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The computational power of a quantum computer is limited by the number of qubits available for information
processing. Increasing this number within a single device is difficult; it is widely accepted that distributed
modular architectures are the solution to large-scale quantum computing. The major challenge in implementing
such architectures is the need to exchange quantum information between modules. In this work, we show that
a distributed quantum computing architecture with limited capacity to exchange information between modules
can accurately solve quantum computational problems. Using the example of a variational quantum eigensolver
with an ansatz designed for a two-module (dual-core) architecture, we show that three intermodule operations
provide a significant advantage over no intermodule (or serially executed) operations. These results provide a
strong indication that near-term modular quantum processors can be an effective alternative to their monolithic
counterparts.
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Introduction. Quantum computers promise significant
speed-up for a diverse set of problems [1–4]. However, the
quantum advantage over classical computation only becomes
appreciable when the problem size (i.e., the number of qubits
required to solve the problem) is sufficiently large. Yet in
practice, increasing the number of useful qubits on a quan-
tum processing unit (QPU) is challenging: Generally, there
is a trade-off between qubit count and qubit quality [5–8].
Modular architectures, where small high-quality QPUs are
interconnected, offer a more sustainable solution to the scaling
problem than a monolithic approach [9–14]. In small de-
vices, high-fidelity qubit operations are easier to engineer, and
corresponding verification and validation are more tractable.
Modular approaches, however, require transmission of quan-
tum information between QPUs. This information exchange
can be used to create effective interactions between qubits
residing on different QPUs. In general, information transfer
between different modules is significantly slower and less
reliable than that between qubits assigned to the same module.
We call this the quantum interconnect bottleneck (QIB).

An increasingly salient architectural question for quan-
tum computers concerns trade-offs in using an interconnected
multimodule quantum device: Do the overheads associated
with the QIB outweigh the price of adding qubits to a mono-
lithic device?

Suppose one aims to run a circuit that requires N qubits but
only has access to M-qubit devices with M < N . Assuming
that these devices can exchange quantum information using a
quantum interconnect, it is possible to recompile the circuit
[15] such that it uses the interconnect ni times. Alternatively,
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methods such as entanglement forging and circuit knitting
[16–19] attempt to solve this problem at the cost of running
the smaller M-qubit circuit more times, by a number which
is exponential in ni. If the QIB is ignored, an interconnected
approach is favorable since it requires exponentially fewer
shots. However, with QIB overheads, the operation of an inter-
connect may extend run times and reduce quality of results. To
quantify the benefits of a quantum interconnect we compare
a dual-core solution to a naïve approach with comparable
running time—solving different parts of the problem on sep-
arate QPUs and relying solely on classical communication;
we refer to this as the separable (or ni = 0) solution. The
dual-core solution consists of two interconnected QPUs with
N
2 qubits each, while assuming that each QPU individually has
an all-to-all connectivity map; i.e., within each module, qubits
can interact directly with every other qubit.

If one allows O(N ) interconnect uses, the aforemen-
tioned architecture becomes equivalent to an all-to-all
N-qubit device. However, the QIB combined with practical
considerations, such as decoherence, requires limiting ni. As
described below, ni = 3 is not only sufficient for the prob-
lems we consider but it also shows a significant improvement
over the separable solution. Specifically, we show that for a
dual-core architecture, the estimation error arising from the
expressibility of a limited-connectivity ansatz is exponentially
suppressed with ni.

In Fig. 1(a) we show our variational ansatz, which is
composed of single-qubit operations along with the ZZ gate,
ZZ (φ) = exp(i φ

2 σz ⊗ σz ), a common entangling operation in
trapped-ion devices [20,21]. We treat ZZ gates that straddle
two clusters of N/2 qubits as interconnect-mediated remote
gates. We compare performances of the separable and mod-
ular architectures for a common algorithm, the variational
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FIG. 1. A VQE ansatz circuit for a dual-core quantum architecture. (a) VQE ansatz’s structure: Each QPU contains half of the available
qubits, N

2 . The unitary U (�θi, j ) (yellow block) acts on the qubits of the jth QPU at the ith stage, followed by a parametric remote gate operation,
ZZ (blue block), allowing entanglement to be shared between QPUs. Throughout this Letter, the number of intercore operations is ni = 3.
(b) The unitary U (�θi, j ) contains m layers; gates (R) are implicitly parametrized by elements of �θi, j . Throughout this Letter, m = 3 for a total 12
layers executed on each QPU.

quantum eigensolver (VQE) [3,22], which estimates the
ground-state energy of a Hamiltonian. To make a simple com-
parison between the separable solution and the interconnected
one, we only consider the precision of the result on the final
circuit, and thus, we avoid issues related to the performance
of the optimization stage.

Interconnect advantage. Decomposing a state into its prin-
cipal components [23] is a core technique in many numerical
recipes such as the density matrix remormalization group
(DMRG) algorithm [24], where a truncation is performed
based on the diminishing return on the fidelity of storing
more basis components (at a high cost). Such a rationale is
used for understanding the power of interconnects. Suppose
one has two QPUs, each capable of preparing any state in its
M-qubit Hilbert space. The state of that dual-QPU system is
a product state, |ψ〉 = |ψ1〉|ψ2〉, where |ψ j〉 is the state of the
jth QPU. Every application of a remote operation between
QPUs increases inter-QPU entanglement, as expressed by the
rank (d) of the Schmidt decomposition of |ψ〉, cut along
the two QPUs: ψ (d ) = ∑d

i=1 ci|ψ (i)
1 〉|ψ (i)

2 〉. Note that with a
sufficiently expressive intra-QPU ansatz [U (�θ ) in Fig. 1] the
entanglement rank d can rise quickly, up to exponential in
number of inter-QPU operations ni (i.e., d � 2ni ).

Procedure. VQE is an iterative classical-quantum hybrid
algorithm, which estimates the ground-state energy of a given

Hamiltonian [3,25]. A quantum computer produces an ap-
proximation of the Hamiltonian’s ground-state based on a
parametrized ansatz; in turn, a classical strategy for convert-
ing a Hamiltonian into a series of compactly implementable
observables estimates an energy eigenvalue from that approx-
imate ground state [26–28]. This process is repeated, with
varied ansatz parameters chosen by an optimization strat-
egy, until a sufficiently refined ground state is reached [29].
In what follows, we demonstrate that the ni = 3 dual-core
parametrized circuit suggested in Fig. 1 provides an excel-
lent approximation to the exact ground state of interacting
systems.

Apart from ansatz expressibility (how closely the ansatz
can approximate an arbitrary quantum state), VQE results also
depend on classical factors like the Hamiltonian-to-observable
map and parameter optimization routines. Since we intend
to test how expressibility is augmented by interconnects in
a multi-QPU setup, we avoid confounding classical issues
by maximizing the fidelity between the variational state and
the exact ground state, instead of minimizing the expectation
value of the Hamiltonian, Evar. The following summarizes our
procedure (for details, see Ref. [30]). First, we diagonalize
the Hamiltonian obtaining the exact ground state, |ψGS〉. We
perform a singular value decomposition (SVD) (where the
system is divided into two units) and retain the eight most
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significant contributions,

|ψGS〉 → ∣∣ψ (8)
GS

〉 =
8∑

i=1

λi

∣∣φ(i)
1

〉∣∣φ(i)
2

〉
. (1)

Here, λi and |φ(i)
1 〉|φ(i)

2 〉 are the ith Schmidt eigenvalue and
eigenvector, respectively. We iteratively build the variational
solution (see Fig. 1). We start by optimizing the fidelity to-
wards a product state, our crudest approximation to the ground
state, |ψ (1)

GS 〉, defined by the largest Schmidt eigenvalue λ1.
We construct a variational approximation of this target state
using the first set of unitaries U (�θ1,1) and U (�θ1,2), by applying
them on an all-polarized state, |0 . . . 0〉1|0 . . . 0〉2. Next, we
add another Schmidt coefficient and target the state |ψ (2)

GS 〉 by
enlarging the set of variational parameters: a first remote oper-
ation ZZ (φ1) and another set of unitaries, U (�θ2,1) and U (�θ2,2).
After optimization, we add another Schmidt coefficient, with
another interconnected-remote operation, and we repeat till
|ψ (8)

GS 〉 [31].
Models. We test three models to benchmark the

interconnect-mediated ansatz: the transverse field Ising model
(TFIM), the spin-1/2 anisotropic Heisenberg model, and the
spin-1 Heisenberg model. The first two models are paradig-
matic examples in benchmarking performances of novel
methods [32,33]; the spin-1 Heisenberg model enables ex-
ploration of the impact of less local interactions (due to the
casting onto spin-1/2 operators) on the quality of the inter-
connected QPU solution.

The TFIM is defined as

HTFIM = −J
N−1∑

i=1

σ z
i σ z

i+1 − hx

N∑

i=1

σ x
i , (2)

where σα (α = x, y, and z) are the Pauli matrices and N
is the number of spins (qubits). The phase diagram of the
TFIM consists of a (anti)ferromagnetic ordered product state
for positive (negative) J spin-spin interaction and vanishing
transverse field hx, and a disordered state at strong transverse
magnetic field. In the thermodynamic limit, a quantum phase
transition to a gapless phase occurs at hx = J .

The anisotropic Heisenberg model, which is used in studies
of magnetic systems is given by

HXYZ =
N−1∑

i=1

(
JxSx

i Sx
i+1 + JySy

i Sy
i+1 + JzS

z
i Sz

i+1

) + hx

N∑

i=1

Sx
i ,

(3)

where Sα (α = x, y, z) are spin-1/2 operators.
Lastly, the S = 1 Heisenberg model resembles the Affleck-

Kennedy-Lieb-Tasaki model [34,35], and it is of great interest
due to its topological properties. Here, it allows us to probe
and benchmark the interconnected ansatz for a Hamiltonian
with fewer local operators,

HHeis = J
N−1∑

α,i=1

Sα
i Sα

i+1 → J

4

N−1∑

α,i=1

(
σα

2i−1 + σα
2i

)(
σα

2i+1 + σα
2i+2

)

+ JFM

N∑

α,i=1

σα
2i−1σ

α
2i. (4)

FIG. 2. TFIM model with 12 spins at J = 1, Eq. (2), studied as a
function of the transverse magnetic field hx . We depict the logarithm
of the relative energy difference between the exact ground state and
the variational ansatz, ε. The two variational ansätze are a product
state (red squares), in which a separable solution is forced, and the
interconnected solution (blue circles). For presentation purposes, the
error of the separable solution is decreased by an order of magnitude.
For either vanishing or strong magnetic fields, the exact solution is
a product state. However, for intermediate hx values, the separable
solution is far inferior.

Here Sα (α = x, y, and z) are spin-1 operators, and the map-
ping marked by the arrow splits every S = 1 operator into
a pair of spin-1/2 operators. JFM � J is chosen such that
a triplet is selected for every other bond (originating from
the S = 1 operators), with the resulting interactions having a
distance of 4 units.

Results. We study systems with up to 12 qubits and demon-
strate next an immense advantage for ni = 3 over ni = 0. In
Fig. 2, we compare the ground-state approximation for the
TFIM given the two distinct architectures. We denote the VQE
solution by Evar, and we compare it to the exact ground-state
energy EGS. Specifically, throughout the Letter, we analyze
the error measure ε = Evar

EGS
− 1.

An indication of a phase transition in the thermodynamic
limit is detectable even in this small system, as can be seen in
Fig. 2 by examining the product state (red squares). While for
extreme field values (hx → 0 and hx

J � 1) the product state
solution well approximates the exact ground state, around
hx
J ≈ 0.5 this approximation completely fails. In contrast, the

ni = 3 ansatz maintains a lower error throughout. For pre-
sentation purposes, we display the product state error scaled
down by a factor of 10. Overall, the interconnected solution
performs well, and its error does not exceed 0.07% throughout
the phase diagram, compared to an error of up to 8% in the
separable solution. The error in the interconnected solution is
comparable in magnitude to the exact (nonvariational) wave
function truncated to eight Schmidt terms, where infidelity is
0.01%.

In Fig. 3, we examine a portion of the phase diagram of
the anisotropic Heisenberg model at the fixed value Jx = 1.0
and magnetic field values hx ∈ {0, 0.5, 1.0}, thus including the
symmetric Heisenberg point (Jx, Jy, Jz, hx ) = J (1, 1, 1, 0).
We plot ε for a 12-qubit problem. Excluding extreme malper-
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FIG. 3. VQE results for the one-dimensional XY Z model with 12 spins [see Eq. (3)]. We present a color map of the logarithm of the
relative energy differences between the exact ground state and the variational ansatz, ε. The panels depict different magnetic field strengths:
hx = 0, 0.5, and 1.0, and Jx = 1. Fidelities are usually above 99.9%; the highest reported variation is 1.4%.

forming data points, the energy convergence ratio stays well
below 10−3 [36]: The worst performing data point, occurring
in the vicinity of (Jx, Jy, Jz, hx ) = (1,−1, 0.5, 1) along the Jz

direction, appears to be an outlier with an error ε ≈ 1.4%. We
are unable to pinpoint the reason for this failing; neighboring
data points in the Jy direction show significantly better con-
vergence.

In Fig. 4, we study the S = 1 Heisenberg model at JFM =
10 [37] [see Eq. (4)]. The main panel presents the log-
infidelity of the result, ln {1 − |〈ψvar|ψGS〉|2}. The ni = 3 solu-
tion (blue circles) displays significantly better fidelities com-
pared to the separable one (ni = 0, red squares), with factor
of 20 decrease in infidelity at N = 12, and significantly better
results for smaller systems. The inset shows the relative en-
ergy estimation error ε as a function of the number of qubits.
Besides a single outstanding point (N = 10), the upward trend
reflects the increasing complexity of the solution as the system
size grows. The outlier at N = 10 was further examined by in-

FIG. 4. VQE results for the S = 1 Heisenberg model, Eq. (4),
with up to a six-spin chain represented by ×2 qubits, N . We display
the log infidelity of the variational state compared to the exact ground
state for the separable product states of two N

2 qubits (red squares)
and the interconnected ansätze (blue circles). The inset shows the
relative energy error ε, in percent. While the error of the intercon-
nected solution increases with N , it still delivers fidelity orders of
magnitude better than that of the separable solution.

troducing another layer, after the third remote operation (with
the VQE ansatz including 13 layers in total). This brought the
relative energy error to 0.2%, consistent with the linear trend
seen in Fig. 4. Introducing the same change to other values of
N showed no significant change. We attribute this deviation to
the optimization process as elaborated on next.

Discussion. Two issues limit convergence to the exact so-
lution.

(i) Classical optimization. As described under Procedure,
we are using differentiable programming [30] to find the op-
timal variational parameters for the VQE ansatz, a task of
growing complexity when increasing the qubit count. The
number of parameters increases depending on the ansatz
structure (in our ansatz for N = 12 we have 753 variational
parameters).

(ii) Expressibility of the ansatz. [38] As discussed above,
one can separate the effect of the interconnect (the remote
gate) from the “local” layers [the unitaries U (�θi, j )]. Each
interconnect operation doubles the potential Schmidt rank of
the state, and the role of subsequent layers is to facilitate
quantum information spreading. Whether information spreads
far enough depends on the number of layers and their inner
structure (Fig. 1). To assess the expressibility of the ansatz
without the effect of the interconnect, we have examined in
Ref. [30] a single QPU architecture with all-to-all connected
qubits. While an all-to-all architecture performs slightly better
than the interconnected one, it comes at a greater cost as
increasing the number of qubits on a QPU is a nontrivial task,
which a multi-QPU modular architecture aims to avoid.

The SVD eigenvalues of the TFIM decay faster than those
of the S = 1 Heisenberg model due the topological nature of
the latter’s ground state [39]. The theoretical lower bound
on the infidelity is the sum of the discarded SVD eigenval-
ues squared. Considering that only three remote operations
were allowed here, the discarded weight in the TFIM model
was found to be 4 × 10−10. Hence, the resulting infidelity,
10−6 is not limited by the interconnect. Similarly, in the
S = 1 Heisenberg model with N = 12, the discarded weight
is 2 × 10−3, and the reported infidelity of 3 × 10−3 is close
to this bound. In conclusion, the limiting factor in solving the
VQE on an interconnected hardware is classical optimization
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combined with the limited expressibility of the ansatz, rather
than the introduction of remote operations. Interestingly, we
note that comparing the TFIM to the S = 1 Heisenberg model,
the TFIM is converging much better than the latter, both in the
interconnected case and in the all-to-all connected case [30].
This could be explained by the suitability of the ansatz to the
specific model, though in-depth consideration of this aspect is
outside the scope of this Letter.

Conclusions. In this work, we demonstrated that a dis-
tributed quantum architecture with only modest inter-QPU
capacity provides a dramatic advantage in VQE computations
over serial architectures with no interconnects. In all cases
studied, we found that three judiciously placed inter-QPU
gates were sufficient to produce a significantly better approxi-
mation to the ground-state energy for Hamiltonians of interest
compared to an architecture with no quantum interconnects.
For the Hamiltonians studied here we find that increasing ni

allows for an exponential improvement in the fidelity [30].
Our comparison is based on simulations, and it is therefore
limited to a small number of qubits. The main conclusion
from this work is that an exponential increase in the Schmidt
rank with respect to ni (and subsequently in the dimension
of the effective Hilbert space) manifests itself when solving a
practical algorithm.

The relatively small instances explored here allowed us
to overcome some aspects of classical optimization, yet pre-
vented us from showing advantages over other methods such

as circuit knitting and entanglement forging. These techniques
scale exponentially worse with increased number of intercon-
nect uses ni, but are generally expected to perform well for
ni = 3. As such, we expect that in future work these methods
could be combined with interconnects to increase the effective
Hilbert space.

A number of important questions remain open, including
the impact of noise and the imperfect nature of interconnects.
Slow interconnects would increase run time and make the
computation more susceptible to decoherence; inter-QPU op-
erations are generally expected to have lower fidelity [14,40];
and the use of fixed resource states creates overheads in
gate counts and the actual implementation of the interconnect
would impact the other qubits. These limitations need to be
weighed against the downside of increasing qubit count in
a monolithic architecture, as well as artificially increasing
qubit size using classical resources. Identifying algorithms
where a limited number of interconnect uses can be proved
advantageous will be an incentive for the implementation
of multi-QPU architectures. We hope that our study would
stimulate further work in this direction.
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