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Nonperturbative effects of deep strong light-matter interaction in a mesoscopic cavity-QED system
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We consider a system comprising two groups of quantum dimers placed in a common electromagnetic cavity
and controlled by selectively applying a static external potential to one of the groups. We show that in the
regime of deep strong coupling to vacuum electromagnetic fluctuations, the emergent photon-assisted interaction
between the dimers, leads to a strongly nonlinear quantized cross-polarization response of the first, unbiased
group of dimers to the potential applied to the second group. The total polarization shows a series of almost
ideal steps whose number and position depends on the parity of the numbers of dimers in the groups. This
nonperturbative effect is a distinctive feature of mesoscopic systems comprising a finite number of dimers and
disappears in the thermodynamic limit which is commonly used in the description of the generalized Dicke
models.
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Polaritonic chemistry [1,2], a novel rapidly developing
interdisciplinary field, explores methods to modify chemi-
cal properties of materials by placing them inside optical
microcavities. Of particular interest is the regime of strong
light-matter coupling when the characteristic energy of the
light-matter interaction exceeds the decay rates of the in-
dividual excitations leading to the emergence of the hybrid
light-matter quasiparticles, polaritons. Due to the photonic
component, polaritons preserve spatial coherence at large dis-
tances of the order of the resonant cavity wavelength, which
as has been shown both theoretically [3] and experimentally
[4] leads to the substantial modification of energy transfer and
more generally chemical kinetics in cavity-embedded mate-
rials. Moreover, for stronger light-matter interaction, when
the characteristic energy of light-matter coupling becomes
comparable to the excitation energy, the system enters the
so-called ultrastrong coupling regime [5] characterized by
the substantial modification of the ground state of the sys-
tem by vacuum fluctuations of cavity electromagnetic field.
Ultrastrong coupling was predicted to induce various cavity-
mediated phase transitions such as superconductivity [6–10],
ferroelectric phase transitions [11], and topological phase
transitions [12,13], as well as substantial modification of the
chemical reactions inside the cavity [14].

Theoretical description of the ultrastrong coupling between
light and matter usually focuses at the two limiting cases.
First, one can consider a very small number of two-level
systems coupled to the cavity modes of the system. In the
limit of a single cavity mode and one two-level system this

*i.iorsh@metalab.ifmo.ru

reduces to the celebrated Rabi model, for which an analytical
solution has been found relatively recently [15]. In the op-
posing limit of large number N of two-level systems, one can
exploit the transition to the thermodynamic limit N → ∞. It
has been shown that in this limit one may resort to the random
phase approximation in the leading order with respect to 1/N
[16–18].

The intermediate case, when the number N is finite but
not asymptotically large, corresponding to the mesoscopic
regime, is largely terra incognita so far. In this intermediate
case, there are not many methods except for the computation-
ally demanding exact diagonalization of the full light-matter
Hamiltonian. While recently new approaches based on the
quantum electrodynamics density functional theory developed
[19–24], their applicability to generic systems in the ultra-
strong coupling regime is still a subject of active research.

In this Letter we explore this intermediate regime of finite
number of two-level systems in a cavity and demonstrate the
emergence of the nonperturbative effects which cannot be
described within the RPA. Specifically, we consider a system
schematically depicted in Fig. 1: N = N1 + N2 dimers are
placed in a single-mode cavity. Only N2 dimers are subject
to the external static potential vext, polarizing the dimers. It is
assumed that dimers do not interact directly and are coupled
only via the interaction with a cavity electromagnetic mode.

The Hamiltonian of the system reads

Ĥ = − T
N∑

i=1

σ̂i,x + vext

N∑
i=N1+1

σ̂i,z

+ p̂2

2
+ λ2

2

(
ωq̂
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FIG. 1. Schematic representation of the setup: two groups of
dimers in the cavity with a polarizing potential applied to one of
the groups. Interaction between dimers is allowed only via photonic
mode. In the shown configuration N1 = 3 and N2 = 2, antiferroelec-
tric ordering is observed.

The first term describes the tunneling of the electrons between
two states in each dimer with T being intradimer hopping
amplitude. An experimental realization which corresponds
to this model is an ensemble of the diatomic molecules or
double quantum dots. The tunneling term thus describes elec-
tron hopping between two atoms or two quantum dots. We
neglect direct coupling between dimers, which is justified
since the tunneling coefficient decays exponentially with the
distance. The second term describes the static gating of the
one group of the dimers. Indeed, when a static electric field
is applied along the dimer direction, the energies of the two
dimer sites are split. The last two terms correspond to the

energy 1/8π
∫

(B̂
2 + Ê2) dr of the transverse cavity mode.

The magnetic field B̂ = √
4π p̂ is proportional to the photon

canonical momenta p̂. The electric field Ê = √
4π (ωq̂ − λŜz )

is related to canonical coordinate q̂, proportional to the elec-
tric displacement, and λ

∑
i σ̂iz is the total polarization of

the system of dimers with λ being the effective light-matter
interaction. In what follows we normalize the energy to the
cavity photon energy ω. It should be noted the Hamiltonian
(1) belongs to a class of so-called generalized Dicke models
which have been studied recently [25–32]. Specifically, it has
been shown that the structure of the ground state [28] and
thermodynamic properties [26] of such systems can substan-
tially deviate from the predictions of the conventional Dicke
model. A common feature of these models are the emer-
gent long-range interactions between the two-level systems
facilitated by the exchange of the cavity photon. There was
also a certain ambiguity related to the question whether these
systems may support a so-called Dicke superradiant phase
transition with the emergence of polarization in the ground
state. It is, however, now acknowledged that in the gauge-
invariant formulations of these models, this phase transition
is absent in the case of spatially uniform cavity mode profiles
[33–35]. Specifically, Hamiltonian (1) is gauge equivalent to
a collection of dimers with intradimer hoppings dressed with
an electromagnetic vector potential via Peierls substitution.

We are interested in the dependence of polarization (which
is given by operator σz for each dimer) for the first group of

dimers on the external potential vext applied to the second
group. We used the exact diagonalization to find the ground
state of the system. In what follows we will use the opera-
tors of the polarization of the groups of the dimers:Ŝ(1,2) =∑N(1,2)

i=1 σ̂ (1,2),i and the total polarization Ŝ = Ŝ1 + Ŝ2.
Figure 2 shows two examples of the dependence on vext

of the average polarization for each group of dimers d(1,2) =
1/(N(1,2))

∑N(1,2)

i=1 〈σ (1,2),i
z 〉 and of the total polarization P =

〈Sz〉. Specifically, we present two cases: (N1 = 1, N2 = 2) and
N1 = 2, N2 = 2. The main common features of the presented
dependencies are (i) a strongly nonmonotonic discontinuous
average polarization of first group d1(vext ) and (ii) a sharp,
steplike total polarization P(vext ). We also observe remarkable
differences in the behavior for these two cases, both at large
and at small vext. First, at large |vext| the polarizations of the
two groups of dimers have opposite signs for N1 = 1 and the
same sign for N1 = 2. Moreover, at vext ≈ 0 the polarization
is almost constant for N1 = 2 and has a steep step for N1 = 1.
The plots for other combinations of (N1, N2) can be found in
the Supplemental Material [36].

Importantly, the observed peculiar quantized response
emerges only in the deep strong coupling regime when the
dimensionless light-matter coupling strength λ2/ω � 1. In
this regime, one can neglect the kinetic energy of the harmonic
oscillator in Hamiltonian (1) and treat q as a classical variable,
which can be viewed as a cavity Born-Oppenheimer approx-
imation (BOA) [37]. In this approximation, the Hamiltonian
reduces to a square matrix of dimension (N1 + 1) × (N2 + 1),
and we can find its ground state by finding the lowest eigen-
value E (q) at each q (the BO surface) and then identifying
its global minimum. As can be seen in Fig. 2 the polarization
found in this approximation (shown with blue dotted lines)
reproduces all main features of the exact diagonalization
(shown with dashed blue lines).

We then make yet another approximation: we first switch
off the intradimer hopping T = 0 and then switch it on
adiabatically. In the limit T = 0 the Hamiltonian can be diag-
onalized exactly. The eigenstates are just the direct products of
the eigenstates of S1,z, S2,z, |m1, m2〉 = |m1〉 ⊗ |m2〉. For each
group of dimers there are Ni + 1 distinct eigenvalues values
mi = −Ni,−Ni + 2, . . . Ni − 2, Ni. The ground-state energy
is then given by

ET =0 = min
q

[
vextm2 + λ2

2

(ωq

λ
− m1 − m2

)2
]
. (2)

In this case ET =0 has local minima at points ωq/λ = m1 +
m2 = −N, . . . , N , and in total there are N + 1 minima. For
even N(odd number of minima), all minima are located at
even integer values of ωq/λ (. . . ,−4,−2, 0, 2, 4, . . . ), and
there is a distinguished central minimum with m = 0. For
odd N (even number of minima) they are also at integer
points (. . . ,−3,−1, 1, 3, . . . ), but the integers are odd and
the minimum at q = 0 is absent. At T = 0 and vext = 0 all
N + 1 minima in the BO surface are degenerate in energy. At
finite vext the number of degenerate valleys reduces to N1 + 1,
while the energies of the remaining N2 minima acquire a
linear dependence on m2. This multivalley structure of the BO
surface controlled by vext is the root of the steplike behavior
of the total polarization P.
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FIG. 2. Dependencies of d1, d2, and P (upper panel in each fig-
ure) on the external field vext applied to the second group of dimers,
and semiclassical Born-Oppenheimer (BO) ground-state energies as
functions of the rescaled photon coordinate ωq/λ in different ranges
of vext (lower panels in each figure). The upper figure corresponds
to the combination N1 = 1 and N2 = 2. For the lower figure, N1 = 2
and N2 = 2. In both cases the system parameters are λ = 3, ω = 1,
T = 1. BOA and ED denote Born-Oppenheimer approximation and
exact diagonalization, respectively.

The degeneracy of different minima is lifted by turning on
the intradimer hopping T , which introduces coupling between
states corresponding to different eigenstates of the Sz opera-
tor at the same q. The operator T Sx couples the states with
Sz projections which differ by ±2. Therefore the correction
to the energy starts from the second order and generically

FIG. 3. Dependencies of d1, d2, and P on vext applied to the sec-
ond group of dimers (upper panel), and the BO energies in different
ranges of vext as functions of the photon coordinate q (lower panels).
The figure corresponds to N1 = 1, N2 = 6. System parameters are
λ = 3, ω = 1, T = 1.

lowers the ground-state energy. Moreover, the correction due
to the coupling between states with projections different by 2n
(where n is a positive integer) will be proportional to (T/λ2)n.
Apparently for vext = 0, the lowest energy corresponds to
minima with smallest |q| (q = 0 for even N and ωq/λ = ±1
for odd N). Indeed, for even N , the central minimum at q = 0
acquires a downward shift that is by an amount ∼(T/λ2)

N
2

larger compared to the shift of the neighboring minima at
ωq/λ = ±2. For odd N , the two degenerate central minima at
ωq/λ = ±1 are redshifted with respect to the closest minima
at ωq/λ = ±3 by a term ∼(T/λ2)

N−1
2 . This simple analysis

is confirmed by computing the BO energies numerically; see
lower panels in Figs. 2 and 3.

In the case of odd N , a weak external potential vext lifts the
degeneracy between the ωq/λ = ±1 states, and the system
falls to one of these minima depending on the sign of vext.
This results in the steplike behavior of polarization at vext ≈ 0
shown in Fig. 2 for N = 3, and in Fig. 3 for N = 7. For even N
there is a single minimum at q = 0, and the system remains in
this minimum for small vext, as we can see in Fig. 2 for N = 4.
In general, a finite vext favors the extreme values of m2 = ±N2

in order to minimize term vextm2. In the limit T = 0 there are
thus N1 + 1 degenerate minima corresponding to m2 = −N2

(for positive vext) and for ωq/λ = m1 + N2 and N2 states
with values of m2 from −N2 + 2 to N2. Nonzero T couples
states with different Sz and lifts the degeneracy. However,
in the presence of vext the global minimum does not always
correspond to the state with smallest Sz, because there we
find the energy asymmetry for the states with Sz differing by
±2. As a result for small vext, the global energy minimum
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FIG. 4. Polarization P as a function of vext for different values of
T/λ2 and λ2/ω. Each cell shows P within limits [−2.5; 2.5] when
vext changes in the range [−2; 2]. The system corresponds to N1 = 2
and N2 = 2 at λ = 3.

still corresponds to the valley with the minimal Sz, but as
vext becomes comparable to T 2/λ2 the system switches to the
state with another value of Sz. This results in the stepwise
dependence of the polarization on vext with the width of the
steps proportional to T 2/λ2. The total number of steps Ns

obeys a simple formula

Ns =
{

N2 − 1, if N1 is odd
N2, if N1 is even . (3)

The validity of this formula is clearly demonstrated by Figs. 2
and 3. We provide a chart of characteristic plots for different
N in Fig. 3 of the Supplemental Material [36].

The quantum nature of electromagnetic field is responsible
for transitions between the steps because they occur via tun-
neling between the corresponding valleys of the BO surface.
To account for this, we replace the variable q by a coherent
state |q〉 of the harmonic oscillator, such that 〈q|q̂|q〉 = q. The
wave function can then be written as a linear combination of
the coherent states corresponding to different local minima of
the BO surface. The tunneling probability between the minima
at different qi is proportional to the overlap of the corre-
sponding coherent states 〈qi|q j〉 ∼ e−(qi−q j )2 ∼ e−λ2/ω Thus,
the parameter λ2/ω controls the coupling between the valley
with different q, and e−λ2/ω determines the width of the steep
transition between the states with corresponding Sz. To illus-
trate the dependence of the shape of the steps on T/λ2 and
λ2/ω, in Fig. 4 we plot a collection of the step shapes for
different values of these two parameters.

It should be emphasized that the observed steplike behavior
disappears in the thermodynamic limit. We demonstrate it ex-
plicitly using a numerical calculation, the results of which are
shown in Fig. 3 in the Supplemental Material [36]. This limit
corresponds to N → ∞ and the scaling of the light-matter

RPA: = c1 + a1v
2
ext,1

+ b1v
2
ext,2

+ . . .

NONRPA: = c2 + a2vext,1vext,2 + . . .

FIG. 5. Difference in behavior between the two types of dia-
grams. It can be seen that the cross-susceptibility (χ12), which simply
is equal to the cross-derivative from diagrams above, in the RPA
case is zero if the field on one of the dimers is always zero. Explicit
expressions for a1, c1, b1, c2, a2 are presented in the Supplemental
Material [36].

interaction as λ → λ/
√

N as it is inversely proportional to
the square root of the cavity mode volume. It is now antici-
pated that the thermodynamic limit of the Dicke and related
models can be analyzed within the 1/N expansion [16–18],
and the leading order correction is given by the RPA-like
bubble diagrams. The second-order RPA energy diagram is
shown in the upper panel of Fig. 5. The bubbles correspond
to the dimer excitation propagator and wavy lines to the
cavity photon propagators. Each bubble has a factor of N1,2,
depending on the group of dimers, and each vertex carries a
factor of λ/

√
N . Let us apply the external potentials vext,1 and

vext,2 to the first and the second group of dimers, respectively.
The differential cross-polarizability of the first group is given
by χ12 = ∂2E0/(∂vext,1∂vext,2)|vext,1=0. The energy corrections
can be expanded with respect to small vext and calculated
explicitly. The result shows that for the RPA-like diagrams
there are no terms in the energy proportional to vext,1vext,2,
and thus the cross-polarizability is identically zero. The cross-
terms appear in the next order of 1/N expansion for the
diagram shown in the lower panel of Fig. 5. Thus, the mag-
nitude of the cross-polarization scales as λ6/N and vanishes
in the thermodynamic limit. Therefore, the effective dimer-
dimer interaction emerges only in the case of mesoscopic
systems, with a finite number of dimers.

An experimental observation of the proposed effect could
be realized in the system comprising two spatially sepa-
rated groups of double quantum dots embedded in a single
microwave cavity [38–40]. It should be noted that in a re-
alistic system, the cavity photons will have a finite lifetime
due to the finite cavity quality factor, which may lead to the
electroluminiscence in the considered system. While electro-
luminiscence was previously predicted in the similar setups
[41], a self-consistent description of the spectral and statisti-
cal properties of the emission would require an input-output
formalism supplemented with a density matrix master equa-
tion tailored for the ultrastrong coupling regime [32].

To conclude, we have shown that mesoscopic systems in
the ultrastrong coupling regime demonstrate the nonpertur-
bative behavior, not captured neither by the weak coupling
perturbation or by the 1/N expansion conventionally used for
the description of the Dicke-like Hamiltonians. Specifically,
in the system comprising two group of dimers in a com-
mon cavity, we have revealed a quantized dependence of the
cross-polarization and the total polarization on the external
potential applied selectively to one of the groups. We give a
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qualitative explanation of the discovered effect and explain
why it occurs only for finite numbers of dimers and a deep
strong light-matter coupling regime. These results open routes
to exploring physics of deep strong light-matter coupling in
mesoscopic systems.
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