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Local chirality at exceptional points in optical whispering-gallery microcavities
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We study the field chirality at the exceptional points (EPs) in an optical whispering gallery mode (WGM)
microcavity, which is commonly believed to be globally perfect. We have discovered a locally imperfect or
locally perfect chirality of eigenmodes at the EPs in a WGM microcavity perturbed by two strong nanoscatterers.
We find that the generally local and imperfect chirality at the EPs tends to be globally perfect with the decrease
of the scattering effect induced by the nanoscatterers, and the chirality also becomes locally perfect with the
decrease of the relative azimuthal angle between the two strong nanoscatterers. With a first-principles-based
model considering a dynamic multiple-scattering process of the azimuthally propagating modes (APMs), all the
above counterintuitive phenomena of imperfect or perfect chirality can be respectively explained by a strong or
weak frequency dependence of the APM scattering coefficients at an effective scatterer composed of the two
nanoscatterers. In this paper, we provide increased understanding of the general properties of chirality at EPs
which will benefit potential applications enabled by the chirality features of non-Hermitian systems at EPs.
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Introduction. Exceptional points (EPs) [1,2] are spectral
degeneracies in the parameter space of a non-Hermitian
system, at which the eigenstates and their associated eigen-
values coalesce. EPs have been studied in various physical
platforms ranging from atom systems [3], atom-cavity sys-
tems [4], acoustic systems [5], and optical systems [6] to
optomechanical systems [7]. In optical systems, unique fea-
tures at EPs have been utilized for enhanced sensing [8–10],
laser linewidth broadening [11], asymmetric mode switching
[12–14], etc.

Chirality is one of the unique features at an EP and in
general means a specific phase relation between two domi-
nant states in a non-Hermitian system [15,16]. For an optical
whispering-gallery-mode (WGM) microcavity system, chiral-
ity means a resonant/eigenmode with a dominant clockwise
(CW) or counterclockwise (CCW) rotation [17]. By introduc-
ing parity-time symmetric refractive index modulation [18],
judiciously deforming the shape of the microcavity [17], or
tuning light scattering within the mode volume of the mi-
crocavity [19,20], one can steer the system to an EP and
achieve degenerate eigenmodes with strong spatial chiral-
ity. Owing to the chirality at the EP, numerous interesting
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phenomena and applications have been demonstrated, such
as orbital angular momentum lasing [18], chiral lasing [20],
chiral absorbing [21,22], and electromagnetically induced
transparency [23,24].

Authors of previous works have predicted that the chirality
is globally perfect at the EP in an optical WGM microcav-
ity perturbed by two weak nanoscatterers with an effective
non-Hermitian Hamiltonian approach [19]. A globally perfect
chirality implies that there only exists a pure CW or CCW
WGM component in the resonant modes over the whole az-
imuthal range of [0, 2π ] and is regarded as a criterion of
the EP in the experiment [8,20,25]. In this letter, we will
demonstrate that the chirality of the resonant modes at the EP
is generally local and imperfect and could become globally or
locally perfect conditionally.

Here, we consider a two-dimensional cylindrical micro-
cavity [26] (with radius R0) perturbed by two nanoholes [27]
inside the microcavity to induce a strong scattering effect (see
Supplemental Material (SM) Sec. 1 [28]). As illustrated in
Fig. 1(a), two sectorial-shaped [26] nanoholes with different
radial lengths r j ( j = 1, 2), azimuthal ranges θ j , and distances
d j away from the cavity boundary are considered.

Definition of the local chirality. To define the local chirality
of the electromagnetic field in different azimuthal regions
divided by the two nanoholes, we introduce azimuthally prop-
agating modes (APMs) [26,29] and the effective scatterer
[26].

(i) APM is a waveguide mode with an electromagnetic
field defined on the cross-section of φ = const. Therefore,
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FIG. 1. (a) Schematic of a z-invariant cylindrical microcavity
with two nanoholes. r and φ denote the radial and azimuthal coordi-
nates, respectively. The blue region represents the effective scatterer.
accw(cw) and bccw(cw) denote the complex-amplitude coefficients of
the azimuthally propagating modes (APMs) outside and inside the
effective scatterer, respectively. (b1) and (b2) Definition of the effec-
tive reflection (Rcw or Rccw) and transmission (T) coefficients of the
APM at the effective scatterer with an incident normalized counter-
clockwise (CCW) or clockwise (CW) APM, respectively. (c1) and
(c2) Like (b1) and (b2) but for a complementary effective scatterer.
(d1) and (d2) Fundamental reflection (ρ j) and transmission (τ j)
coefficients of the APM at the nanohole j = 1 and 2, respectively.
The incident APM is denoted by a solid red arrow, while the solid
and dashed black arrows in (b1) to (d2) indicate the transmitted and
reflected APMs, respectively.

the APM can have different coefficients in different azimuthal
regions divided by the two nanoholes and thus can be used as
a local basis to describe the local chirality. Differently, WGM,
the basis adopted in previous works [19–21,23], is a reso-
nant mode (i.e., the quasinormal mode [30,31] with discrete
complex eigen/resonance frequencies) in an unperturbed mi-
crocavity and thus is defined over the whole azimuthal range
of φ �[0,2π ]. Therefore, the WGM has a unique coefficient
over φ �[0,2π ] and thus acts as a global basis and cannot
describe the local chirality. Here, we consider the two coun-
terpropagating APMs [26,29] that form the pair of degenerate
WGMs under the resonance condition [32].

(ii) A single effective scatterer is defined as the two
nanoholes along with the azimuthal region between them,
as illustrated by the blue region in Fig. 1(a) [26]. Then the
electromagnetic field of the resonant mode can be expressed
as a superposition of the CCW and CW APMs:

�out (r, φ) =
(accw

v

)
�ccw(r, φ) + acw�cw(r, φ) (1)

outside the effective scatterer, and

�in(r, φ) = bccw�ccw(r, φ) +
(

bcw

w

)
�cw(r, φ) (2)

inside the effective scatterer, where �ccw(r, φ) =
�ccw(r) exp (ik0neff R0φ) and �cw(r, φ) = �cw(r) exp
[ik0neffR0(2π−φ)], with � = [E, H] denoting both the
electric (E) and the magnetic (H) vectors of the CCW and
CW traveling APMs, respectively, k0 = ω/c (with ω and
c being the complex resonance angular frequency and the
speed of light in the vacuum, respectively), and neff is the

complex effective index of the APM. Here, accw/v, acw,
bccw, and bcw/w are the complex-amplitude coefficients of
APMs normalized at φ = 0. Also, v = exp(ik0neff R0β ) and
w = exp[ik0neff R0(2π−β )] are the propagation factors of
the APM traveling azimuthally over the range inside (from
0 to β) and outside (from β to 2π ) the effective scatterer,
respectively.

Then the local chirality outside and inside the effective
scatterer can be defined as

αout = |accw/v|2 − |acw|2
|accw/v|2 + |acw|2 , αin = |bccw|2 − |bcw/w|2

|bccw|2 + |bcw/w|2 , (3)

respectively. The values of αout(in) are within [−1,1], and
αout(in) = ±1 implies a perfect chirality with a pure CCW (for
+) or CW (for −) APM, respectively [20].

Local and imperfect chirality at EPs. First, we study the
impact of the nanohole size on the chirality αout(in) at an
EP. In the following calculation, the refractive indices of the
microcavity, the nanoholes and the surrounding medium are
set to be 2, 1 and 1 (air), respectively. Other parameters
are R0 = 1.6 µm, d1 = 0.04 µm, and d2 = 0.0480 µm, with r2

gradually increasing from r2,0 = 0.108816 µm to 3r2,0, and
θ j = 2arcsin (r j/4R0) ( j = 1, 2). Note that r2 = r2,0 corre-
sponds to the case of weak scattering, and the scattering
effects of the nanohole become stronger with the increase of
r2 (see SM Sec. 1.3 [28]). Here, we consider the resonant
modes corresponding to the unperturbed WGMs with electric
vector along the z direction, an azimuthal number m = 16, a
resonance wavelength ∼1 µm, and a quality factor (Q)∼105.

By simultaneously scanning r1 (around r2) and β (∼130◦;
see SM Sec. 2.3 [28]) with the other parameters fixed, an
EP is found when the eigenfrequencies of a pair of resonant
modes become degenerate and their corresponding waveform
patterns become identical. The rigorous numerical results of
αout(in) can be obtained by extracting the APM coefficients
with the mode-orthogonality theorem [33] from the electro-
magnetic field of resonant modes, which are solved with the
full-wave finite-element method (FEM) performed by COM-
SOL Multiphysics software [26,29].

Figure 2(a) shows that, for the EP achieved with relatively
weak scatterers, the local chiralities outside (circles) and in-
side (squares) the effective scatterer are both almost perfect (at
r2 = r2,0, for instance, αout = −0.9987 and αin = −0.9949).
Consequently, the electric-field intensities outside and inside
the effective scatterer both exhibit a traveling wave pattern,
as shown in the first column in Fig. 2(b). This is consistent
with the globally perfect chirality (αout = αin = ±1) reported
in previous literature [19–21,23] for weak scatterers.

However, for the EPs achieved with strong scatterers (at
r2 = 3r2,0, for instance), the chiralities outside and inside the
effective scatterer both become imperfect. Particularly, the
local chirality within the larger azimuthal range divided by the
two scatterers is stronger, i.e., |αin| < |αout| < 1. Accordingly,
the electric-field intensities exhibit a quasistanding wave pat-
tern formed by two counterpropagating APMs, and this is less
remarkable within the larger azimuthal range divided by the
two scatterers. This local and imperfect chirality at EPs for
strong scatterers is quite different from the globally perfect
chirality for weak scatterers.
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FIG. 2. (a) Local chiralities αout(in) at the exceptional points (EPs)
plotted as functions of size r2 of nanohole 2. The circles and squares
show the finite-element method (FEM) results of αout and αin, respec-
tively. The solid and dashed curves show the model prediction of αout

and αin, respectively. The blue and red curves show the results of the
pair of nearly degenerate resonant modes. (b) Electric-field intensity
distribution at the EPs obtained with the FEM shown in (a). The five
columns are for different r2, and the two rows are for the pairs of
nearly degenerate resonant modes.

Locally perfect chirality at EPs. Second, we study the
impact of the relative azimuthal angle β between two strong
scatterers on the chirality αout(in) at EPs. The parameters (see
SM Sec. 2.3 [28]) in the following calculation are the same as
those in Fig. 2, except that r2 is fixed at a relatively large value
of 2.5r2,0 to form a strong scattering.

Figure 3(a) shows that, for the EPs achieved at large β, the
local chiralities outside (circles) and inside (squares) the effec-
tive scatterer are both imperfect, and there is |αin| < |αout| <

1, like the case in Fig. 2(a). For instance, αout = −0.9514 and
αin = −0.9286 for β ∼ 174◦. Consequently, the electric-field
intensities outside and inside the effective scatterer at the EPs
do not possess an ideal traveling wave pattern, as shown in
the last column in Fig. 3(b) (more results for different β can
be found in SM Sec. 5 [28]).

However, for the EPs achieved at small β, Fig. 3(a) shows
that αout tends to be perfect (|αout| ≈ 1), while αin is weaker
(|αin| < 1), which implies a tendency of locally perfect chiral-
ity. For instance, for the EP with β = 29.43◦, Fig. 3(a) shows
that αout = −0.9978 and αin = −0.8087. Accordingly, the
electric-field intensity outside the effective scatterer exhibits a
distinct traveling wave pattern. In contrast, the field intensity
inside the effective scatterer does not, as shown in the first
column in Fig. 3(b). This locally perfect chirality is entirely
different from the globally perfect chirality (αout = αin = ±1)
for weak scatterers, as shown in Fig. 2 and from the commonly
reported results in previous literature [19–21,23].

FIG. 3. (a) Chiralities αout(in) at exceptional points (EPs) plotted
as functions of β. The hollow (solid) circles and the squares denote
the full-wave finite-element method (FEM) results (model predic-
tions) of αout and αin, respectively. Blue and red correspond to two
resonant modes. (b) Electric-field intensity distribution at the EPs for
different β values corresponding to the FEM results shown in (a).
The different columns are for different β, and the two rows are for
the pair of nearly degenerate resonant modes.

To understand the locally imperfect or locally perfect chi-
rality at EPs, we apply the APM multiple-scattering model
[26] to the present case of strong scatterers.

Theoretical model. By considering a multiple-scattering
process that incorporates the elastic transmission and reflec-
tion of APMs at the effective scatterer, a set of coupled-APM
equations can be written as [26]

accw = accwwT + acwwRccw, (4a)

acw = accwwRcw + acwwT, (4b)

where T, Rcw, and Rccw denote the effective scattering coeffi-
cients of the APMs at the effective scatterer as defined in Figs.
1(b1) and 1(b2). The effective scattering coefficients can be
further derived from a Fabry-Pérot-like model [26]:

Rcw(ccw) = ρ1(2) + v2ρ2(1)τ
2
1(2)

1 − v2ρ1ρ2
, T = vτ1τ2

1 − v2ρ1ρ2
, (5)

where ρ j and τ j ( j = 1, 2) denote the fundamental reflection
and transmission coefficients of the APM at nanohole j, re-
spectively [as defined in Figs. 1(d1) and 1(d2)]. Note that neff ,
ρ j , and τ j all weakly depend on the frequency ω [29]. There-
fore, the frequency dependence of Rcw(ccw) and T is dominated
by the frequency dependence of v = exp(ik0neffR0β ) which
varies rapidly with the frequency ω via k0 = ω/c.

The complex resonance frequencies (eigenvalues) of the
two split modes, denoted by ω+ and ω−, can be obtained
by solving the nontrivial solution of Eq. (4). By setting the
determinant of the coefficient matrix of Eq. (4) to zero, one
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FIG. 4. (a) Real and imaginary parts of k0neff R0 plotted as func-
tions of the size r2 of nanohole 2, which are obtained with the model
at the exceptional points (EPs) already shown in Fig. 2. (b) |∂v/∂k0|
(circles) and |∂w/∂k0| (triangles) at the EPs for the different β values
already shown in Fig. 3. The solid and dashed curves show the results
of βR0|neff,0| and (2π−β )R0|neff,0|, respectively.

can determine the ω+ and ω− by solving two transcendental
equations [26]:

w(ω±) = 1

T (ω±) ± R(ω±)
, (6)

where R(ω) = √
Rcw(ω)Rccw(ω), and R(ω+) [respectively,

−R(ω−)] denotes one of the two single-valued branches of
R(ω) at ω = ω+ (respectively, ω = ω−). The single-valued
branches of R(ω+) and −R(ω−) for ω+ �= ω− have no specific
relation for the present case of strong scatterers, which is
different from R(ω+) ≈ R(ω−) for the case of weak scatterers
[26].

Substituting Eq. (6) into Eq. (4), one can obtain the non-
trivial solutions [26]:

accw(ω±)

acw(ω±)
= ±

√
Rccw(ω±)

Rcw(ω±)
, (7)

where accw or acw is determined by the normalization of the
resonant mode. In addition to the effective scatterer defined in
Ref. [26], here, we further define a complementary effective
scatterer with an azimuthal range from β to 2π as sketched
in Figs. 1(c1) and 1(c2). The resultant merit is that bccw/bcw

can be obtained in the same way as accw/acw with the follow-
ing replacements in Eqs. (4)–(7), acw(ccw) → bcw(ccw), w →
v, v → w, Rcw(ccw) → R′

cw(ccw), T → T ′, ρ1(2) → ρ2(1), and
τ1(2) → τ2(1) (see SM Secs. 2.1 and 2.2 [28]). This merit is
crucial for explaining the local feature of the chirality at EPs.

With the solved accw/acw and bccw/bcw inserted into
Eq. (3), the local chiralities outside and inside the effective
scatterer can be expressed as

αout ≈ |Rccw| − |Rcw|
|Rccw| + |Rcw| , αin ≈ |R′

ccw| − |R′
cw|

|R′
ccw| + |R′

cw| , (8)

respectively, where |v| ≈ |w| ≈ 1 in view of Im(k0neffR0) ≈
0 [see Fig. 4(a)]. Equation (8) indicates that a perfect chiral-
ity |αout| = 1 (|αin| = 1) is equivalent to a unidirectional no
reflection of APM at the (complementary) effective scatterer,
i.e., Rcw = 0 or Rccw = 0 (R

′
cw = 0 or R

′
ccw = 0).

Validity of the model. For the model predictions, the EPs
are obtained by simultaneously scanning r1 and β with the
other parameters being the same as the FEM results. As shown
in Figs. 2 and 3, the chiralities predicted by the model agree

well with those obtained with the full-wave FEM. More re-
sults to validate the model can be found in SM Secs. 2.3 and
2.4 [28].

Explanation of the conditional globally perfect chirality at
EPs. The shifts of complex resonance frequencies of the two
split resonant modes induced by the weak scatterers are quite
small. It implies k0neffR0 ≈ m [as confirmed numerically in
Fig. 4(a)] and ω+ ≈ ω− ≈ ω0 (ω0 being the complex reso-
nance frequency for the unperturbed WGM).

Therefore, for the case of weak scatterers, the effective
scattering coefficients Rcw(ccw) and T are approximately in-
dependent of the frequency ω due to v ≈ exp(imβ ) and the
weak dependence of ρ j and τ j on ω [see Eq. (5)]. Then Eq. (6)
becomes

w(ω±) = 1

T ± R
, (9)

where R and −R denote the two single-valued branches of√
RcwRccw that is approximately independent of ω. This im-

plies that R and −R become related, which is different from
the general situation in Eq. (6). When the system is steered to
the EP, there is w(ω+) = w(ω−) due to the degeneracy of the
eigenfrequency (ω+ = ω−), which yields R = 0, i.e., R being
at the square-root branch point [2,34]. Consequently, there is
Rcw = 0 or Rccw = 0 at the EP, which will result in a perfect
local chirality |αout| = 1 according to Eq. (8).

Similarly, R′
cw(ccw) and T ′ are approximately independent

of ω due to w ≈ exp[im(2π−β )] for weak scatterers. Analo-
gous to Eq. (9), one can obtain

v(ω±) = 1

T ′ ± R′ , (10)

by considering the complementary effective scatterer, where
R′ = √

R′
cwR′

ccw. Consequently, there is R′ = 0, i.e., R′
cw = 0

or R′
ccw = 0 at the EP, which causes a perfect local chiral-

ity |αin| = 1. Additionally, it can be proved that bcw(ccw) ≈ 0
if Rcw(ccw) = 0 for weak scatterers [26], which results in a
globally perfect chirality (αout ≈ αin ≈ ±1) at the EP. This
is consistent with the prediction by the approach using an
effective frequency-independent non-Hermitian Hamiltonian
matrix upon the basis of CW and CCW WGMs [19].

Explanation of the conditional locally perfect chirality at
EPs. For the case of strong scatterers, the frequency depen-
dence of [Rcw(ccw), T] and [R′

cw(ccw), T ′] (dominated by the
frequency dependence of v and w, respectively) could be
remarkably different, which will result in the locally perfect
chirality at EPs. This can be understood in view of∣∣∣∣ ∂v

∂k0

∣∣∣∣ = βR0

∣∣∣∣∂ (k0neff )

∂k0

∣∣∣∣|v| ≈ βR0|neff |, (11)

and∣∣∣∣ ∂w

∂k0

∣∣∣∣ = (2π − β )R0

∣∣∣∣∂ (k0neff )

∂k0

∣∣∣∣|w| ≈ (2π − β )R0|neff |,
(12)

where |∂ (k0neff )/∂k0| ≈ |neff | due to the weak dependence of
neff on ω. Equation (11) indicates that |∂v/∂k0| tends to be 0
with the decrease of β, which means a weaker dependence of
Rcw(ccw) and T on ω. Consequently, Eq. (9) holds which leads
to |αout| = 1 for small β, as shown in Fig. 3(a). Differently,
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|∂w/∂k0| increases with the decrease of β, which means a
strong dependence of R′

cw(ccw) and T′ on ω. Thus, Eq. (10)
does not hold which results in |ain| < 1 for large β, as shown
in Fig. 3(a). The validity of Eqs. (11) and (12) is confirmed
in Fig. 4(b), where neff approximately takes neff,0 = 1.6186 +
9.9531 × 10−6i for the unperturbed WGM. The evolution of
reflection coefficients Rcw(ccw) and R′

cw(ccw) near the EP can be
found in SM Sec. 4 [28].

This locally perfect chirality can be seen as reasonable
in view that the effective scatterer is generally azimuthally
asymmetric and different from the complementary effective
scatterer (with some exceptions, e.g., two identical scatterers
with β = π ), which will lead to different reflection coeffi-
cients [Rcw(ccw) �= R′

cw(ccw)] of the APMs. In addition to the
above explanation, a logic crosscheck on the locally perfect
chirality can be found in SM Sec. 3 [28].

Following the above explanation, |αout| > |αin|, as shown
in Fig. 2(a), can be understood in view of the smaller relative
azimuthal angle of the effective scatterer (β ≈ 130◦) than that
of the complementary effective scatterer (2π−β ≈ 230◦).

The imperfect and local features of the chirality at EP for
strong scatterers could probably also be explained by enlarg-
ing the dimensionality (>2) of the effective non-Hermitian
Hamiltonian [19] by considering > 2 CW and CCW WGMs
as the basis.

Conclusions. In this letter, we reveal that the chirality of
the resonant modes at EPs of a WGM microcavity perturbed
by two strong nanoscatterers is generally local and imper-
fect. The chirality will tend to be globally perfect for weak
scatterers or locally perfect for small relative azimuthal an-
gle between the two scatterers. With a first-principles-based
model that incorporates an intuitive multiple-scattering pro-
cess of the APMs, the conditional appearance of perfect
local chirality at EPs is attributed to the weak frequency
dependence of the effective APM scattering coefficients

at the effective scatterer, and correspondingly, the gen-
eral imperfect local chirality at EPs is due to the strong
frequency dependence of the effective APM scattering co-
efficients. Consequently, a stronger local chirality at EPs is
observed in the larger azimuthal region divided by the two
scatterers.

The local chirality could be measured experimentally in a
microcavity system with two coupling waveguides, respec-
tively, located in the larger and smaller azimuthal ranges
divided by the two scatterers (see Fig. S10 in SM Sec. 6
[28]). By measuring the intensities of the outgoing eigen-
modes (for instance, lasing) from the two sides of each of
the two waveguides, one can obtain the intensities of the CW
or CCW traveling waves in the larger and smaller azimuthal
ranges divided by the two scatterers and then obtain the local
chiralities (see Eq. (S16) in SM Sec. 6 [28]).

The discovered general features of the local chirality at the
EP will enrich the understanding of EPs, not only in optics
but also in other systems, such as microwave [16], acoustic
[35], and quantum systems [36]. The previous criterion of an
EP in experiments [8,20,25], i.e., a globally perfect chirality
or the equivalent unidirectional no reflection [see Eq. (8)],
should be refreshed for strong scatterers. Additionally, the
proposed peculiar features of the chirality at the EP may
promote unconventional applications in the on-chip chiral
photonics, for instance, an optional unidirectional or bidirec-
tional lasing in different azimuthal ranges of the microcavity
based on the locally perfect chirality at the EP (see SM Sec.
6 [28]).
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