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Effective mass and interaction energy of heavy Bose polarons at unitarity
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We use the Gross-Pitaevskii equation (GPe) to study the motion of a heavy impurity immersed in a weakly
interacting Bose-Einstein condensate and interacting with the bosons via an attractive boson-impurity potential.
We construct a perturbative solution to the GPe in powers of impurity velocity in the case when the boson-
impurity potential is tuned to unitarity, resulting in a unitary polaron, and calculate its effective mass. In addition,
we calculate the interaction energy of two unitary polarons which are sufficiently far apart. Our formalism also
reproduces the results for both the mass and interaction energy obtained at weak boson-impurity coupling.
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A Bose polaron is a quasiparticle that is formed when a
quantum impurity is immersed into a gas of weakly interacting
bosons below the condensation temperature. There has been a
significant interest in the study of Bose polarons, especially in
the regime when the impurity is allowed to interact with the
bosons arbitrarily strongly [1-14]. We would like to consider
the scenario where the boson-impurity two-body potential
can be modeled by a short-ranged attractive potential. In the
regime of weak boson-impurity interactions, all quasiparticle
properties of the polaron depend only on the value of the
boson-impurity scattering length a in a universal way. When
the boson-impurity potential is made deeper, the value of the
scattering length becomes more negative up until it becomes
infinite. This happens when the potential is tuned to a thresh-
old of supporting a bound state, the so-called unitary point.
A polaron with this kind of a boson-impurity potential can be
called a unitary polaron. In contrast, a polaron with a weak
boson-impurity potential can be called a weak polaron. A
unitary polaron’s boson-impurity potential is strong and the
properties of the polaron no longer depend on the boson-
impurity scattering length which is formally infinite. Instead
it could be characterized by other parameters that may depend
on boson-impurity potential.

Recently, it has been shown that all static quasiparticle
properties of a single unitary Bose polaron can be calculated
analytically using the Gross-Pitaevskii equation (GPe), pro-
vided that the density of the Bose gas is sufficiently small and
that the boson-impurity interactions are not too short ranged
[equivalent to the condition (3) below] [15,16]. Furthermore,
under the additional condition (4), all the properties of the
unitary polaron depend on the boson-impurity potential via
a single parameter R, which is generally of the order of
the range of the potential r, and formally defined below in
Eq. (22). In this Letter we generalize these results and obtain
analytic expressions for the effective mass and induced inter-
action energy between two unitary polarons. Our construction
is based on the perturbative expansions of the energy which
use the polaron’s velocity in the former case and the inverse
distance between the polarons in the latter case as small
parameters.
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First, we consider a slowly moving unitary polaron and
present a derivation of the contribution to the energy of the
Bose polaron which is quadratic in the impurity velocity. This
leads to the following induced mass of the unitary polaron
(that is, the mass of particles dragged by an impurity [17]):
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Here m is the mass of the bosons forming the condensate, ng
is the density of the Bose gas far away from the impurity, &
is the coherence length of the condensate, and § = R/&. The
calculation is done in the limit when the mass of the impurity
M > m. The total effective mass of the polaron is clearly
Mpolaron = M* + M. Then we apply our technique to calculate
the interaction energy of two polarons a distance d apart. We
find that
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if d > £5'/3. The Yukawa form ~e V2 /d has been recently
observed numerically in Ref. [18]. The method that we use
demands that the following two inequalities are enforced [16]:
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Here ap is the scattering length of the intraboson interactions.
The inequality (3), if violated, signifies that the GPe is no
longer a reliable approximation to the strong polaron problem.
The inequality (4), equivalent to § < 1, represents the validity
of a particular analytic solution to the GPe that we rely on
here. Under these conditions, m* > m.

We note that the above results in Egs. (1) and (2) resemble
the corresponding expressions for the polaron in the regime of
weak interactions found previously and given here in Egs. (9)
and (28), if one makes the identification £§'/3> — |a|. This is
consistent with the weak polaron condition given in Ref. [16],
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as |a| < £8'3. We thus suggest that the properties of the
polaron as |a| increases past £8'/° quickly converge to the
properties of the unitary polaron.

We show that in order to calculate the effective mass of the
polaron it is sufficient to consider only the leading term in the
velocity expansion of the solution to the GPe. Similarly, we
argue that in order to compute the interaction energy between
two polarons, it is sufficient to consider the solution to the
GPe in the form (32), which is the sum of two independent
polaronic solutions that satisfies the boundary condition at
infinity.

Let us now present the derivation of these results. For
the case of a moving polaron, we closely follow the method
used by Astrakharchik and Pitaevskii, who solved the cor-
responding problem in the regime of weak boson-impurity
interactions [17]. As they explained, a moving polaron sat-
isfies the equation
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Here U is the interaction potential between the polaron and the
bosons, . = 4mwag/m, and v is the velocity of the polaron. The
solution to this equation is of the form i (r — vt). Substituting
and changing the variables r — vt — r, we find
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Once the solution of Eq. (6) is found, the energy of the polaron
can be computed by substituting the solution into the energy:
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If the impurity energy potential U is weak, then Eq. (6) can
be solved perturbatively in U. This approach was exploited by
Astrakharchik and Pitaevskii [17], who obtained the following
velocity dependence of the polaron energy:
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which obviously leads to the induced mass of the weak po-
laron:
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Here a is the scattering length of the boson-impurity interac-
tions.

As the interaction strength is increased and |a| grows,
Eq. (9) must break down. To calculate the induced mass of the
unitary polaron whose scattering length a goes to infinity, we
must solve Eq. (6) without assuming that U is small. While we
have at our disposal a technique to solve it when U is tuned to
unitary at v = 0, solving it at nonzero v appears to be difficult.
Instead we propose to solve it perturbatively, although as an
expansion in powers of v instead of the potential U. After all,
we are only interested in knowing the energy (7) up to terms
quadratic in velocity v.

To do this we can take advantage of the following math-
ematical observation. Suppose we have a function f(x, €),
where € is small. We would like to minimize f with respect
to x and find its minimum x,,(¢), and we would then like to

compute the value of f at this minimum f,, = f(x,,(€), €).
We would like to calculate the expansion f;, in powers of € up
to terms quadratic powers of €2. We claim that to do that it is
sufficient to compute x,,(¢) up to terms linear in €.

Indeed, suppose we compute x,, up to terms quadratic in €.
In other words,

xm:xo—i-xle—i—xzez—}—.... (10)

Then it should be clear that the expansion in powers of €
of f(xo + x1€ + x2€%, €) up to terms quadratic in € will not
contain x;, as by construction

df(x,€)
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x=xg, €=0
In fact, Astrakharchik and Pitaevskii implicitly used this ob-
servation in their paper [17].

This observation would allow us to find the energy E up to
terms quadratic in velocity v by computing v only up to terms
linear in v if Eq. (6) that we need to solve were obtained as a
minimization of that energy E. However, it is not quite so, as
minimizing E over v does not produce Eq. (6). Nevertheless
we could write the energy (7) in the following convenient way:

E =E, +E,, (12)
where
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Minimizing E; with respect to v gives Eq. (6), therefore to
calculate £ up to terms quadratic in v we only need to know
Y up to terms linear in v for reasons explained above. At
the same time, E, is already proportional to v, therefore to
calculate it up to terms quadratic in v we again need to know
Y up to terms linear in v. In other words, we can substitute
Y calculated up to terms linear in v directly into the energy
(7) and find it up to terms quadratic in v. This observation
significantly simplifies the required algebra.

Let us now calculate the expansion of v in powers of v. Itis
convenient to introduce dimensionless variable ¢ = ¥ /,/no.
It is normalized so that far away from the impurity ¢ = 1. We
then write

p=¢o+Pr1+..., 15)

where ¢y is independent of v, ¢; is linear in v, and so on.
Substituting into Eq. (6) and expanding in powers of v we
find, first of all,
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Here we used that Any = . We also used that ¢y is real. This
becomes clear if we note that Eq. (16) coincides with the GPe
for the stationary polaron. Therefore, ¢y coincides with the
solution of the stationary unitary polaron problem found in
Refs. [15,16], which was real.
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At the same time, we find that
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Here we used that ¢, as should be clear from this expression,
is purely imaginary. If we find ¢, by solving this equation, we
will know 1/ up to terms linear in v. We can now substitute this
into the expression for the energy (7) and expand in powers of
v up to terms quadratic in it.

The zeroth-order term is the energy of the stationary po-
laron. The first-order term vanishes, as it turns out. This is not
surprising as those terms if they were not zero would depend
on the direction of v, while we work with a rotationally invari-
ant polaron. Finally, the terms quadratic in v can be brought
to the form

E,= —inov/d3x¢31V¢o~ (18)

This remarkably simple expression tells us that to compute
the energy we need to use ¢ calculated in Refs. [15,16],
determine ¢; by solving Eq. (17), and substitute into the
expression (18).

Let us now review the structure of the solutions ¢y of
the GPe both at weak coupling and at unitarity as described
in Refs. [15,16]. For simplicity, we consider the potentials
that vanish identically beyond some range r.. The solution to
Eq. (16) for the case of the weak potential |a|* < &2r., where
£2 = 1/(2mpu) is the square of the coherence length &, reads

(1= &)reWo(r),
1 — % exp(—+/2r/8),

Here Wy(r) is the solution to the zero energy Schrodinger
equation

r<re,

$o(r) ~ 19)

r>re.

1
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in the potential U with the normalization that satisfies
Wy(r.) = 1/r., and a is the corresponding scattering length.

When potential U is tuned to unitarity, the result becomes
6=R/E~r /8L 1)

£8'3Wy(r),
1+ 88 exp(—v2r/E), 1> re
Here R is defined as

o0 —1
R:U drrz\IJgi| . (22)
0

One expects [16] R ~ r.. Note that in the region where r > 7,
both solutions have the same structure, but differ only by a
coefficient in front of the Yukawa tail.

Let us focus on the unitary case and solve Eq. (17)
for ¢i(r). We seek solution in the form ¢(r) =
ivPi[cos(0)]ui(r)/r, where Pi[cos(0)] is the first Legendre
polynomial, 6 is the angle between v and r, while u; (r) is the
radial part of the solution. Plugging this form into Eq. (17)
we get

r<re,

Go(r) ~ { 21
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If the potential U is unitary, we make the observation that
(3 — 1)/(2&%) <« 1/r?* for all r and can be neglected. To see
that, we note that, for r < r., g9 ~ 1 /82/ 3> 1 and we find

(65— 1)/ ~1/(E8*)y < 1/r2 < 1/r.
Next, for r, < r < 233, ¢y ~ £8'3/r > 1 and we find
(05 — 1)/&%) ~ 87/ < 1/r.
For £2°3r13 < r < & ,¢9 — 1 ~ £8'3/r < 1 and we find
(¢5 — 1)/ ~ 8'3)(Er) < 1/77.

Finally, for r > &, ¢ — 1 decays exponentially towards zero,
so it is obviously much smaller than 1/r%.

Note that a potential weaker than unitary leads to even
smaller q)g — 1, therefore these arguments also apply at weak
potential.

These observations allow us to significantly simplify
Eq. 23, with the result

2
2mrey = uy — L 2mUu,. (24)

Now for r > r., U = 0. While U # 0 at r < r, it turns out
that the region O < r < r, does not significantly contribute to
the energy and therefore we can simplify this even further and
solve

/ a 2’
2mrepy = u) — r—2u1. 25)
We will come back to this point below.

Equation (25) is simple enough where it can be solved

explicitly, with the solution

2m ([ , L[ 3
up = T(r [¢o(r) — 1] — _/ dss ¢0(€)) (26)
rJo

Plugging this expression for u; together with the definition of
¢o(r), Eq. (21), into Eq. (18), we get

2282 3E ngmy?
— 3 .

The induced mass of the polaron at unitarity (1) follows im-
mediately.

We still need to estimate the contribution of the region 0 <
r < r. to the energy. In that region, ¢y ~ 1/82/3, up ~ rcz/82/3,
so we can find that this region contributes nymv*£r2 to the
energy. This is much smaller than (27) as £r2 < £38%/5.

As was discussed previously, both weak and unitary po-
laron solutions Eqs. (19) and (21) have the same r dependence
in the region r > r.. Therefore, an obvious substitution
83 — |a| reduces our result for the energy of the uni-
tary polaron to the energy obtained by Astrakharchik and
Pitaevskii [Eq. (8)] for the weak polaron.

Just as with the result for the energy of the stationary
polaron found earlier in Refs. [15,16], the result found here
[Eq. (27)] is only valid when § < 1. In principle corrections
to it proportional to higher powers of § can also be calculated
if needed.

We can also calculate the interaction energy of two station-
ary unitary polarons separated by a distance d. For the weak

E, 27
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polaron, the real-space expression has been obtained before
by Refs. [19-21], and it reads

2
_4nn0a e‘ﬁg
md

To calculate this for the unitary heavy polarons, we need to
solve the GPe with two potentials

A
_Z_Z FAYPY UG +UG—d)—ply =0 (29)

and calculate the energy of the solution:

2
E /d3x<w+%|1/’|4 UG +UG—d) —m|w|2).

Ein(d) = (28)

2m
(30)

We will not attempt to do this for a generic separation between
the polarons d. Let us just compute this in the case when d is
so large that the solution can be written as

%0 ~gor) +dor—d)— 1+ f(r). (1)
where |f| < 1. Here ¢o(r) is the solution for a single sta-
tionary unitary polaron (21). Crucially, |f| is indeed small
if |¢o(d) — 1] <« 1. This is because at very large separation
between the polarons clearly f = 0 should solve the corre-
sponding GPe (29). If d is large but finite, f will be nonzero
but small. This is guaranteed by ¢(d) approaching 1 at d >
£8'/3. All of this can be verified by a direct substitution of (31)
into (29) with the help of (21).

The same theorem that earlier allowed us to compute en-
ergy for a moving polaron up to terms quadratic in velocity
while calculating ¥ up to terms linear in it allows us now
to calculate the energy of two polarons by substituting the
solution for two polarons at f = 0

Y = noldo(r) + ¢o(r —d) — 1] (32)

into the expression (30). Subtracting the part of the energy
independent of d, which is the energy of the condensate and
the individual energies of the polarons, gives the interaction
energy of the polarons.

This program gives the leading contribution to the inter-
action energy at large d. To compute corrections to that if
needed, we would have to solve for f by substituting Eq. (31)
in the GPe (29). We will not attempt to do it here.

Carrying out this program produces the interaction energy
(2) of two polarons distance d apart. Note that replacing
£8'3 — |a| gives the interaction energy of weak polarons
(28), as we should have expected on general grounds dis-
cussed earlier. This result is in agreement with the recent
numerical study by Ref. [18] who observed the Yukawa-type
behavior consistent with Eq. (2) holding up to distances of
the order of £. At smaller distances two polarons start to have
a significant overlap and one cannot longer use Eq. (32) to
compute the energy. As a starting point one needs to solve the
GPe in the spherically nonsymmetric potential analytically.
This goes beyond formalism described in Refs. [15,16].

As a side note, while for the unitary case we had to use
the assumption that two polarons must be well separated in
order to be able to use Eq. (32), for weak polarons this form

is correct for arbitrary separation d. Indeed, for the weak
polaron, one can linearize the GPe and the solution to the
two polaron problem will be just a linear combination of the
solutions to a single polaron problem. The contribution to the
interaction energy reads

Ein(d) = 2ng f IxUr)go(r —d) — 1], (33)

For the short-ranged potentials r. < & and for distances d >
re,po(r—d)=1— ‘rfd‘e_ﬁlrfm ~ 11— ge“ﬁ‘?[ in the vicin-
ity of r = r.. Recalling the definition of the scattering length
that is valid in the weak-coupling regime 2”7” = dxU(r),
one retrieves Eq. (28). The result in Eq. (33) is valid for
arbitrary distances between two impurities and arbitrary po-
tentials conforming to the second Born approximation. For
example, when d = 0, one would retrieve physics of a single
polaron sitting in the potential with the strength that is twice
the strength of the original potential, provided one redefines
the scattering length in an appropriate manner. In the general
case, the form of the induced potential will be complicated
and can resemble the form of the original potential like in the
case of the exponential potential U ~ e~ 7, orthe polarization
potential analyzed in Ref. [22] which was studied by the
means of many-body perturbation theory.

Finally, we note that to the leading order both the effec-
tive mass and the two polaron interaction energy at unitarity
are related to the weak-coupling limit by the identification
£8'3 — |a|. The same identification also reproduces results
for some other quasiparticle properties, such as Tan’s con-
tact and the quasiparticle residue that have been studied
in the context of the bosonic orthogonality catastrophe in
Ref. [23], but not the energy (to work for the energy, the
substitution has to be modified to £8'3 — 2|a|/3) [15,16].
We leave the question of how robust this property is and
what other quantities obey this identification to a future
study.

The interaction energy (29) between two weak polarons is
known to have corrections due to the effects of the fluctuations
(phonons) in the Bose-Einstein condensate (BEC), as studied
in Ref. [24]. We expect that the interactions between unitary
polarons would also have similar corrections. Those have not
yet been studied, except in one dimension where interactions
between polarons, including due to fluctuations, were studied
for polarons of arbitrary strength [25].

In summary, we derived a compact formula for the effective
mass of the slowly moving impurity in the BEC which is valid
both for weak and unitary potentials, generalizing the result
by Astrakharchik and Pitaevskii. We used it to find an analytic
expression for the effective mass of the Bose polaron at unitar-
ity. We also derived the expression for the interaction energy
between two unitary polarons separated by a large distance
d. We observed that the qualitative difference between weak
and unitary polarons in those scenarios can be captured by
a trivial substitution of the amplitudes of the solution of the
unitary polaron into the the corresponding expression at weak
coupling similar to other quasiparticle properties. When ap-
plied to weak polarons, our method allows us to compute the
interaction energy between two polarons at arbitrary distance
between two impurities and it serves as a generalization of
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previous results at weak coupling. Because our method relies
on a perturbative construction, we were unable to compute
the drag force and the induced interactions at small impurity
separations which requires full nonperturbative dependence
on the impurity velocity and knowledge of the solution to the
GPe in the noncentral potential. We leave those problems for
a future study.
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