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Microscopic mechanisms of high-order wave mixing in solids
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The gas-phase technique of noncollinear two-color excitation is adapted to study extreme-ultraviolet high-
order harmonic generation (HHG) in magnesium oxide. We observe high-order wave-mixing pathways with
brightness comparable to that of the single-color HHG. Simulations reveal that the efficiencies are dominated by
the microscopic physics as opposed to macroscopic effects. Building on previous work, we develop a general
analytic theory of high-order wave mixing that explains our observations and demonstrates how a perturbative
nonlinear optical framework emerges form the interaction between the weak field and the laser-dressed state of
the crystal in the strong-field approximation. The theory outlines a photon-mixing picture of high-order wave
mixing and connects the strong asymmetry between sum- and difference-frequency pathways to the cutoff in
the HHG spectrum. Our work establishes the potential of high-order wave mixing as a probe of the microscopic
attosecond physics in solids and points to new opportunities in solid-state strong-field photonics.
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Introduction. The merging of attosecond and solid-state
physics has led to new research directions in solid-state light-
wave electronics, where the electric field waveform of light
is used to coherently drive attosecond currents [1–3]. These
currents lead to the emission of harmonic radiation, which is
sensitive to the crystal properties [3–8] and can be controlled
with external fields and structures [9–12]. The adaptation of
gas-phase collinear two-color techniques to solids has led
to fundamental insights into the nature of solid-state HHG
[13–15]. In gases, employing a noncollinear geometry leads
to spatially separate beams corresponding to the high-order
wave-mixing pathways between the driving fields [16]. The
power scaling of the different wave-mixing orders suggests
that a perturbative framework can be built around strong-field
optical interactions, which is the precursor to many attosecond
spatiotemporal control techniques [17–20]. Several studies
have focused on the role of phase matching in noncollinear
HHG [21,22] and, furthermore, it was thought that even the
propagation angle between the two driving fields can affect the
wave-mixing amplitudes. While a complete symmetry theory
was recently developed to explain the origin of the pertur-
bative scaling [23], to date there has been no investigation
of the microscopic mechanisms governing the wave-mixing
efficiencies. Furthermore, the emergence of solid-state HHG
also elicits new questions, such as how the band structure and
dephasing affect the high-order wave mixing.

Here, we adapt the noncollinear two-color excitation
technique to the solid state and use it to isolate the wave-
mixing pathways of extreme ultraviolet (XUV) harmonics in
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magnesium oxide (MgO). We develop a numerical framework
that isolates the roles of microscopic and macroscopic effects,
which shows that, in contrast to gas phase, the wave-mixing
efficiencies are dominated by the microscopic physics. Fur-
thermore, we introduce an analytic theory of two-color HHG
in the strong-field approximation (SFA) that isolates expres-
sions for the wave-mixing dipoles, revealing how they diffract,
the selection rules that govern their spectra, and the origin
of their perturbative scaling. The theory leads to a photon-
mixing picture of high-order wave mixing, where sum- and
difference-frequency generation pathways (SFG and DFG,
respectively) push the spectrum upwards and downwards in
energy, respectively, and connects the pronounced asymmetry
between the two to the roll off in the HHG amplitude near the
cutoff.

XUV high-order wave mixing in MgO. The experiment
is shown schematically in Fig. 1(a). A p-polarized 800 nm
pulse and its second harmonic are focused onto a single-
crystal MgO (100) sample with incidence angles of 60◦ from
normal and a separation angle, γ ≈ 1.5◦, between the two
beams. The XUV radiation emitted from the nonperturbative
HHG process is collected in a reflection geometry to avoid
distortion of the driving laser field by self-phase modulation
in the bulk [24]. Wave-vector conservation can be used to
predict the propagation angle of the different pathways, with
�k� = nω�kω + n2ω�k2ω, as seen in Fig. 1(b) [16]. Furthermore,
the wave-mixing pathways can be classified as SFG or DFG
depending on whether the 2ω photon is added or removed
[22]. The wave vectors of SFG (DFG) beams lie between
(outside) those of the driving fields. The photon energy of
each pathway is h̄� = (nω + 2n2ω )h̄ω and the centrosymme-
try of MgO enforces the parity selection rule that an odd
total number of photons contributes to each pathway, nω +
n2ω = 2 j + 1 [16,25,26]. Figure 1(c) shows an image of the
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FIG. 1. (a) Schematic layout of the experimental geometry. The laser field consists of noncollinear two-color field (800 nm, 400 nm)
incident on a single-crystal MgO sample. The two beams are incident upon the sample in the same vertical plane; the high-order harmonics
are emitted in the specular direction in the same vertical plane. The resulting high-order harmonics are collected by an XUV spectrometer
that images the source onto a microchannel plate (MCP) in the dispersion direction while allowing them to diverge in the other axis, thereby
creating a map of photon energy and divergence angle. (b) Wave-vector matching diagrams with exemplary mixing processes. (c) Log-scale
normalized image of the diffraction pattern on the MCP where IW M is the wave-mixing intensity. Several pathways are labeled by their process
orders with (nω, n2ω ).

measured high-order wave mixing with estimated intensities
of 15 TW/cm2 and 1 TW/cm2 in the ω (800 nm) and 2ω

(400 nm) pulses, respectively. The pathways can be systemati-
cally indexed by beginning at one of the known harmonics and
moving upwards along the staircaselike structure towards the
SFG pathways by removing (adding) an ω (2ω) photon [16].
Conversely, the DFG processes can be indexed by moving
downwards and adding (removing) an ω (2ω) photon. The
dominant structure of the diffraction pattern is governed by the
odd-photon number selection rule such that odd (even)-order
processes in n2ω contain even (odd)-order harmonics.

In Fig. 2(a), we plot the scaling of peak intensities extracted
from Gaussian fits to the experimentally measured images,
revealing that the perturbative scaling observed in gas phase
also holds in solid-state high-order wave mixing and strength-
ening the link between HHG in solids and gases [13,16]. Thus,
despite operating in a nonpertubative regime, a perturbative
framework emerges from the interaction between the weak
field and the laser-dressed state of the crystal. Figure 2(a) also
reveals that the intensities of several wave-mixing processes
can even exceed that of the strongest harmonic in the single-
color HHG spectrum at this ω intensity.

The wave-mixing pattern in Fig. 1(c) also reveals a pro-
nounced asymmetry in the number and intensity of SFG
versus DFG processes. Figure 3(a) shows the scaling of the
two DFG processes we observe, (10,−1) and (8,−1), along
with the SFG counterparts of the same final harmonic order
(eighth and sixth, respectively). Note that this comparison is
motivated by previous analytic theories of perturbed HHG,
which will be expanded in a following section. In each case,
the DFG intensity is more than three orders of magnitude
lower than that of the SFG. Also, note that comparing wave-
mixing pathways in the same order of the perturbing fields
[e.g., (8,1) vs (8,−1)] also yields a strong asymmetry [see
Fig. 1(c)].

Microscopic vs macroscopic effects. Having introduced
the predominant experimental aspects of the high-order wave

mixing, we turn to modeling our observations. In the non-
collinear geometry, the time delay between the fundamental
field and its second harmonic varies as a function of the
transverse coordinate as τ = y sin(γ )/c, where c is the speed
of light. The relative phase between the two pulses is there-
fore proportional to y, i.e., φ ∝ y. The HHG is sensitive to
the relative phase of the driving pulses [13,27], thus, the 2ω

field modulates the HHG dipole, d̃ (y, ω), periodically in space
[17,19]. The collective behavior of the emitters determines the
far-field diffraction pattern, which, in the Fresnel approxima-
tion, is calculated as [28],

Ẽ

(
y′

λz
, z, ω

)
∝ Fy→y′ {d̃ (y, ω)ei ω

2cz y2}, (1)

where z is the distance from source plane to detector plane,
and y and y′ are the transverse dimensions at the source and
detector planes, respectively. Wave-mixing peaks in the de-
tector plane are therefore associated with spatial harmonics
of the HHG dipole in y and the wave-mixing sources are
traveling waves with SFG (DFG) pathways that correspond
to propagating-wave sources traveling upwards (downwards)
in y. The linear relationship between y and φ implies that,
microscopically, wave-mixing pathways are associated with
harmonics of the HHG dipole in the relative phase of the
two pulses, φ. This agrees with intuition from interferometry
where the Fourier transform of time-delay scans can be used
to isolate excitation pathways [29].

To calculate the HHG dipole, we solve the semiconduc-
tor Bloch equations [30–32], utilizing a two-color driving
field and cosine bands with a bandwidth and gap equal to
that of MgO. To elucidate the roles of microscopic and
macroscopic effects [33,34], and thus quantify the effect of
focal averaging and the propagation angle between the two
pulses (see Supplemental Material, II [35]), we simulate the
wave-mixing spectra in two ways. In the first way, the HHG
dipole is calculated as a function of the 2ω carrier-envelope
phase (CEP), ϕ, yielding d̃ (ϕ, ω). The Fourier transform with
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FIG. 2. (a) Measured wave-mixing intensity normalized to the
(7,0) peak for several pathways as a function of 400 nm pulse inten-
sity. The 800 nm intensity was fixed and estimated to be 17 TW/cm2.
The black dashed lines indicate the slope expected for the power-law
scaling associated with each diffraction order. (b) Calculated scaling
of the microscopic (lines) and macroscopic (circles) wave-mixing
intensities extracted using the CEP method and the one-dimensional
(1D) grid of emitters, respectively, for the same pathways as in (a).
The intensity of the ω pulse was adjusted to yield the experimental
harmonic cutoff.

respect to ϕ yields the mth-order wave-mixing spectrum,
d̃ (eimϕ, ω), where m = n2ω. This method yields the micro-
scopic, or single-emitter, spectra.

In the second way, focal averaging is introduced by cal-
culating d̃ (y, ω) on a 1D grid at the sample location with
time delays and amplitudes of the driving fields taken as a
function of y. We do not consider phase-matching effects
because the harmonics are collected from only a subwave-
length region near the surface. The far-field wave-mixing
pattern is calculated using Eq. (1), yielding the collective
(macroscopic) wave-mixing spectra. Note that the macro-
scopic spectra contain both the microscopic and macroscopic
effects. The calculated wave-mixing spectra from both meth-
ods demonstrate the correct selection rules, the large SFG
(DFG) asymmetry, and relative intensity of many processes
(Supplemental Material, I A [35]). The model also repro-
duces the perturbative scaling of the wave-mixing pathways
with respect to the intensity of the 2ω pulses, as shown
in Fig. 2(b) for both the collective and single-emitter tech-
niques. Notably, the latter method is significantly more

(a)

(b)

FIG. 3. (a) Comparison of experimentally measured SFG (solid
circles) and DFG (open circles) wave-mixing intensities as a func-
tion of 400 nm intensity. The dashed lines are linear functions in
I400. (b) Microscopic (lines) and macroscopic (circles) wave-mixing
intensities, calculated using the CEP method and 1D grid of emitters,
respectively, as a function of the intensity ratio of the 2ω/ω pulses
for the same processes as in (a). The solid (open) circles and solid
(dashed) lines correspond to the SFG (DFG) pathways.

computationally efficient, which will be useful for future
studies of wave mixing using ab initio or many-band meth-
ods [31,33,36]. The microscopic and macroscopic intensities
agree within a factor of 2–3, showing that the efficiencies are
dominated by the microscopic physics. Likewise, microscopic
physics is predominantly responsible for the ratio of SFG
and DFG processes, as seen in Fig. 3(b). The single-emitter
calculations (lines) predict an SFG (DFG) ratio of over 100,
with macroscopic effects (circles) contributing an additional
factor of 2–3, which can be traced to focal averaging.

Wave mixing in the strong-field approximation. While the
numerical solution of the semiconductor Bloch equations is a
powerful approach that reproduces many aspects of our data,
it does not provide an intuitive physical picture. Previous the-
oretical work suggested that the HHG dipole modulates with
the relative phase proportionally to sin(φ) for even-order har-
monics and cos(φ) for odd-order harmonics with an amplitude
given by the single-color HHG dipole at the same harmonic
order [19,27,37–39]. From Eq. (1), this predicts equal ampli-
tude SFG and DFG. The large SFG (DFG) asymmetry at the
microscopic level is therefore surprising. Here, we develop a
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general theory of high-order wave mixing within the SFA that
can explain the SFG (DFG) asymmetry.

The HHG dipole is given by the sum over all quan-
tum pathways recolliding at time t (Supplemental Material,
III A [35]) [30,40,41]. The amplitude of each path is
given by exp(−iS(k, t, t ′) − (t − t ′)/T2), where S(k, t, t ′) =∫ t

t ′ dτ εg[k + A(τ )] is the action accumulated along a quantum
path with canonical crystal momentum k born at time t ′ and
ending at time t , εg is the momentum-dependent band gap,
and A(τ ) = Aω sin(ωτ ) + A2ω sin(2ωτ − φ) is the vector po-
tential of the driving field. T2 is a phenomenological dephasing
time.

With a weak perturbation, the action can be rewrit-
ten as S(k, t, t ′) ≈ S0(k, t, t ′) + cos(φ)σs − sin(φ)σc, where
σs = A2ω

∫ t
t ′ dτ v0 sin(2ωτ ) and σc = A2ω

∫ t
t ′ dτ v0 cos(2ωτ ),

where v0 and S0 are the unperturbed velocity and action,
respectively (Supplemental Material, III [35]) [13,27]. The
phase can be expanded in harmonics of φ,

e−iS(k,t,t ′ ) ≈ e−iS0(k,t,t ′ )
∞∑

m=−∞
C̃m(k, t, t ′)eimφ, (2)

where we define the wave-mixing coefficients, C̃m(k, t, t ′) =∑∞
h=−∞ im+hJm+h(σs)Jh(σc) (Supplemental Material, IV A

[35]), where Jν are the Bessel functions of the first kind. The
full HHG dipole is given by the sum,

D̃(nω) =
∞∑

m=−∞
D̃m(nω), (3)

where Dm(nω) is the mth-order wave-mixing dipole,

D̃m(nω) = eimφ (1 − (−1)m+n)
∫ T/2

0
dt

∫ ∞

−∞
dk·

×
∫ t

−∞
dt ′D̃0(k, t, t ′)C̃m(k, t, t ′)e−inωt + c.c.,

(4)

where D̃0(k, t, t ′) is the integrand of the HHG dipole in the
single-color field (Supplemental Material, V [35]).

This expression applies to both gases and centrosymmet-
ric solids. We make no assumptions about the experimental
geometry: the HHG dipole results from the quantum interfer-
ence of the different pathways so that two-color HHG can be
considered generally as coherent control of high-order wave
mixing. Equation (4) can be used to understand three key fea-
tures of high-order wave mixing. As y ∝ φ in the noncollinear
geometry, the factor of eimφ indicates how a given order
will diffract [see Eq. (1)]. Furthermore, the [1 − (−1)m+n]
term, which arises from symmetry considerations, enforces
the odd-photon number selection rule [25]. Finally, in the
small-argument regime, where Jν (z) ∝ zν , the amplitudes of
the wave-mixing coefficients scale proportionally to A|m|

2ω , and
therefore perturbatively in the 2ω field (Supplemental Mate-
rial, IV C [35]).

To gain further insight into the microscopic mechanisms
of high-order wave mixing, we use the saddle-point method
[30,40]. The wave-mixing dipoles in Eq. (4) have a similar
structure to the usual HHG dipole, however, the coeffi-
cients, C̃m, are themselves complex oscillatory functions. This

(a) (b)

FIG. 4. (a) Illustration of the convolution picture of high-order
wave mixing. The shaded ellipses in the m = 0 spectrum indicate
the odd-order harmonics while the dashed ellipses indicate the even
orders. (b) Spectrum of the wave-mixing coefficients calculated for
parabolic dispersion and classical trajectories for several different
pathways. The single-color birth time, t ′, is calculated as a function
of t and C̃±m( jω) is calculated from the Fourier transform of Eq. (7).
The color indicates the phase.

could be taken into consideration to find modified saddle-
point equations [42] that yield different quantum orbits, and
therefore different birth and recollision times, for each wave-
mixing order. However, this procedure leads to a complicated
system of equations. Instead, we treat the second harmonic
field as a perturbation around the stationary points of the
single-color field. We apply the saddle-point method to solve
the integrals over k and t ′,

D̃m(nω) = eimφ (1 − (−1)m+n)·

×
∫ T/2

0
dt D̃0(t )C̃m(t )e−inωt + c.c., (5)

where D̃0(t ) is the single-color HHG dipole in the saddle-
point approximation. From Fourier theory, the transform of
the product, D̃0(t )C̃m(t ), becomes a convolution in the fre-
quency domain,

D̃m(nω) = eimφ (1 − (−1)m+n)
∞∑

j=−∞
C̃m( jω)D̃0[(n − j)ω],

(6)

where the summation is discrete because of the periodicity
of the driving field. Equation (6) shows that the amplitude
of each wave-mixing peak is coupled to each harmonic in
the unperturbed spectrum with amplitude and phase given by
C̃m( jω), as illustrated in Fig. 4(a). Contrary to intuition, both
even and odd harmonics from the single-color spectrum con-
tribute to each wave-mixing peak rather than those separated
by 2ω. This reflects the nonperturbative and subcycle nature
of the recollision physics.

To gain a deeper understanding of how the single-color
HHG spectrum is mapped to the wave-mixing spectrum, in
the perturbative regime the wave-mixing coefficients can be
written succinctly as,

C̃m(t, t ′) ≈ (∓1)|m|A|m|
2ω

2|m||m|!
(∫ t

t ′
dτv0e±i2ωτ

)|m|
, (7)
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with the + and – signs indicating SFG and DFG pathways,
respectively (Supplemental Material, IV C [35]). The sign of
the complex exponential suggests that SFG (DFG) processes
tend to push the spectrum upwards (downwards) in frequency.
To show this more explicitly, in Fig. 4(b) we plot the wave-
mixing coefficients for several orders assuming parabolic
dispersion and classical trajectories. The parabolic approxi-
mation is reasonable in the present case because the cutoff of
the HHG spectrum suggests that the electron-hole pairs ex-
plore only a narrow region of the Brillouin zone. As expected,
the m = 0 coefficient is a single peak at zero frequency, so that
D̃0(nω) is simply the single-color spectrum. The coefficients
are symmetric about zero frequency for positive (negative)
orders, which shows that SFG (DFG) processes push the spec-
trum upwards (downwards) in frequency, as expected from a
photon picture of wave mixing. Thus, the asymmetry in the
SFG (DFG) intensity is naturally connected to the rolloff in
HHG intensity near the cutoff, as illustrated in Fig. 4(a). We
note, however, that due to the complex summation in Eq. (6),
the pathways of equal photon number, e.g., (8,1) and (8,−1),
are inequivalent in amplitude. The perturbed trajectory picture
can be used to understand other aspects of high-order wave
mixing. For example, higher-order processes in n2ω, which
have shorter trajectories, are more robust to dephasing than
the single-color HHG (see Supplemental Material, I B [35]).
This suggests that noncollinear HHG could be a useful tool
for probing dephasing in solids, which remains a challeng-
ing problem both theoretically and experimentally [33,43,44].
Equation (7) also presents a convenient way to explore how

the band structure affects the high-order wave mixing, which
will be important in future experiments probing larger regions
of the Brillouin zone. Finally, the assumptions of classical
trajectories and fixed saddle points limits the role of the 2ω

field to a phase perturbation. Amplitude modulation can be
introduced into the perturbed trajectory formalism by using
the complex saddle points, while Eq. (4) can be used to sys-
tematically investigate how the wave-mixing quantum orbits
differ from those of the single-color field.

Conclusion. To summarize, we studied high-order XUV
wave mixing in MgO using noncollinear two-color HHG.
The wave-mixing intensities are determined primarily by the
microscopic physics as opposed to macroscopic effects and
can be understood using a perturbed-trajectory model in the
strong-field approximation. We observed bright wave-mixing
peaks with efficiencies that can exceed that of the single-
color HHG. This suggests that, analogous to coherent control
[20,45], spatially textured perturbing beams can be used to ef-
ficiently imprint petahertz currents into materials. Combined
with the ability to pattern and engineer solids, this will lead to
new opportunities in attosecond photonics.
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