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Experimental investigation of conditional majorization uncertainty relations
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We report an experimental investigation of conditional majorization uncertainty relations (CMURs) in the
presence of quantum memory. We find that the CMUR bounds are always physically nontrivial even if the
particle of interest is strongly entangled with a quantum memory, whereas the previous conditional entropic
uncertainty relation bounds may be trivial and physically unreachable. We deploy vectorized measures of
uncertainty relations and quantum correlations, and the result reveals the sophisticated structures of them. In
addition, we demonstrate an application of the CMURs, to witness steerability of bipartite states. Such a method
applies to an arbitrary number of measurement settings and can be efficiently implemented. Aside from the
CMURs’ fundamental significance, our result also shows its impact on the development of future quantum
technologies.
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Introduction. The uncertainty relation, which restricts the
uncertainties of the outcomes of two incompatible measure-
ments, is one of the basic principles of quantum mechanics.
The uncertainty relation clearly illustrates the fundamental
difference between classical and quantum physics. The best-
known one is the variance uncertainty relation (Heisenberg-
Robertson uncertainty relation) [1–7], which is expressed in
terms of the commutator,

�X 2�Y 2 � 1
4 |〈[X,Y ]〉|2, (1)

where �X 2(�Y 2) represents the variance of the observable
X (Y ).

The lower bound on the right-hand side (rhs) of (1) is state
dependent and can be 0 even for noncommuting observables,
which makes the relation trivial. An entropic uncertainty
relation [8–10] overcomes this defect, which is expressed
as

H (X ) + H (Y ) � log2
1

c
, (2)

where H (X ) denotes the Shannon entropy of measurement
probability distribution of observable X ; c ≡ maxi j |〈xi|y j〉|2
quantifies the complementarity of the two observables, with
|xi〉 (|y j〉) being the eigenvectors of X (Y ).

By introducing quantum entanglement, the uncertainty re-
lation in the presence of quantum memory has been proposed
[11,12] and experimentally demonstrated that the previous
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bounds of the uncertainties about the outcomes of two incom-
patible measurements on a particle can be violated [13–16].
With the particle of interest (A) initially entangled with an-
other particle (B) which acts as a quantum memory, this
stronger, conditional entropic uncertainty relation (CEUR)
[12] reads as

S(X |B) + S(Y |B) � log2
1

c
+ S(A|B), (3)

where S(X |B) [S(Y |B)] is the conditional von Neumann en-
tropy representing the uncertainty of the measurement of
X (Y ) with access to the quantum memory B; S(A|B) is a
negative conditional entropy which quantifies the effect of the
entanglement [17]. Therefore, the CEUR bound depends on
the amount of the entanglement between the particle A and
the quantum memory B [12].

If A and B are strongly entangled, the CEUR bound may
be negative. [Consider a concrete case, where A and B share a
maximally entangled state. We then have S(A|B) = − log2 d
with d representing the dimension of A. The term log2

1
c

cannot exceed log2 d , leading to a negative rhs of (3).] Then
relation (3) reduces to S(X |B) + S(Y |B) � 0 which is trivial,
because the left-hand side (lhs) (that represents the conditional
entropy of a system after measurement in the presence of
quantum memory) cannot be negative.

In addition, the idea that majorization techniques can be
used to quantify uncertainties has been proposed [18], giving
the so-called universal uncertainty relations [19–22]. Ma-
jorization is a mathematical concept for determining whether
a probability distribution is more disordered or spread than an-
other. Majorization �a ≺ �b is defined as

∑k
i=1 a↓

i � ∑k
j=1 b↓

j ,
k ∈ {1, 2, . . . , N} for two vectors with elements in descending
order and the equality holds for k = N . In Ref. [22], Li et al.

2469-9926/2023/108(5)/L050202(6) L050202-1 ©2023 American Physical Society

https://orcid.org/0000-0002-8784-2539
https://orcid.org/0009-0006-2762-0922
https://orcid.org/0000-0002-4272-2883
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.L050202&domain=pdf&date_stamp=2023-11-07
https://doi.org/10.1103/PhysRevA.108.L050202


GAOYAN ZHU et al. PHYSICAL REVIEW A 108, L050202 (2023)

proposed the optimal universal uncertainty relation in the form
of direct-sum majorization,

�p(x) ⊕ �p(y) ≺ �s, (4)

where vector �p(x) [ �p(y)] represents the measurement prob-
ability distribution of X (Y ). Unlike variance- and entropy-
based uncertainty relations, an optimal upper bound �s of
(4) can be easily determined with a majorization technique
[22,23].

More recently, by virtue of the majorization lattice theory
[23], a practical method to reduce the measurement uncer-
tainty of A by determining the measurement on B of an
entangled bipartite system is proposed [24]. In light of this
method, a family of conditional majorization uncertainty rela-
tions (CMURs) in the presence of quantum memory has been
constructed [22].

In this Letter, we report an experimental investigation of
CMURs with quantum memory in a photonic system. Com-
pared to the previous works that studied uncertainty relations
with scalar measures (i.e., variance and entropy), we provide a
vectorized measure of quantum uncertainty and quantum cor-
relations in a lattice-structured fashion. Most importantly, we
experimentally show that the CMUR bound is nontrivial and
physically reachable even if the particle is strongly entangled
with another which acts as a quantum memory, while in the
same situation, the bound of the conditional entropic uncer-
tainty relation (3) is mostly trivial and physically unreachable.
Furthermore, we demonstrate the CMUR’s advantages in ex-
ploiting the experimentally feasible steering criterion. With
a straightforward optimal strategy based on the majorization
technique, the criterion can be efficiently implemented with
an arbitrary number of measurement settings.

Conditional majorization uncertainty relations. Now we
study the uncertainty relations in the majorization context. For
a given bipartite state ρAB and N-valued measurement X on A
and X ′ on B, we denote the joint probability distribution of X
and X ′ as [ �p(1)(x), �p(2)(x), . . . , �p(N )(x)], with the vector �p(i)(x)
representing the probability distribution of measuring X on A
conditioned on measuring X ′ on B and obtaining x′

i . We then
define the majorized marginal distribution as

�p(x|x′) ≡ �p(1)↓(x) + �p(2)↓(x) + · · · + �p(N )↓(x), (5)

where the superscript “↓” in �p(1)↓(x) indicates that the ele-
ments of vector �p(i)(x) are resorted in a nonincreasing order.
For two pairs of measurements, the majorization relation
�p(x|x′

2) ≺ �p(x|x′
1) means that X has less uncertainty condi-

tioned on the X ′
1 than X ′

2.
Due to the majorization lattice theory [22–24], for a given

ρAB, there exists a least upper bound for the majorized
marginal distribution of X conditioned on any X ′, i.e.,

∀X ′, �p(x|x′) ≺ �s. (6)

Here, �s = �p(x|x′
1) ∨ �p(x|x′

2) ∨ · · · ∨ �p(x|x′
N ) depends only on

the measurement X and the state, and is determined by imple-
menting the join operator “∨” of the majorization lattice (see
Supplemental Material [25] for detailed discussions); �p(x|x′

k )
[defined as Eq. (5)] is the majorized marginal distribution of
X conditioned on the kth measurement of the set {X ′

k|k =
1, . . . , N}. Each X ′

k from the set gives a �p(x|x′
k ) that has

the largest sum of the first k elements, i.e.,
∑k

i=1 pi(x|x′
k ) =

max{X ′}{
∑k

i=1 pi(x|x′)}, with pi(x|x′
k ) denoting the ith element

of �p(x|x′
k ). The set {X ′

k|k = 1, . . . , N} is thus the optimal mea-
surement strategy for B to reduce the uncertainty of X on A.

For two measurements X and Y on A, a family of CMURs
[24] is obtained,

�p(x|x′) ∗ �p(y|y′) ≺ �s(∗), (7)

with �s(∗) = �sx ∗ �sy (∗ ∈ {⊗,⊕,+}) [26]. Note that the CMUR
in (7) can be directly generalized to an arbitrary number of ob-
servables. Unlike variance and entropic uncertainty relations,
which are scalar measures of uncertainty, the CMURs provide
a vectorized uncertainty measure of the uncertainty relations.

Experimental investigation of the CMURs. In our exper-
iment, we detect the CMUR bound that violates the local
uncertainty relation (4) in the presence of quantum memory,
and then compare it with the CEUR bound given by the
conditional entropic uncertainty relation (3).

Here, we consider the direct-sum version of the CMUR
�p(x|x′) ⊕ �p(y|y′) ≺ �s(⊕). A family of bipartite states
|ψξ 〉 = cos ξ |00〉 + sin ξ |11〉 and the local measurements
X = σ (θ, 0) and Y = σ (θ, π ) are considered, where
σ (θ, φ) = σz cos θ + σx sin θ cos φ + σy sin θ sin φ. The
optimal measurement on B is then σ ′ ≡ σ (θ ′, φ′)
with tan θ ′ = tan θ sin 2ξ and φ′ = φ. Then we have

�p(σ |σ ′) ≺ �sσ =
(

1
2 + 1

2

√
cos2 θ + sin2 θ sin2 2ξ

1
2 − 1

2

√
cos2 θ + sin2 θ sin2 2ξ

)
.

As illustrated in Fig. 1, entangled photon pairs are gener-
ated via the type-I spontaneous parametric down-conversion
process and are generated in the state |ψξ 〉 with visibilities
higher than 97% [27,28].

In the experiments, ξ are chosen to be {π/4, π/8, π/16, 0}
resulting in the states varying from maximally entangled to
separable. One of the photons in an entangled pair acts as a
quantum memory [12]. The majorized marginal distribution
�p(x|x′) [ �p(y|y′)] can be straightforwardly obtained from the
probability distributions of the joint projection measurements
X and X ′ (Y and Y ′) on A and B, respectively (see Table S1 in
Supplemental Material [25] for details).

The CMURs are presented by Lorenz curves as ma-
jorization has an elegant geometric formulation involving the
ordering of the Lorenz curves of two probability vectors [29].
For two given probability distributions �a and �b, if the Lorenz
curve of probability distribution �b lies completely above that
of �a, it implies �a ≺ �b. In Fig. 2(a), the experimental results
of the CMURs are shown. The blue color scheme curves
and symbols indicate the experimental results of �s(⊕) for the
states |ψξ 〉. The red curves and symbols are the theoretical
predictions of �s of (4) for single-qubit systems. Only the curve
for the separated state with ξ = 0 lies completely below that
of �s. For the entangled state with ξ > 0, the CMUR has the
upper bound �s(⊕) ⊀ �s. That means, the quantum uncertainty
in correlated systems is beaten by introducing the quantum
memory and applying an optimal measurement strategy.

To quantify experimental data, we calculate the Kullback-
Leibler divergence [30] from the experimental results (�s(⊕)

expt.)

to the theoretical predictions (�s(⊕)
th ), which is defined as

D(P||Q) = ∑
i P(i) log2

P(i)
Q(i) for two probability distributions
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FIG. 1. Experimental setup. Photon pairs shared by A and B
are generated in the state |ψξ 〉 via a type-I spontaneous paramet-
ric down-conversion process by pumping two adjacent nonlinear
crystals (β-barium borate, BBO) with a 405-nm laser diode. The
parameter ξ is set by the half-wave plate (HWP) in front of the
BBO crystals. Two α-BBO crystals are inserted to compensate for the
walk-off effect. Two interference filters restrict the photon bandwidth
to 3 nm. Mixed states are prepared by letting one of the photons
pass through the unbalanced Mach-Zehnder interferometer (UMZI).
In the UMZI, two beam splitters first split the photon into three paths
and then recombine them into one. Coherence in two of the arms
is completely destroyed by inserting a quartz. The parameter p is
controlled by manipulating the adjustable shutters. Local measure-
ments on A and B are carried out via a sequence of a quarter-wave
plate (QWP), an HWP, and a polarizing beam splitter (PBS) on each
side, respectively. Coincidence measurements are then performed by
avalanche photodiodes (APDs).

P and Q. For our experiment, all the values of D(�s(⊕)
th ||�s(⊕)

expt. )
are smaller than 0.1 (0 for a perfect match and 1 for a complete
mismatch). That means, the experimental results agree well
with their theoretical predictions.

FIG. 2. Experimental results of the CMUR in the presence of
quantum memory. (a) Upper bounds �s(⊕) of the CMURs for observ-
ables {X = σ (θ, 0),Y = σ (θ, π )} and the state |ψξ 〉 with θ = π/4
and different ξ illustrated by Lorenz curves. Blue color scheme
curves denote the theoretical predictions of the bounds �s(⊕) and
symbols for the corresponding experimental results, which violate
the limit �s for a single-particle system, represented by the red curve.
(b) Lower bounds for CMUR and conditional entropic uncertainty re-
lation (3) with quantum memory for different states. The solid curves
indicate the theoretical predictions of the reduced lower bounds of
H (�s(⊗) ) and the symbols are for the experimental results. The dot-
ted lines represent the CEUR bounds [log2

1
c + S(A|B)]. Error bars

indicate the statistical uncertainty which is obtained via the Monte
Carlo simulation method by assuming Poissonian photon-counting
statistics.

Now we compare the CMUR to the conditional entropic
uncertainty relation (3) in the presence of quantum memory.
First, we calculate the Shannon entropy H (·) of both sides of
the direct product form of the CMUR and transform it into an
entropic form,

H ( �p(x|x′)) + H ( �p(y|y′)) � H (�s(⊗) ), (8)

where �s(⊗) = �sx ⊗ �sy. The inequality is preserved because
H (·) is a Schur-concave function. Then, with such a
scalar measure version of the CMUR, the comparison
between the two relations can be made. For the measure-
ment on A, we choose X = σ (θ, 0),Y = σ (θ, π ) with θ ∈
{π/40, π/20, . . . , π/4}, and the optimal measurements X ′
and Y ′ on the quantum memory (B). Then the entropy can be
obtained from the outcomes of the joint projection measure-
ment for each pair of observables.

The experimental results of (8) are plotted in Fig. 2(b).
The theoretical values of the CEUR bounds are denoted by
dotted lines. The bound of the CMUR, as one can observe, is
tighter than the corresponding CEUR bound. There are cases
where CEUR bounds are negative, which are trivial since the
lhs of the uncertainty relation (3) can never be negative as we
discussed earlier in the Introduction. In contrast, the CMUR
bounds are non-negative, and more importantly, physically
reachable (via the optimal measurement strategy).

Steering criterion from CMURs. In the following, we
demonstrate CMURs’ advantages in steering detection. Many
steering detection methods were motivated by concepts of
entanglement detection [31]. Linear steering inequalities
[32,33] are analogies to entanglement witnesses [34–38].
Similarly, steering criteria from uncertainty relations in terms
of variances [39–42], entropy [43–47], and majorization (our
method), share the same underlying idea with those for
entanglement detection [12,16,48–55]. When quantum state
tomography (QST) is available, there are quantification meth-
ods [56–59]. In addition, the question of steerability for a
given special scenario (if measurements on A and conditional
states of B are known) can be formulated as a semidefinite
program (SDP) [60–71]. SDP demonstrates the advantage in
determining if there admits a local hidden state (LHS) model
[72–75]. Numerical methods are naturally restricted to cases
with low dimensions and a few measurement settings due
to exponentially increasing computational resource requests
[76].

Our steering criterion is constructed based on the sum form
of the CMUR,

∑M
i=1 �p(xi|x′

i ) ≺ �s(+), where �s(+) = ∑M
i=1 �s(xi )

and M denotes the number of the observables. For single-
particle systems, the majorization uncertainty relation is given
by

∑M
i=1 �p(xi ) ≺ �ε [22,24], where �ε is the aggregation [77]

of �s with εi = ∑M
j=1 s(i−1)∗M+ j . Then we have the following

proposition:
Proposition 1 (steering criterion from CMURs). A bipartite

state is steerable if the inequality

�s(+) ≺ �ε (9)

is violated. Here, �s(+) is the CMUR bound in its sum form
and �ε is the bound of the majorization uncertainty relation for
single-particle systems.
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Icosahedron Dodecahedron

(a) (b)

FIG. 3. Illustration of the measurement-setting choices. We take
the Bloch-space directions through antipodal pairs of vertices of
Platonic polyhedra as axes for measurement. (a) Icosahedron for
M = 6. (b) Dodecahedron for M = 10.

See Supplemental Material [25] for the proof.
As the CMUR is applicable to an arbitrary number of

observables, this enables us to study steerability with any
number of settings, which is usually a tough task for variance-
and entropy-based uncertainty relations. With the straight-
forward optimal measurement strategy (which maximally
violates the criterion), our method can be efficiently imple-
mented for an arbitrary number of settings, leading to low
costs in classical computation and experimental resources.

In the experiment, we demonstrate the majorized steering
criterion on a family of weakly steerable (i.e., one-way steer-
able) states [78]: ρξ = (1 − p)/2ρA

ξ ⊗ I + p|ψξ 〉〈ψξ |. Here,
ρA

ξ = TrB(|ψξ 〉〈ψξ |) and p ∈ [0, 1]. The optimal measure-
ments strategy [X ′ = σ ′(θ ′, φ′) with tan θ ′ = tan θ sin(2ξ )
and φ′ = −φ] is performed on A to reduce the measurement
uncertainty of B [X = σ (θ, φ)]. If the corresponding bound
�ε of X for a single-particle system is violated by �s(+), i.e.,
inequality (9) is detected to be violated, we say A can steer B.

We take the axes of the antipodal vertices of the Platonic
icosahedron (dodecahedron) as the directions for the cases of
M = 6 (10) measurement settings as illustrated in Fig. 3. The
majorized marginal distribution �p(xi|x′

i ) of each observable
is then measured (see Supplemental Material [25] for more
experimental details) with the optimal measurement strategy
to obtain the bound �s(+).

The aggregation �ε of the single-particle system can be the-
oretically obtained by the method introduced in Refs. [22,79].
For the cases of six and ten observables, the first element of
�ε (the largest element) is ε1 = 1 + 5 cos2[1/2 arccos(1/

√
5)]

and ε1 = 1 + 6 cos2[1/2 arccos(1/3)]2 + 3 cos2[1/2 arccos
(0.7454)], respectively. We then compare ε1 with the first
element of �s(+) to determine whether the criterion (9) is
violated, thus verifying the steerability.

A total of 36 states ρξ with different parameter pairs p
and ξ are tested (see Supplemental Material [25] for more
experimental details). The experimental results are shown in
Fig. 4. The blue and red curves are the bounds of the CUMRs
and �s(+) = �ε for six and ten observables, respectively. The
symbols under the blue (red) curve indicate that A cannot steer
B, while for those states above the blue (red) curve, A can
steer B. Dot textures are colored according to the degree of
the violation (the first element of �s(+) minus that of �ε). We
also plot the theoretical predictions for two and three settings
in dotted lines in Fig. 4(a) for comparison. Below the two
dotted lines but above the blue curves is the area (colored

0.0 0.2 0.4 0.6 0.8

0.4

0.6

0.8

1.0(a) (b)

p p

1.2

0.8
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0.0

-0.4

-0.8

0.70 0.71 0.72 0.73 0.74

0.52

0.53

0.54
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FIG. 4. Experimental results of the steerability of the states ρξ .
(a) Distribution of experimental states. The blue and red curves
represent the theoretical predictions of states ρξ when �s(+) = �ε for the
case of six and ten measurement settings, respectively. The symbols
under the blue (red) curve (in the light blue area) indicate that A
cannot steer B. The dots above the blue (red) curve indicate that
A can steer B. Dot textures are colored according to the degree of
the violation. The blue and red dotted lines represent the theoretical
predictions for the case of two and three settings, respectively. For
the states in the green area, steerability can only be observed for six
settings (of our method) but failed for both two and three settings
(former methods). (b) A larger version of the blue dotted box in (a) to
show more details.

in green) where steerability can only be observed for six set-
tings (our method) but failed for both two and three settings.
The adopted quantification method (steering radius [57,58])
requires the use of QST and involves solving the equation set
[59] with an exponentially increasing size with respect to the
number of settings. It is also worth mentioning that the semi-
nal results in Ref. [33] show that steering can be demonstrated
with Bell local states. In the experiments they deployed the
linear inequality [32] for steering detection, using up to six
measurement settings. Efforts have since been made [80] in
deploying further this criterion for cases of a larger number
of settings. In these regards, our method can be regarded
as a complementary progress to these methods, since it can
be implemented for an arbitrary number of settings without
solving problems with exponentially increasing complexity.
Our method does not request QST. With our method, the
experimental cost increases linearly with the number of set-
tings. These allow an improvement of the detection capability
by performing additional measurements. Please note that the
underlying concepts of these methods are essentially different
(see Supplemental Material [25] for more discussions).

Conclusion. In this Letter, we report an experimental inves-
tigation of the CMURs in the presence of quantum memory
in a photonic system. The vectorized measure results afford
glimpses into the lattice structures of quantum uncertainty and
quantum correlations, which are usually studied with scalar
measures. Most importantly, we experimentally show that the
bound given by the new uncertainty relations is physically
reachable and nontrivial, whereas the previous CEUR bound
may be physically unreachable and hence trivial when the
system is strongly entangled. As an application, we demon-
strated the advantages of CMUR in witnessing steerability.
The proposed criterion applies to an arbitrary number of mea-
surement settings and requires low classical computation and
experimental resources. This offers a practical way for the
quantitative investigation of steerability on a more accurate
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level. We therefore expect the CMURs in the presence of
quantum memory to have further use both in quantum infor-
mation theory and beyond.
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