
a more realistic Gaussian beam we refer the reader to the
Supplemental Material [49]). The large lifetimes of Rydberg
states (compared with the ones of typical low-lying electronic

levels), allow us to assume that |r〉 is stable. The second
step is to map this state into (3), performed by another π

pulse with a laser that couples resonantly the Rydberg state
to the excited state |e〉 with Rabi frequency � and momentum
k [see Fig. 5(b)]. For the wave packet (3) to be subradiant,
the momenta must satisfy that 2π

d − ka > ks = kgs cos θgs +
ksr cos θsr − k cos θ > ka, where θgs, θsr , and θ are the angles
formed by the interatomic vector x j and the laser momenta.
These parameters can be easily adjusted to make ks lie be-
tween the light lines. For example, for Rb atoms with λ =
2π/kgs = 780 nm and λr = 2π/ksr = 2π/k = 480 nm, θ =
π/2 and θgs = θsr ≈ 2π/9 one obtains ks ≈ π/df .

Finally, the stored photon may be released by similarly
transferring the central momentum outside the light lines.
Here, a Raman transfer between the |e〉 and the |s〉 state via the
Rydberg state [see Fig. 5(c)] produces a spin wave with central
momentum kgs cos θgs < ka that preserves the narrow width
of the original subradiant state in momentum space, hence
becoming a superradiant state, quickly lost via spontaneous
decay within a narrow cone around the direction kgs [12,15].

Conclusions and outlook. In this work, we have
demonstrated through two different mechanisms the potential
of one-dimensional subwavelength emitter chains for
high-fidelity single-photon storage. Particularly appealing
is the photon trapping exploiting the angular dependence
of the dipole-dipole interactions, which provides extremely
high fidelities and lifetimes [e.g., for the N = 50 case
explored in Fig. 4, F (tfinal ) = 0.998 and Psur (tfinal ) = 0.999
for tfinal = 500/γ ], while being quite robust against disorder
in the emitter positions and specific shape of the laser beams
involved in the state preparation and readout (see Supplemen-
tal Material [49]). As shown in Refs. [57–59], a finer-tuned
choice of Vnn(d, θ j ) gives rise to an approximate tight binding
model (6) that may allow for a fully nondispersive transport
of the wave packet across the lattice. Since Vnn(d, θ j ) depends
on the external geometry of the system, it will be interesting to
investigate spatial arrangements of the emitters that not only
optimize the fidelity and lifetime, but that also allow for the
transport of the single-photon wave packet for long distances.
Extending this scheme to more than one photon, such that,
for example, two photons can be stored, transported, interact,
and released, will also be explored.

The code and the data that support the findings of this
Letter are available on Zenodo [60].
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