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Detailed fluctuation theorem from the one-time measurement scheme
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We study the quantum fluctuation theorem in the one-time measurement (OTM) scheme, where the work
distribution of the backward process has been lacking and which is considered to be more informative than
the two-time measurement (TTM) scheme. We find that the OTM scheme is the quantum nondemolition TTM
scheme, in which the final state is a pointer state of the second measurement whose Hamiltonian is conditioned
on the first measurement outcome. Then, by clarifying the backward work distribution in the OTM scheme, we
derive the detailed fluctuation theorem in the OTM scheme for the characteristic functions of the forward and
backward work distributions, which captures the detailed information about the irreversibility and can be applied
to quantum thermometry. We also verified our conceptual findings with the IBM quantum computer. Our result
clarifies that the laws of thermodynamics at the nanoscale are dependent on the choice of the measurement and
may provide experimentalists with a concrete strategy to explore laws of thermodynamics at the nanoscale by
protecting quantum coherence and correlations.
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Introduction. One of the most significant conceptual fac-
tors distinguishing quantum physics and classical physics is
measurement [1]. In quantum mechanics, measurements typi-
cally destroy quantum coherences and correlations that could
be utilized as the resources for many quantum engineering
tasks, such as quantum computing and quantum metrology.
Compared to classical systems, one has many degrees of
freedom in choosing the basis of the measurement based on
their task on the quantum system. Particularly, the eigenbasis
of the observable of the measurement apparatus is comprised
of the so-called pointer states [2–6], which are immune to
decoherence due to the corresponding measurement.

Quantum thermodynamics [7–9] is a rapidly growing field
exploring the laws of thermodynamics from the perspective of
quantum information science. Fluctuation theorems [10,11] in
both quantum and classical systems are regarded as one of the
most significant laws to date [12] because many significant
thermodynamic principles can be derived, such as the second
law of thermodynamics [13] and response theory [14,15]. The
standard approach toward quantum fluctuation theorem is the
so-called two-time measurement (TTM) scheme [16–31].

The TTM scheme is constructed by two energy projection
measurements at the beginning and the end of a quantum
process. In the standard setup of the time-varying Hamiltonian
system, the initial state is prepared in the Gibbs state defined
by its initial Hamiltonian H0. Then, one performs an energy
measurement on the initial state with H0, which projects the
system onto one of the eigenstates |Ei〉 of H0 based on the
initial measurement outcome Ei. Then, one evolves the system
under the unitary operator U during time τ and measures the
evolved state U |Ei〉 with the final Hamiltonian Hτ . Finally, the
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system will be projected again onto an eigenstate |E ′
j〉 of Hτ

based on the final measurement outcome E ′
j .

The work performed on the system in a single realiza-
tion is defined by the difference between the final and initial
measurement outcome, Wi→ j ≡ E ′

j − Ei, which recovers the
standard fluctuation theorem, also known as the TTM fluctua-
tion theorem resembling the classical Jarzynksi equality [10].
Therefore, the TTM scheme can be regarded as a semiclas-
sical approach, which has been experimentally implemented
in various systems [32–42], including a demonstration on
the DWave machine [30]. However, the second projection
measurement usually destroys the quantum coherence and
correlations generated through the dynamics, which means
that the TTM cannot fully capture the peculiar features of
the quantum systems when one analyzes its thermodynamic
behaviors [29].

To address the thermodynamic contribution of quan-
tum correlations, Ref. [43] proposed the so-called one-time
measurement (OTM) scheme. In this scheme, the second
measurement is considered to be avoided and the work is
determined by the energy difference conditioned on the ini-
tial energy measurement outcome. Within this paradigm, the
corresponding Jarzynski equality includes the additional in-
formation contribution stemming from the quantum relative
entropy of the conditional thermal state [44,45] with respect
to the Gibbs state defined by the final Hamiltonian. This
additional term provides a tighter maximum work relation
and captures the quantum coherence or correlations gener-
ated through the dynamics in the formalism. Therefore, the
OTM scheme can be regarded as more informative than the
TTM scheme. This has been elucidated in various contexts,
including quantum thermometry [45], work as an external
quantum observable [46], distinguishability of heat and work
in an open quantum system [47], heat exchange [48], classical
correspondence of the OTM scheme [44], quantum ergotropy
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[49], and information production [50]. However, the backward
process in the OTM scheme has not been considered yet,
which has made the detailed quantum fluctuation theorem of
the OTM scheme elusive.

In the present Letter, we first prove that the OTM scheme
is the quantum nondemolition (QND) TTM scheme, where
the pointer states of the second measurement (conditional
Hamiltonian) are the evolved states conditioned on the initial
measurement outcome. From this, we construct the backward
work distribution and derive the detailed quantum fluctuation
theorem of the OTM scheme, which we call OTM fluctuation
theorem. Then, we propose a quantum circuit to compute
the symmetric relation of the characteristic functions of the
forward and backward work distributions. We explore the
physical meaning of the OTM fluctuation theorem by asso-
ciating it to the concept of irreversibility and demonstrate the
potential application of the derived formalism to state prepa-
ration for low-temperature quantum thermometry. Finally, we
verify the derived detailed fluctuation theorem with IBM
quantum computer to demonstrate the experimental imple-
mentability of the OTM scheme. These results emphasize that
the laws of quantum thermodynamics are strictly determined
by the choice of measurements by the observers.

OTM detailed fluctuation theorem. Our first result is the
derivation of the OTM fluctuation theorem. We consider a
finite-dimensional closed quantum system described by a d-
dimensional Hilbert space. Let the initial state be a Gibbs
state ρ

eq
0 ≡ exp(−βH0)/Z0, where H0 is the initial Hamilto-

nian and Z0 ≡ tr{exp(−βH0)} is the partition function. In a
closed quantum system, the time evolution is described by a
unitary operator U . In the OTM scheme, the work for a single
realization of the protocol is defined as

W̃i ≡ 〈Ei |U †HτU |Ei〉 − Ei, (1)

which also has been called conditional work [44]. This is the
energy difference between the final energy conditioned on
the initial measurement outcome and itself. Then, the forward
conditional work distribution is simply given by [43]

P̃f (W ) =
d∑

i=1

e−βEi

Z0
δ(W − W̃i ), (2)

which is consistent with the exact average work

〈W 〉 =
∫

W P̃f (W )dW = tr
{
(U †HτU − H0)ρeq

0

}
(3)

and yields the generalized Jarzynski equality [43]

〈e−βW 〉P̃ = Z̃τ

Z0
= e−β�F e−S (̃ρτ ||ρeq

τ ). (4)

In Eq. (4), the conditional partition function, Z̃τ ≡∑d
i=1 exp (−β〈Ei |U †HτU |Ei〉), is the normalization factor

used to construct the conditional thermal state,

ρ̃τ ≡
d∑

i=1

e−β〈Ei |U †HτU |Ei〉

Z̃τ

U |Ei〉〈Ei|U †. (5)

Finally, S (̃ρτ ||ρeq
τ ) = tr{̃ρτ ln ρ̃τ } − tr{̃ρτ ln ρ

eq
τ } is the quan-

tum relative entropy of the conditional thermal state with

respect to the Gibbs state ρ
eq
τ ≡ exp(−βHτ )/Zτ of the final

Hamiltonian Hτ .
By comparing with the TTM scheme, we demonstrate that

the OTM scheme is equivalent to the TTM scheme with a
carefully chosen final Hamiltonian (conditional Hamiltonian)
based on the information about the initial measurement out-
come and the dynamics of the system. To see this point, let us
define the conditional Hamiltonian Gτ ,

Gτ ≡
d∑

i=1

〈Ei |U †HτU |Ei〉U |Ei〉〈Ei|U †, (6)

where Ei is the eigenenergy of the initial Hamiltonian H0

with its corresponding eigenstate |Ei〉. At t = 0 we perform
a projective energy measurement H0 on the system initially
prepared in ρ

eq
0 . Then, the postmeasurement state will be

projected onto |Ei〉 with the corresponding energy Ei. After
the evolution, the state is U |Ei〉. At t = τ we perform the
second measurement Gτ . Since the final state is a pointer
state of Gτ , it is not destroyed by the measurement, so that
the observer obtains the final energy measurement outcome
〈Ei |U †HτU |Ei〉, while the system remains as U |Ei〉. The cor-
responding quantum work is simply given by Eq. (1).

Then, the equivalent work distribution within the TTM
paradigm, the forward work distribution is computed as

P̃f (W ) =
d∑

i=1

e−β〈Ei |H0|Ei〉

Z0
|〈Ei |U †U |Ei〉|2δ(W − W̃i ), (7)

which is identical to Eq. (2).
This is our first main result, namely we have that the OTM

scheme is exactly the QND TTM scheme, in which the second
projection measurement does not destroy the evolved state
conditioned on the initial measurement outcome (see Fig. 1
and [51]). We will now exploit this insight to construct the
conditional work distribution for the backward process within
the OTM paradigm.

The backward process is initialized from the state ρ̃τ ≡
exp (−βGτ )/Z̃τ . After the backward evolution described by
U †, the measurement H0 is performed on the final state of
the backward process. Since the final state is U †U |Ei〉 = |Ei〉,
which is a pointer state of H0, H0 does not destroy the state.
Moreover, the outcome is always Ei.

Then, by following the TTM scheme, the conditional work
distribution of the backward process is given by

P̃b(−W ) ≡
d∑

i=1

e−β〈Ei |U †HτU |Ei〉

Z̃τ

δ(−W + W̃i). (8)

From Eq. (8) we now derive the fluctuation theorem [52–54]
between the forward conditional work distribution and back-
ward distribution in the characteristic function form.

The characteristic functions are defined as the Fourier
transform of the work distributions

C̃ f (u) ≡
∫

dW P̃f (W )eiuW ,

C̃b(u) ≡
∫

dW P̃b(−W )e−iuW . (9)
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FIG. 1. Comparison between the TTM and OTM scheme.
In (a) the standard TTM scheme, in which the second energy
measurement is the final Hamiltonian, the projection measure-
ment projects the evolved state U |Ei〉 onto |E ′

j〉 the eigenstate
of Hτ . In (b) the OTM scheme, the final Hamiltonian Gτ ≡∑d

i=1〈Ei |U †HτU |Ei〉U |Ei〉〈Ei|U † is the conditional Hamiltonian
with its pointer state U |Ei〉, which is equivalent to the evolved state
conditioned on the initial measurement outcome. Therefore, this
measurement preserves the state U |Ei〉. In this sense, this measure-
ment is a QND measurement.

By applying the approach to the TTM scheme in
Refs. [52–54], the characteristic functions are equivalent to

C̃ f (u) = tr
{
U †eiuGτ U e−iuH0ρ

eq
0

}
,

C̃b(u) = tr{U eiuH0U †e−iuGτ ρ̃τ }. (10)

Thus we obtain the following symmetry relation [55], which
is our second main result:

C̃ f (u)

C̃b(−u + iβ )
= Z̃τ

Z0
= e−β�F−S (̃ρτ ||ρeq

τ ), (11)

where

C̃b(−u + iβ ) = tr{U e−iuH0 e−βH0U †eiuGτ eβGτ ρ̃τ }. (12)

The characteristic functions can be determined directly from
quantum circuits, and hence our results permit the demonstra-
tion of the experimental implementability of the OTM scheme
in the single qubit interferometry.

Single-qubit interferometry approach. By employing
the single-qubit interferometry approach developed in
Refs. [53,54], we now construct a quantum algorithm to verify
Eq. (11). This indicates that the OTM scheme is experimen-
tally implementable, which is our third main result.

Let us define |0〉 ≡ (1 0)T and |1〉 ≡ (0 1)T . We de-
note by 1 the 2 × 2 identity matrix and X , Y , Z as the
usual Pauli matrices. Also, we write the Hadamard gate
as H ≡ 1√

2
(1 1
1 −1). Then, the characteristic function of the

forward process C̃ f (u) can be computed by the quantum cir-
cuit depicted in Fig. 2. In this circuit, the ancilla qubit is
initially prepared in |0〉. The target system is prepared in the

FIG. 2. Quantum circuit for computing C̃f (u). The expectation
values of X and Y obtained by measuring the final state of the ancilla
qubit are Re[C̃f (u)] and Im[C̃f (u)], respectively.

Gibbs state ρ
eq
0 . To obtain the characteristic function C̃ f (u),

we measure the output state of the ancilla qubit with X and
Y , whose expectation values become 〈X 〉 = Re[C̃ f (u)] and
〈Y 〉 = Im[C̃ f (u)].

Next, we consider the quantum circuit to compute the
characteristic function of the backward process C̃b(−u + iβ ).
From Eq. (12), we need to first decompose exp(βGτ ) and
exp(−βH0) with Pauli string {σk}d2

k=1, where σ1 is the d ×
d identity matrix [56]. Here, note that 1

d tr{σkσ�} = δk� be-
comes Kronecker’s delta. Then, we can write exp(−βH0) =∑d2

k=1 α
(0)
k σk and exp(βGτ ) = ∑d2

k=1 α
(τ )
k σk , where α

(0)
k =

1
d tr{e−βH0σk} and α

(τ )
k = 1

d tr{eβGτ σk}. Note that the coeffi-

cients {α(0)
k , α

(τ )
k }d2

k=1 are computable via a classical computer
since we have full knowledge of H0, Hτ , and U if d is smaller.
Therefore, we can write

C̃b(−u + iβ ) =
∑
k,�

α
(0)
k α

(τ )
� Fk�, (13)

where we define

Fk� ≡ tr{Uσke−iuH0U †σ�eiuGτ ρ̃τ }. (14)

Then, we can employ the quantum circuit depicted in Fig. 3
to compute Fk�. In this circuit, the ancilla qubit is prepared in
|0〉. The target system is prepared in the conditional thermal
state ρ̃τ . Here, the expectation values become 〈X 〉 = Re[Fk�]
and 〈Y 〉 = Im[Fk�]. Given the fact that we have already known
{α(0)

k , α
(τ )
k }d2

k=1 via a classical computer, from Eq. (13), we can
finally obtain C̃b(−u + iβ ).

Physical meaning of OTM fluctuation theorem. By con-
sidering the backward process, we can find that the OTM
fluctuation theorem can capture the detailed information about
the irreversibility and be applied to state preparation for quan-
tum thermometry in the low-temperature limit. To quantify
the irreversibility of a quantum process, we consider the
Kullback-Leibler (KL) divergence D[P̃f ||P̃b] of P̃f (W ) with
respect to P̃b(−W ), which is defined as

D[P̃f ||P̃b] ≡
∫

dW P̃f (W ) ln

(
P̃f (W )

P̃b(−W )

)
. (15)

From Eqs. (2) and (8), we obtain [51]

D[P̃f ||P̃b] = −S
(
ρ

eq
0

) + β tr
{
Uρ

eq
0 U †Hτ

} + ln Z̃τ , (16)

FIG. 3. Quantum circuit for computing Fk�. The expectation val-
ues of X and Y obtained by measuring the final state of the ancilla
qubit are Re[Fk�] and Im[Fk�], respectively.
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where S(ρeq
0 ) ≡ −tr{ρeq

0 ln ρ
eq
0 } is the von Neumann en-

tropy of ρ
eq
0 . Given that the exact averaged work 〈W 〉 ≡

tr{Uρ
eq
0 U †Hτ } − tr{ρeq

0 H0}, from Eq. (11), the excess work
〈Wex〉 ≡ 〈W 〉 − �F can be written as

β〈Wex〉 = D[P̃f ||P̃b] + S (̃ρτ ||ρeq
τ ). (17)

This means that the excess work 〈Wex〉 is a sum of the
KL divergence D[P̃f ||P̃b], which characterizes the irreversible
process, and βS (̃ρτ ||ρeq

τ ), which is the energy dissipated into
the heat bath when the system is thermalized from ρ̃τ . There-
fore, βS (̃ρτ ||ρeq

τ ) can be interpreted as a heatlike quantity.
Furthermore, D[P̃f ||P̃b] can be employed in quantum ther-

mometry in the low-temperature limit. In Ref. [45], it was
demonstrated that the conditional thermal state ρ̃τ can out-
perform the Gibbs state ρ

eq
τ in the low-temperature limit.

Therefore, preparing ρ̃τ is a desired task for quantum ther-
mometry. First the excess work can be written as β〈Wex〉 =
S(Uρ

eq
0 U †||ρeq

τ ) [57–59]. In Ref. [45], we derived the so-
called thermodynamic triangle equality S(Uρ

eq
0 U †||̃ρτ ) +

S (̃ρτ ||ρeq
τ ) = S(Uρ

eq
0 U †||ρeq

τ ). Therefore, from Eq. (17), we
obtain

D[P̃f ||P̃b] = S
(
Uρ

eq
0 U †||̃ρτ

)
, (18)

which measures the distinguishability of the exact final state
Uρ

eq
0 U † and the conditional thermal state ρ̃τ . This quantity

can be used to design the unitary process U that mini-
mizes S(Uρ

eq
0 U †||̃ρτ ) for the final exact state Uρ

eq
0 U † to be

closer to ρ̃τ . Also, note that the distinguishability measure
S(Uρ

eq
0 U †||̃ρτ ) can be computed by a quantum computer.

From Eqs. (11) and (16), we have

D[P̃f ||P̃b] = β〈W 〉 + ln

(
C̃ f (u)

C̃b(−u + iβ )

)
, (19)

where 〈W 〉, C̃ f (u), and C̃b(−u + iβ ) can be computed by a
quantum computer.

Finally, we emphasize that these analyses are hard to con-
duct within the TTM scheme [31]. Therefore, our detailed
fluctuation demonstrates an additional advantage of the OTM
scheme.

Verification with IBM quantum computers. To conclude
our analysis, we employ the IBM cloud-based quantum com-
puter [60] to verify the detailed fluctuation theorem (11).
Our setup is the following. The initial Hamiltonian H0 is
H0 = ω(Z ⊗ 1 + 1 ⊗ Z ) with the corresponding eigenbasis
|E1〉 = (1 0 0 0)T , |E2〉 = (0 1 0 0)T , |E3〉 =
(0 0 1 0)T , and |E4〉 = (0 0 0 1)T . The final
Hamiltonian is set to be Hτ = J (X ⊗ X ). The unitary operator
that describes the evolution is set as U = exp[−i �τ

2 (Y ⊗ 1 +
1 ⊗ Y )].

For the initial Gibbs state preparation, we consider the de-
composition of the input mixed state. This is because we can
only prepare pure states on the IBM quantum computers and
{|Ei〉}4

i=1 can be prepared. For the weights {exp(−βEi )/Z0}4
i=1,

FIG. 4. Verification with IBM quantum computers. The dashed
line is the exact value Rtrue = 0.433167. The error bars represent
99% confidence interval. As we increase the number of trials N , the
averaged ratios 〈R〉N approach the exact value with a clear plateau
starting from N = 75. When N = 100, we have 〈R〉100 = 0.433706.

since we already know the initial Hamiltonian H0, we assume
that the weights are also known and we can compute C̃ f (u).

For the backward process, we need to prepare the condi-
tional thermal state ρ̃τ as the initial state. In our simulation, we
suppose that we already know U ; therefore, we can prepare
{U |Ei〉}4

i=1 with the quantum computer. Similarly, because
we assume that U , H0, and Hτ are known, the weights
{exp(−β〈Ei |U †HτU |Ei〉)/Z̃τ }4

i=1 are considered to be also
known, which we use to compute Fk�. Thus the coefficients
α

(0)
k and α

(τ )
� are also regarded as known values, which enables

one to compute C̃b(−u + iβ ).
By setting the parameters as β = 0.5, ω = 2, � = 3, J =

1, and τ = π/4, we obtain the theoretical value of the ratio

Rtrue ≡ C̃ f (u)

C̃b(−u + iβ )
= 0.433167 (20)

for any u. Here, we particularly focus on the case u = 1 and
verify Eq. (20) with the IBM cloud-based quantum computer
[60].

To determine 〈X 〉 and 〈Y 〉, for each quantum circuit in
Figs. 2 and 3, we perform the single-shot measurement 20000
times. The median of the errors of the gates and the single-
qubit readout error in our setup are around 10−4–10−2 with the
T1 and T2 ranging from around 17 µs to 232 µs (for complete
information of the IBM machine, refer to the Supplemental
Material [51]). Because of the error, the computed ratio be-
comes complex; therefore, we consider the absolute value of
the ratio R ≡ |C̃ f (1)/C̃b(−1 + 0.5i)|. To obtain more precise
values, we run the whole process N times (number of trials)
and compare the true value with the average value 〈R〉N ≡
1
N

∑N
j=1 Rj , where Rj is the value of R at the jth trial. Then,

we compute the error rate as eN = |1 − 〈R〉N/Rtrue| × 100 [%]
for each N .

We have achieved a very high accuracy in our simulation.
In Fig. 4, we plot the relation between 〈R〉N for each num-
ber of trials N = 10, 15, 20, . . . , 100, where the error bars
represent the 99% confidence interval [61]. As we can see, as
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FIG. 5. Error rate vs number of trials. As we increase the number
of trials N , the error rate eN becomes smaller. When N = 100, we
have e100 	 0.12%.

we increase the number of trials, the average value converges
to the true value with an explicit plateau starting from N = 75.
When N = 100, 〈R〉100 records 0.433706.

In Fig. 5, we show the relation between the error rate eN

and the number of trials N . As we can see, as the number
of trials increases, the error rate becomes smaller. Actually,
when N = 100, e100 records around 0.12%, which is accurate

enough to claim that the OTM fluctuation theorem Eq. (11) is
verified with the IBM quantum computer.

Conclusion. In conclusion, we have derived the detailed
fluctuation theorem of the OTM scheme by clarifying the
backward work distribution. This has been enabled by the
insight that the OTM scheme can be regarded as a QND
TTM scheme, where the second measurement is constructed
by the pointer states conditioned on the initial energy mea-
surement outcome. We have related its physical meaning
to the irreversibility and quantum thermometry in the low-
temperature limit. We have also demonstrated its experimental
implementability and we have verified the derived fluctua-
tion theorem on the IBM quantum computer by introducing
the corresponding quantum circuit to compute the symmetric
relation between the characteristic functions of the forward
and backward work distributions. These results not only pro-
vide the solutions to the open problems regarding the OTM
scheme, but also clarify that the laws of thermodynamics at
the nanoscale are strictly dependent on the choice of the mea-
surement of the observer. From a practical point of view, these
results provide experimentalists with a concrete strategy to
study laws of thermodynamics at the nanoscale by protecting
quantum coherence and correlations.
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