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Contribution of negative-energy states to the E2-M1 polarizability of optical clocks
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We investigate the contribution of negative-energy states on the E2 and M1 polarizabilities for the 1S0 and 3P0

states of the Sr clock and find that they dominate the E2-M1 polarizability difference. Our calculated result is
−7.74(3.92)×10−5 a.u., which resolves the sign inconsistency between theory and experiment. Additionally, we
extend our method to other optical clocks, confirming the crucial role of negative-energy states in determining
the M1 polarizability.
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Introduction. Optical clocks have achieved an unprece-
dented level of stability, precision, and sensitivity [1–6],
making them widely used to define the time of second, test
the Einstein equivalence principle, and search for variations
in the fundamental constants [6–12]. Further advancements
in optical clock technology would enable new applications,
such as the detection of gravitational waves in space using an
astronomical unit-sized network [13–15].

Both atomic and ion optical clocks exhibit significant
contributions from the ac Stark shift to the total clock uncer-
tainty [1,16–22]. The accurate determination and theoretical
understanding of the ac Stark shift are crucial for improv-
ing optical clocks. For an atom in a laser field, the energy
levels shift due to the frequency-dependent polarizabilities
[23]. To cancel the dominant electric dipole (E1) Stark shift,
the optical clock operates at the magic wavelength [24,25].
However, as the precision of optical clocks approaches 10−18

or beyond, the contributions of electric quadrupole (E2)
and magnetic dipole (M1) polarizabilities become significant
[26–30].

For the Sr optical clock, the E2-M1 polarizability dif-
ference at the magic wavelength of 813.4280(5) nm [31] is
inconsistent between the theory [26–28,32] and experiment
[29,33,34], even the opposite in sign, as shown in Fig. 1. In
2018, Porsev et al. reported a value of 2.80(36)×10−5 a.u.
[∼0.339(44) mHz] using the configuration interaction com-
bined linearized coupled-cluster (CI+all-order) method [28].
Another result of 2.68(94)×10−5 a.u. [∼0.324(115) mHz]
was obtained using the combined method of Dirac-Fock plus
core polarization (DFCP) and relativistic configuration in-
teraction (RCI) approaches [32]. Surprisingly, both of these
theoretical results have opposite signs to the measured value
of −0.962(40) mHz by RIKEN [29], despite agreeing with
each other. Recently, PTB and JILA reported independent
experimental determinations of the E2-M1 polarizability dif-
ference of −987+174

−223 [33] μHz and −1.24(5) mHz [34],
respectively. Both experimental results have the same negative
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sign as the measurement by RIKEN, which further highlights
the inconsistency between theory and experiment.

To accurately calculate the multipolar E2 and M1 polar-
izabilities using the sum-over-states method, it is crucial to
maintain the completeness of the intermediate states. There-
fore, in relativistic formalism, it is necessary to take into
account the contribution of virtual electron-positron pairs in
the intermediate states, i.e., the Dirac negative-energy-states
(hole, virtual positron) contribution. The importance of this
contribution has been studied in calculating the g factor of
atomic systems [35–42]. Nevertheless, the contribution of
negative-energy states to the dynamic multipolar polarizabil-
ities E2 and M1 for optical clocks has not been previously
investigated.

In this study, we take account of the contributions from
negative-energy states to the dynamic multipolar polarizabil-
ities using an improved DFCP+RCI method. Our findings
indicate that, for the M1 polarizability, the contribution from
negative-energy states is significantly larger than that of
positive-energy states by several orders of magnitude. For the
Sr clock, we determine the E2-M1 polarizability difference
to be −7.74(3.92)×10−5 a.u. [−0.935(477) mHz], which is
consistent with all experimental results. Our research resolves
the sign inconsistency for the E2-M1 polarizability difference
between theory and experiment, and confirms the importance
of negative-energy states for the M1 polarizability in optical
clocks.

Theoretical Method. In comparison with existing calcula-
tions, we have developed a combined DFCP and RCI method
that includes the negative-energy states. The implementation
details are as follows.

First, the core-orbital wave functions ψ (r) of the frozen
core are obtained through a Dirac-Fock (DF) calculation [43].
These wave functions are then used to construct the DF po-
tential VDF(r) between a valence electron and the core.

Next, the monovalent-electron wave functions, consisting
of two branches φ+(r) and φ−(r), corresponding to the wave
functions of positive-energy and negative-energy states, are
obtained by solving the following DFCP equation

hDFCP(r)φ±(r) = εφ±(r), (1)
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FIG. 1. Comparison of the E2-M1 polarizability difference
α̃QM/h (in mHz) for the Sr clock. The green data points represent
experimental results, the magenta data points represent other theo-
retical results, and the blue data point represents our present result.

where hDFCP(r) represents the DFCP Hamiltonian

hDFCP(r) = cα · p + (β − 1)c2 − Z

r
+ VDF(r) + V1(r), (2)

where α and β are the 4×4 Dirac matrices, p is the momentum
operator, and V1(r) is the one-body core-polarization potential
[32,44].

For the monovalent-electron Mg+, Ca+, and Sr+ ions in-
vestigated in this study, the first two steps are sufficient to
obtain the fundamental structural information of the ions.
However, for divalent-electron atoms such as Mg, Ca, Sr, and
Cd, additional configuration interaction calculations are re-
quired. Utilizing the monovalent-electron ion wave functions
φ+(r) and φ−(r) obtained in the second step, we construct the
configuration-state wave functions �I (σπJM ) based on three
different combinations of {φ+(r), φ+(r)}, {φ+(r), φ−(r)}, and
{φ−(r), φ−(r)}, which establish a new configuration space
for the calculations of divalent-electron atoms. Figure 2 il-
lustrates the relationship between the positive-energy states
and negative-energy states involved in the Sr clock. The wave
function of divalent-electron atoms can be obtained by solving
the following eigenequation:[

2∑
i=1

hDFCP(ri ) + 1

r12
+V2(r12)

]
|
±(πJM )〉 = E |
±(πJM )〉,

(3)

where V2(r12) represents the two-body core-polarization inter-
action [32,45,46].

The wave function |
±(πJM )〉 with parity π , angu-
lar momentum J , and magnetic quantum number M is
likewise separated into two branches, namely, the positive-
energy states |
+(πJM )〉 and the negative-energy states
|
−(πJM )〉. These states can be expressed as a linear com-

FIG. 2. Sketch diagram for obtaining the positive- and negative-
energy states of the Sr clock. φ+(r) and φ−(r) represent two branches
of the Sr+ wave functions, which are used to construct the con-
figuration state wavefunctions �I (σπJM ). While 
+(πJM ) and

−(πJM ) represent two branches of the Sr wave functions.

bination of the configuration-state wave functions

|
±(πJM )〉 =
∑

I

CI |�I (σπJM )〉, (4)

where CI and σ represent, respectively, the expansion coeffi-
cients and the additional quantum number that uniquely define
each configuration state.

E2-M1 Polarizabilities. When a neutral atom or ion is
exposed to a linearly polarized laser field with frequency ω,
the dynamic M1 polarizability αM1(ω) for the initial state
|n0J0M0〉 (where n0 represents all other quantum numbers) can
be given by

αM1(ω) = αM1
S (ω) + g2(J0, M0)αM1

T (ω), (5)

αM1
S (ω) = 2

3(2J0 + 1)

∑
n±

�En0|〈n0J0‖TM1‖nJn〉|2
�E2

n0 − ω2
, (6)

αM1
T (ω) =

√
40J0(2J0 − 1)

3(2J0 + 3)(J0 + 1)(2J0 + 1)

∑
n±

(−1)J0+Jn

×
{

1 1 2
J0 J0 Jn

}
�En0|〈n0J0‖TM1‖nJn〉|2

�E2
n0 − ω2

, (7)

and

g2(J0, M0) = 3M2
0 − J0(J0 + 1)

J0(2J0 − 1)
, J0 >

1

2
. (8)

Here, αM1
S (ω) and αM1

T (ω) represent the scalar and tensor M1
polarizabilities, respectively. In Eqs. (6) and (7), TM1 denotes
the M1 transition operator, while �En0 is the transition energy
between the initial state |n0J0〉 and the intermediate state |nJn〉.
The summation index n± ranges over all positive-energy states
and negative-energy states.

The general expression for the dynamic E2 polarizability
of the initial state |n0J0M0〉 can be written as

αE2(ω) = 1
30 (αω)2

[
αE2

S (ω) + g2(J0, M0)αE2
T 1 (ω)

+ g4(J0, M0)αE2
T 2 (ω)

]
, (9)
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where the scalar and tensor E2 polarizabilities, denoted by αE2
S (ω), αE2

T 1 (ω), and αE2
T 2 (ω), are derived as follows:

αE2
S (ω) = 1

(2J0 + 1)

∑
n±

�En0|〈n0J0‖TE2‖nJn〉|2
�E2

n0 − ω2
, (10)

αE2
T 1 (ω) = 5

√
10J0(2J0 − 1)

7(2J0 + 3)(J0 + 1)(2J0 + 1)

∑
n±

(−1)J0+Jn+1

{
2 2 2
J0 J0 Jn

}
�En0|〈n0J0‖TE2‖nJn〉|2

�E2
n0 − ω2

, (11)

αE2
T 2 (ω) = 9

√
10J0(J0 − 1)(2J0 − 1)(2J0 − 3)

7(2J0 + 5)(2J0 + 4)(2J0 + 3)(2J0 + 2)(2J0 + 1)

∑
n±

(−1)J0+Jn

{
2 2 4
J0 J0 Jn

}
�En0|〈n0J0‖TE2‖nJn〉|2

�E2
n0 − ω2

, (12)

TE2 in Eqs. (10) to (12) represents the E2 transition operator. g4(J0, M0) in Eq. (9) is expressed as

g4(J0, M0) = 3
(
5M2

0 − J2
0 − 2J0

)(
5M2

0 + 1 − J2
0

)
J0(J0 − 1)(2J0 − 1)(2J0 − 3)

− 10M2
0

(
4M2

0 − 1
)

J0(J0 − 1)(2J0 − 1)(2J0 − 3)
, J0 >

3

2
. (13)

The reduced matrix elements 〈n0J0‖TM1‖nJn〉 and 〈n0J0‖TE2‖nJn〉 can be expressed in terms of the reduced matrix elements
〈i‖tM1‖k〉 and 〈i‖tE2‖k〉 of the corresponding monovalent-electron system [47]

〈i‖tM1‖ j〉 = κi + κ j

2
〈−κi‖C1‖κ j〉

∫
r[Pi(r)Qj (r) + Qi(r)Pj (r)]dr, (14)

〈i‖tE2‖ j〉 = 〈κi‖C2‖κ j〉
∫

r2[Pi(r)Pj (r) + Qi(r)Qj (r)]dr, (15)

where Pi(r) and Qi(r) denote the large and small components
of the wave functions for the corresponding monovalent-
electron system.

Results and Discussions. By utilizing the improved DFCP
+ RCI approach that includes negative-energy states, we per-
formed comprehensive calculations of the dynamic multipolar
polarizabilities for the developing atomic clocks.

Tables I and II present the itemized contributions of the
dynamic E2 and M1 polarizabilities, respectively, at the
813.4280(5)-nm magic wavelength [31] of the Sr clock. For

TABLE I. Itemized contributions (Contr.) of the dynamic E2
polarizability (in a.u.) at the 813.4280(5)-nm magic wavelength of
the Sr clock. Tail represents the contribution from other positive-
energy states, while αE2+ and αE2− represent the total contribution
from positive-energy and negative-energy states, respectively. The
numbers in the square brackets denote powers of ten.

5s2 1S0 5s5p 3Po
0

Sub item Contr. Sub item Contr.

5s4d 3D2 1.258[−7] 5s5p 3Po
2 −2.805[−6]

5s4d 1D2 6.965[−5] 5d5p 3F o
2 3.095[−5]

5s5d 1D2 1.224[−5] 5d5p 1Do
2 3.149[−6]

5s5d 3D2 1.106[−8] 5s6p 3Po
2 1.741[−5]

5p2 3P2 5.966[−8] 4d5p 3Do
2 3.603[−6]

5d2 1D2 3.887[−8] 5d5p 3Po
2 2.139[−6]

5s6d 3D2 4.981[−10] 5s4 f 3F o
2 2.644[−5]

5s6d 1D2 1.226[−7] 5s7p 3Po
2 2.601[−6]

5s7d 1D2 2.600[−6] 5s5 f 3F o
2 8.768[−6]

Tail 7.950[−6] Tail 3.214[−5]
αE2+ 9.28[−5] αE2+ 12.44[−5]
αE2− −8.64[−16] αE2− −1.10[−15]
Total 9.28[−5] Total 12.44[−5]

the E2 polarizability, the core contribution is 4.38×10−8 a.u.
and the negative-energy state contribution is less than 10−14

for both the 5s2 1S0 and 5s5p 3Po
0 clock states. Hence, both of

these contributions can be neglected. However, the negative-
energy states have a significant impact on the dynamic M1
polarizability. With the inclusion of negative-energy states,
the dynamic M1 polarizability at the 813.4280(5)-nm magic
wavelength for the 5s2 1S0 state changes from 2.17×10−9

a.u. to −6.18×10−4 a.u. Similarly, for the 5s5p 3Po
0 state, the

contribution of negative-energy states accounts for 99% of the
M1 polarizability. These results include the core contribution
of −2.335×10−4 a.u. [48] to the dynamic M1 polarizability.

To investigate the primary reason for the large contribution
of negative-energy states, we performed a detailed analysis
of the contribution. Our findings indicate that, unlike the

TABLE II. Itemized contributions (Contr.) of the dynamic M1
polarizability (in a.u.) at the 813.4280(5)-nm magic wavelength of
the Sr clock. Tail represents the contribution from other positive-
energy states, while αM1+ and αM1− represent the total contribution
from positive-energy and negative-energy states, respectively. The
numbers in the square brackets denote powers of ten.

5s2 1S0 5s5p 3Po
0

Sub item Contr. Sub item Contr.

5s4d 3D1 1.483[−15] 5s5p 3Po
1 −4.811[−6]

5s6s 3S1 4.098[−13] 5s5p 1Po
1 −2.702[−7]

5s5d 3D1 1.273[−12] 5s6p 3Po
1 7.336[−10]

5p2 3P1 1.539[−9] 5s6p 1Po
1 1.766[−8]

Tail 5.81[−10] Tail 1.35[−8]
αM1+ 2.17[−9] αM1+ −5.05[−6]
αM1− −6.18[−4] αM1− −7.22[−4]
Total −6.18[−4] Total −7.27[−4]
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TABLE III. Dynamic E2 and M1 polarizabilities (in a.u.) at
the 813.4280(5)-nm magic wavelength of the Sr clock. �αE2(ω)
and �αM1(ω) are the dynamic E2 and M1 polarizability difference,
respectively, and �αQM(ω) = �αM1(ω) + �αE2(ω). The numbers
in parentheses represent the theoretical uncertainties, while the num-
bers in the square brackets denote powers of ten.

Polarizability Present Ref. [32] Ref. [28]

αE2
1S0

(ω) 9.28(57)[−5] 9.26(56)[−5] 8.87(26)[−5]

αE2
3Po

0
(ω) 12.44(76)[−5] 12.44(76)[−5] 12.2(25)[−5]

�αE2(ω) 3.16(95)[−5] 3.18(94)[−5] 3.31(36)[−5]

αM1
1S0

(ω) −6.18(24)[−4] 2.12(13)[-9] 2.37[-9]

αM1
3Po

0
(ω) −7.27(30)[−4] −5.05(31)[−6] −5.08[−6]

�αM1(ω) −1.09(38)[−4] −5.05(31)[−6] −5.08[−6]

�αQM(ω) −7.74(3.92)[−5] 2.68(94)[−5] 2.80(36)[−5]

positive-energy states, the contribution from negative-energy
states does not originate primarily from a few intermedi-
ate states but rather from a cumulative effect of numerous
states with energies ranging from −37559 a.u. to −37557 a.u.
(2mc2 ≈ 37558 a.u.). Although these negative-energy states
are far removed from the initial state, their radial wave
functions Qj (r) exhibit significant overlap with the Pi(r)
component of the initial state wave function, leading to a
large Pi(r)Qj (r) product in Eq. (14). In other words, it is a
series of significant M1 transition matrix elements between
the negative-energy states and the initial state that results in
the dominant contribution of negative-energy states to the M1
polarizability.

Since the values obtained using the DFCP + RCI method
for the E1 polarizability of the Sr, Mg, and Cd clocks
agree with the results of the CI+all-order method within 3%
[32,49,50], we conservatively assign an error of 3% to all the
reduced matrix elements to evaluate the uncertainty of present
E2 and M1 polarizabilities. The results, along with a detailed
comparison of the Sr clock, are summarized in Table III.
The present E2 polarizability is in good agreement with the
results reported in previous investigations [28,32], which only
considered the contribution of positive-energy states. In con-
trast, the value of the M1 polarizability �αM1(ω) obtained
in this study is two orders of magnitude larger than the val-
ues reported in Refs. [28,32], primarily due to the dominant
contribution of negative-energy states. By adding �αM1(ω)
and �αE2(ω), we obtain the E2-M1 polarizability difference
�αQM(ω) = −7.74(3.92)×10−5 a.u. for the Sr clock. The
large uncertainty of present result is due to the cancellation
of significant digits when two terms are added together.

To facilitate a direct comparison with the experimental
results of the Sr clock, we convert all the theoretical val-
ues of �αQM(ω) from a.u. to Hz using the formula α̃QM =
�αQM(ω)ER/αE1(ω), where αE1(ω) = 287(17) a.u. is the
present dynamic E1 polarizability at the magic wavelength
of 813.4280(5) nm [31], and ER is the lattice photon recoil
energy [29]. The comparison is presented in Fig. 1. The un-
certainty of theoretical values for α̃QM/h is obtained by using
error propagation theory. Our value of −0.935(477) mHz is
in agreement with the three measured results of −0.962(40)

TABLE IV. Dynamic E2 polarizabilities (in a.u.) at the magic
wavelengths λm (in nm) for the Mg, Ca, Cd, Mg+, Ca+, and Sr+

clocks. �αE2(ω) represents the dynamic E2 polarizability differ-
ence. The contribution of negative-energy states is less than 10−15

and can be safely neglected in our calculations. The numbers in
parentheses indicate the theoretical uncertainties, while the numbers
in square brackets represent powers of ten.

System λm(nm) αE2
1S0

(ω) αE2
3Po

0
(ω) �αE2(ω)

Mg 468.46(21)a 4.25(26)[−5] 1.02(6)[−4] 5.95(65)[−5]
Ca 735.5(20)b 7.51(44)[−5] 1.00(6)[−4] 2.49(48)[−5]
Cd 419.88(14)c 2.53(15)[−5] 9.91(60)[−5] 7.38(62)[−5]

αE2
2S1/2

(ω) αE2
2D5/2

(ω) �αE2(ω)

Mg+ 737 2.73(17)[−6] 4.54(28)[−5] 4.27(28)[−5]
Ca+ 1056.37(9)d 1.14(7)[−5] 6.80(38)[−7] −1.07(7)[−5]
Sr+ 1898 3.83(23)[−6] 5.13(29)[−7] −3.32(23)[−6]

aRef. [51]; bRef. [52]; cRef. [53]; dRef. [56].

[29], −0.987+0.174
−0.223 [33], and −1.24(5) mHz [34]. This demon-

strates the importance of including negative-energy states
in the determination of multipolar polarizabilities of the Sr
clock. However, there is a discrepancy between the measure-
ment of JILA [34] and that of RIKEN [29], which urgently
requires higher-accuracy theoretical calculation or experimen-
tal measurement to resolve it.

Furthermore, we apply the present method to calculate the
dynamic E2 and M1 polarizabilities of various other optical
clocks, and present the results in Tables IV and V. For the Mg,
Ca, and Cd atomic clocks, we calculate the values at the mea-
sured magic wavelengths [51–53]. For the Mg+, Ca+, and Sr+

ion clocks, we compute the values at the magic wavelengths
that are far from resonance, as all-optical trapping of ions with
these wavelengths can effectively suppress micromotion and
ac Stark shift, and improve the frequency stability of clocks
[54–56]. Based on detailed comparison of the reduced matrix

FIG. 3. Comparison of the M1 polarizability difference
�αM1(ω) (in a.u.) for other optical clocks. The blue and magenta
lines represent �αM1(ω) with and without the contribution of
negative-energy states, respectively.
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TABLE V. Dynamic M1 polarizabilities (in a.u.) at the magic wavelengths λm (in nm) for the Mg, Ca, Cd, Mg+, Ca+, and Sr+ clocks.
The values of αM1±(ω) and αM1+(ω) represent the dynamic M1 polarizability with and without the contribution of negative-energy states,
respectively. �αM1±(ω) and �αM1+(ω) represent the dynamic M1 polarizability difference with and without the contribution of negative-
energy states, respectively. The numbers in parentheses indicate the theoretical uncertainties, while the numbers in square brackets represent
powers of ten.

System λm(nm) αM1+
1S0

(ω) αM1±
1S0

(ω) αM1+
3Po

0
(ω) αM1±

3Po
0

(ω) �αM1+(ω) �αM1±(ω)

Mg 468.46(21)a 1.23(7)[−11] −2.49(13)[−4] −1.72(10)[−7] −3.09(16)[−4] −1.72(10)[−7] −0.60(21)[−4]
Ca 735.5(20)b 4.69(29)[−10] −4.67(20)[−4] −1.11(7)[−6] −5.50(25)[−4] −1.11(7)[−6] −0.83(32)[−4]
Cd 419.88(14)c 1.45(9)[−9] −4.40(11)[−4] −3.98(24)[−6] −5.11(15)[−4] −3.98(24)[−6] −0.71(19)[−4]

αM1+
2S1/2

(ω) αM1±
2S1/2

(ω) αM1+
2D5/2

(ω) αM1±
2D5/2

(ω) �αM1+(ω) �αM1±(ω)

Mg+ 737 2.15(13)[−13] −1.21(5)[−4] −4.35(26)[−9] −2.89(15)[−4] −4.35(26)[−9] −1.68(16)[−4]
Ca+ 1056.37(9)d 2.75(17)[−13] −2.67(8)[−4] 6.33(39)[−7] −1.95(4)[−4] 6.33(39)[−7] 0.72(9)[−4]
Sr+ 1898 4.64(28)[−13] −3.86(9)[−4] 9.47(58)[−6] −3.15(5)[−4] 9.47(58)[−6] 0.71(10)[−4]

aRef. [51]; bRef. [52]; cRef. [53]; dRef. [56].

elements with other available results, we also introduce 3%
fluctuation into all the reduced matrix elements to conserva-
tively estimate the uncertainties of M1 and E2 polarizabilities
for other clocks.

Similar to the Sr clock, the results for all the other clocks
in Tables IV and V indicate that the negative-energy states
have a negligible impact on the E2 polarizability, but have
a significant contribution to the M1 polarizability. The in-
tuitive comparison of the M1 polarizability difference with
and without the negative-energy states is shown in Fig. 3.
For each clock, the value in blue deviates significantly from
the value in magenta, demonstrating the importance of the
negative-energy-states contribution.

Conclusion. Motivated by the sign inconsistency between
existing theory and experiment in the E2-M1 polarizabil-
ity difference of the Sr clock, we developed a combined
DFCP+RCI method that includes negative-energy states and
applied it to comprehensively calculate the dynamic M1 and
E2 polarizabilities for current developing clocks. Our calcula-

tion shows that the E2-M1 polarizability difference in the Sr
clock is −7.74(3.92)×10−5 a.u., which is consistent in sign
with all the measured values. Moreover, we found that the
contribution of negative-energy states to the M1 polarizability
is also crucial for other optical clocks. Therefore, our work has
resolved the sign inconsistency for the E2-M1 polarizability
difference in the Sr clock, and further emphasizes the impor-
tance of negative-energy states in evaluating the multipolar
interaction between light and matter in precision measurement
physics.
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