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We explore the boundary time-crystal transition at the level of quantum trajectories which result from contin-
uous monitoring. This Letter is motivated by recent experiments [G. Ferioli, A. Glicenstein, I. Ferrier-Barbut,
and A. Browaeys, Nat. Phys. 19, 1345 (2023)] realizing this many-body system and which allow one in principle
to gain in situ information on its nonequilibrium dynamics. We find that the photon count signal as well as the
homodyne current allow one to identify and characterize critical behavior at the time-crystal phase transition.
In the time-crystal phase these quantities display persistent oscillations, resolvable in finite systems and in
individual realizations. At the transition point the dynamics of the emission signals feature intermittent strong
fluctuations, which can be understood through a simple nonlinear phase model. We furthermore show that the
time-integrated homodyne current can serve as a useful dynamical order parameter. From this perspective the
time crystal can be viewed as a state of matter in which different oscillation patterns coexist.

DOI: 10.1103/PhysRevA.108.L041303

The interplay between driving and dissipation can stabi-
lize genuine nonequilibrium phases of interacting quantum
systems [1–5]. A manifestation currently receiving significant
attention is time crystals [6], which are many-body phases that
break time-translation symmetry. Time crystals were initially
considered in closed Hamiltonian systems [7]. However, a
series of no-go theorems showed that these cannot emerge
as the equilibrium state of short-ranged interacting systems
[8–13]. While time crystals can still emerge in the pres-
ence of long-range interacting Hamiltonians [14], research
has generally focused on nonequilibrium scenarios, such as
driven Hamiltonian systems [6,15–19] and driven-dissipative
systems [6,18,20]. These crystalline structures in time can
emerge as a consequence of different mechanisms but they
all manifest in stable oscillatory asymptotic regimes [6,18,19].
This means that at long times observables display a periodicity
in time that breaks either the discrete (i.e., by displaying a sub-
harmonic response) [15–17,21–31] or the continuous [20,32–
40] time-translation symmetry of the dynamical generator. A
setting in which such nonequilibrium dynamics can be studied
is constituted by atomic ensembles interfaced with optical
cavities [41] or photonic structures [42]. In these systems spa-
tial self-organization and steady-state superradiance [43–46],
synchronization [47–50], as well as time-crystal oscilla-
tions [27,29,30,32,33,51,52] have been reported. Even in free
space, i.e., without enhancing collective effects through a cav-
ity, long-time oscillatory dynamics can be supported within
dense atomic ensembles. This has been discussed in early
theoretical studies on cooperative resonance fluorescence—
see, e.g., [53–56]—long before the concept of time crystals
was established. In these dense gases, coherently driven (two-
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level) atoms are subject to collective dissipation [57], which
ultimately stabilizes time-periodic solutions. This conceptu-
ally simple system, which in the current terminology would be
referred to as a (dissipative) boundary time crystal [20,33,35],
was recently realized in an experiment [58]. This achievement
opens up a new perspective for exploring and characterizing
the time-crystal transition in a dissipative setting. This is owed
to the fact that an open system allows one to extract in situ
information on the quantum many-body dynamics.

In this Letter, we show how the transition and the concomi-
tant critical behavior manifest at the level of quantum trajec-
tories which result from continuous monitoring. We consider
two different measurement schemes which yield qualitatively
distinct types of quantum trajectories: the record of emitted
photons and the quadrature (photocurrent) of the output light
field. Both the quantum jump trajectories of photon counting
as well as the homodyne (diffusive) trajectories of the pho-
tocurrent display clear signatures of the time-crystal phase
transition. We show how these experimentally accessible
quantities allow one to identify the critical point. Here the tra-
jectories show a peculiar dynamical behavior with small drifts
being interspersed with large jumps, and the average time be-
tween jumps follows a characteristic power law. Furthermore,
we demonstrate that a convenient method for characterizing
the time-crystal phase transition is the use of dynamical order
parameters, such as the time-integrated photocurrent. When
coupling to the appropriate quadrature, the photocurrent
shows highly intermittent behavior in the time-crystal phase.
This peculiarity can be interpreted as dynamical coexistence
between various time-crystalline, i.e., periodic, solutions.

Time-crystal phase transition in the thermodynamic limit.
The model we consider here consists of N two-level atoms
with coherent resonant driving and collective dissipation.
Its dynamics is described by a Markovian master equation
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FIG. 1. Signatures of the dynamical regimes in individual realizations. (a) Stationary value of the z component of the magnetization, mz,
for N = 100 (red solid line) and time-averaged mean-field solution for M = 0 (black dashed line). At ω/κ = 0.5 (�) and ω/κ = 1.5 (�) the
system is in the stationary phase and the time-crystal phase, respectively. At the critical point ω/κ = 1 (�) the phase transition takes place.
(b)–(d) Representative quantum trajectories for the magnetization components (top), the photon count (middle), and the homodyne current
(bottom). The photon count trajectories are displayed with a bin size κ�t = 0.5, while the homodyne current is averaged over a sliding time
window of κ�t = 0.5 and rescaled by 1/

√
2N . In all cases N = 100 and the initial condition corresponds to a spin coherent state as defined

by |θ, φ〉 = exp[iθ (Ĵx sin φ − Ĵy cos φ)]|J, J〉 (θ ∈ [0, π ], φ ∈ [0, 2π ]) [59] with θ = π/2 and φ = π/2.

governing the time evolution of the density matrix ρ̂ as (h̄=1)

∂t ρ̂ = Lρ̂ = −iω[Ĵx, ρ̂] + κ

N
(2Ĵ−ρ̂Ĵ+ − Ĵ+Ĵ−ρ̂ − ρ̂Ĵ+Ĵ−).

(1)

Here ω is the Rabi frequency, which parametrizes the cou-
pling strength between the atoms and the laser, and 2κ/N is
the collective atomic decay rate. Note that the latter scales
with 1/N , which is necessary for obtaining a well-defined
thermodynamic limit. The master equation solely depends on
collective spin operators defined as Ĵα = 1

2

∑N
j=1 σ̂

( j)
α (α =

x, y, z), with σ̂
( j)
α being the Pauli matrices and Ĵ± = Ĵx ± iĴy.

As shown in [20,35,56,60] it is convenient to introduce the
magnetization vector with components m̂α = Ĵα/(N/2). In the
thermodynamic limit (N → ∞) the dynamics of the expecta-
tion values mα = 〈m̂α〉 is exactly governed by the mean-field
equations ṁx = κ mxmz, ṁy = −ω mz + κ mymz, and ṁz =
ω my − κ (m2

x + m2
y ). The ensuing dynamics features two con-

served quantities, which are the total angular momentum j2 =
m2

x + m2
y + m2

z and the quantity M = mx/(my − ω/κ ) (we
will focus throughout on the case j2 = 1, M = 0).

The model undergoes a nonequilibrium phase transition at
the critical ratio ω/κ = 1. Below this critical point, the system
approaches a unique stable stationary fixed point. Above the
critical point, ω/κ > 1, it displays a continuous family of
nonisolated closed orbits covering the whole Bloch sphere
[20,55,56]. Each orbit is associated with a value of the con-
served quantity M. The emergence of this nonequilibrium
transition for finite particle number N is signaled by a sharp
crossover of the stationary value of the z component of the
magnetization, 〈m̂z〉ss, at ω/κ = 1 [see Fig. 1(a)].

Time-crystal phase transition in finite systems. The mas-
ter equation (1) describes the average evolution of an open
system in terms of its density matrix ρ̂. In an experiment,
however, one observes stochastic realizations of the open
systems dynamics—the so-called quantum trajectories. Av-
eraging over these individual realizations yields the density
matrix. To be specific, let us consider the dynamics of the

magnetization components in the stationary phase, which are
shown in the top panel of Fig. 1(b). These curves are obtained
by a so-called quantum jump unraveling [61] (see also Sup-
plemental Material [62]) of Eq. (1). In the stationary phase
all magnetization components rapidly approach a constant
value. Moreover, in spite of representing a single realization,
they hardly display any fluctuations. The reason is that the
stationary state is almost pure and an eigenstate of the jump
operator, i.e., it satisfies to a very good approximation the
relation

ρ̂ss ≈ |β〉〈β|, Ĵ−|β〉 ≈ −iβ|β〉 (2)

with β = ω N/(2κ ). In fact, when approaching the thermody-
namic limit the system features such pure stationary state in
the entire interval 0 � ω/κ � 1 (see [62]).

The trajectories shown in the top panel of Fig. 1(b) are
not directly observable in experiment, as they entail the
calculation of quantum expectation values 〈m̂α〉QJ with the
instantaneous wave function. By the nature of a quantum
measurement such quantity cannot be obtained in a single
shot. What is instead experimentally accessible—e.g., in the
experiment presented in Ref. [58]—is the time record of emit-
ted photons, which is shown in the middle panel of Fig. 1(b).
Note that this record corresponds to the same trajectory shown
in the top row, which is also the case for Figs. 1(c) and
1(d). The rapid approach to stationarity is also visible here
albeit fluctuations around the average value of the photon
count (dashed black line) are clearly visible. Instead of count-
ing photons one can monitor the so-called x quadrature of
the emitted light using a homodyne detection scheme [61]
(see [62]), which measures the homodyne current Ix(t ) =√

2κN〈m̂x(t )〉H + dW (t )/dt . This observable is proportional
to the instantaneous x magnetization in the homodyne unrav-
eling, indicated by the subscript H, plus the derivative of a
random (Wiener) process W (t ) [61,62]. Removing this noise,
via the application of a sliding average over the time windows
κ�t = 0.5, yields the trajectories shown in the bottom row of
Figs. 1(b)–1(d).
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Let us now turn to Fig. 1(c), which shows the quantum
trajectories at the critical point ω/κ = 1. Here the dynamics
is strikingly different. All observables display a behavior in
which periods of time, in which the quantum trajectories
feature small fluctuations and drifts, are interspersed with
sudden large fluctuations (marked with ∗). This peculiar be-
havior, signatures of which are also found in the photon count
and—more clearly—in the homodyne current, will be further
analyzed below. We will find that the mean time between
two consecutive large fluctuation events follows a power law
which is characteristic for critical phenomena.

In the time-crystal phase the quantum trajectories of the
magnetization exhibit nondecaying oscillatory behavior, as
can be seen in Fig. 1(d). Noise due to quantum jumps leads,
however, to the relative dephasing of different trajectories, so
that the average state displays exponentially damped oscilla-
tions [20]. This dephasing is observable in the oscillations of
the magnetization when comparing them with the shadowed
background that alternates in time intervals that are half the
mean-field period. Note that the larger the number of particles
the weaker the dephasing effect until noiseless oscillations
are achieved in the mean-field limit [20,33,35]. Interestingly,
also the photon count signal displays noisy but pronounced
oscillations and thus allows for an in situ detection of the
time-crystal phase. In fact, the Fourier transform of the count-
ing signal displays a peak at the mean-field frequency [62].
This peak becomes better resolved increasing system size as
time-crystal oscillations become less noisy [62]. The time-
crystal oscillations are also resolved in the (time-averaged)
homodyne current shown in the bottom panel of Fig. 1(d).

Dynamics near the critical point. In Fig. 1(c) we have
shown that the dynamics of the quantum trajectories at the
critical point is rather peculiar. To understand this behavior we
return to the mean-field equations for the magnetization and
augment the corresponding equations with Gaussian noise.
We consider the case in which mx(0) = 0, which implies that
the conserved quantity M takes the value zero. Notice that
this is the most relevant case for photocounting trajectories,
as for long times the trajectories display a “fluctuationless”
zero x component independently of the initial condition (see
Fig. 1 and [62]). Defining the phase variable ϕ via mϕ

y = sin ϕ

and mϕ
z = cos ϕ leads to the following equation of motion:

ϕ̇(t ) = −ω + κ sin ϕ(t ) + ξ (t ). (3)

Here the Gaussian noise ξ (t ) is introduced to model the effect
of finite-N fluctuations and is characterized by the average
value 〈ξ (t )〉 = 0 and the correlation function 〈ξ (t )ξ (t ′)〉 =
2κ
N δ(t − t ′). The prefactor of the latter is chosen such that the
noise vanishes in the thermodynamic limit.

The phase portrait of the deterministic part of this equa-
tion is shown in Fig. 2(a). Below the critical point there are
one stable and one unstable fixed point which approach each
other when ω increases. They coalesce and annihilate when
the critical point, ω/κ = 1, is reached, for which the solution
of the deterministic equation becomes a limit cycle. This
time-periodic solution is nonharmonic, as the velocity of the
phase evolution depends on ϕ. In particular, around ϕ ≈ π/2
this velocity decreases and becomes zero when the critical
point is approached from above. This means in turn that the
period of the oscillation diverges [67]. The proximity of the

FIG. 2. Dynamics near the critical point. (a) Flow of the phase
equation below and above the critical point, where • (◦) denotes
a (un)stable fixed point (full or empty bullet point). (b) Single re-
alization of Eq. (3) with initial conditions ϕ = π/2, N = 200, and
ω/κ = 1. (c) Average time between large fluctuations for ω/κ = 1
and varying N . Red circles correspond to the classical model fitted
by κτ ∝ N0.330 (black dashed-dotted line). Blue crosses correspond
to the quantum jump process fitted by κτ ∝ N0.326 (dashed black
line). Error bars for each point are smaller than the symbols (see [62]
for more details). (d), (e) Classical phase dynamics for two different
frequencies.

two fixed points slightly below criticality and the slowdown
of the dynamics near ϕ ≈ π/2 explain the large fluctuations
observed in Fig. 2(b): slightly below the critical point, the
noise occasionally allows the system to reach the unstable
fixed point. After that ϕ may immediately complete a full
cycle in clockwise direction [Fig. 2(d)], manifesting as a large
fluctuation mϕ

y,z On the other hand, slightly above the critical
point, the noise can allow ϕ to escape the region with small
velocity, so that it undergoes afterwards a fast revolution,
which also manifests as a large fluctuation mϕ

y,z [see Fig. 2(e)].
The average time τ between such large fluctuations as a func-
tion of N is shown in Fig. 2(c) (red circles). As it can be
seen, it obeys a power law, τ ∝ N0.330, which is characteristic
for critical phenomena [68]. The same power law (within a
reasonable margin of error) is observed for the average time
between large fluctuations in the time-crystal trajectories (see
[62] for details). Therefore the phase model (3) captures the
phenomenology observed in quantum jump trajectories, pro-
viding insights on the critical dynamics observed in Fig. 1(c).

Dynamical coexistence of oscillation patterns. In the fol-
lowing, we will show that in the time-crystal phase the
dynamics is composed of different oscillatory patterns which
dynamically coexist. This means that the quantum state fea-
tures a given periodic solution for a long time window but
then eventually jumps at a random time into another one.
This persistent jumping is related to a first-order dynamical
phase transition [69–71]. To understand this, one has to keep
in mind that, for the system in the thermodynamic limit, the
breaking of the time-translation symmetry in the time-crystal
regime results in the stabilization of several different oscil-
latory solutions, which are “approached” according to the
specific initial condition for the system state. However, when
considering a finite system (subject to quantum fluctuations),
the (long-time) state of the system is actually time-translation
symmetric, indicating that the latter must consist of the
“sum” of the different oscillatory patterns [56]. This statistical
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FIG. 3. Dynamical order parameter. (a) Rescaled homodyne cur-
rent for ω/κ = 1.5, N = 100, and an initial condition of a coherent
state with θ = π/2 and φ = π/2. (b) Rescaled activity k(s) for
various system sizes and ω/κ = 1.5. Inset: Scaling of the activity
at s = −0.025 and ω/κ = 1.5 with system size. (c), (d) Color maps
for the scaled cumulant generating function θ (s) and the activity k(s)
for the homodyne current. (e) Scaled cumulant generating function
θ (s) for two different values of ω/k, one above and one below the
critical point.

mixture of oscillations is realized by the coexistence of all the
possible oscillatory patterns in single homodyne trajectories.

The above phenomenology is clearly displayed by single
dynamical realizations of the homodyne current—in the time-
crystal regime—when looking at sufficiently large timescales
as shown in Fig. 3(a). Here, the homodyne current shows
oscillations which switch from a pattern with a positive av-
erage value to a pattern with a negative one. On average
the overall current must average to zero due to the expected
value 〈m̂x〉ss = 0. One way to describe the emergence of this
coexistence regime is achieved by using a “thermodynamic
formalism” for the full statistical characterization of the prob-
ability density pK (t ) of observing a given value of the time
integrated homodyne current Kt = ∫ t

0 dt ′Ix(t ′). Such charac-
terization can be obtained via the moment generating function
Z (s) = ∫

dKe−sK pK (t ). For large times t , this function be-
haves as Z (s) ≈ etθ (s), where θ (s) is the so-called scaled
cumulant generating function for Kt . This function can be
computed as the largest real eigenvalue of the tilted generator
[69,72,73]:

Lsρ̂ = Lρ̂ − s

√
2κ

N
(Ĵ−ρ̂ + ρ̂Ĵ+) + s2

2
ρ̂. (4)

For instance, the average value of Kt is given by the first
derivative k(s) = −∂sθ (s), calculated for s = 0. When con-
sidered as a function of s, the scaled cumulant generating
function θ (s) plays the role of a dynamical free energy,
while the activity k(s) can be regarded as an order parameter
which can signal emergent dynamical behavior in quantum
trajectories [69,70,74,75]. This is for instance evident in
Fig. 3(b), where we plot the function k(s) rescaled by 1/

√
N .

The activity k(0) provides the average value of the time-
integrated current in the typical trajectories, which is zero
since there appear oscillatory patterns which are symmetric
around 〈m̂x〉ss = 0. Around s = 0, we see that the activity

displays a rapid crossover from a phase with positive ho-
modyne current to a phase with negative homodyne current.
Such a crossover tends to approach a discontinuous transition
when N is increased. As for equilibrium phase transitions,
this (almost) discontinuous behavior signals that in the typical
trajectories, i.e., at s = 0, there emerges coexistence of the two
different phases, which here takes place in single stochastic
realizations of the dynamics. It is possible to look at the dy-
namics for s = 0 (see [62]). Here, the coexistence behavior is
resolved by the parameter s, which plays the role of a biasing
field, and single trajectories show a unique stable oscillatory
pattern for sufficiently large |s|.

Such a critical behavior of the functions θ (s) and k(s)
disappears below the critical point, as shown in Figs. 3(c) and
3(d). In this case, the system approaches a unique stable sta-
tionary state characterized by vanishing instantaneous value
of the average homodyne current and by small fluctuations.
In particular, exploiting the approximate relation in Eq. (2),
we can obtain the analytical expression θ (s) ≈ s2/2 that we
display in Fig. 3(e) together with the numerical result. We
notice that this expression for θ (s) comes exclusively from
the last term in the tilted generator in Eq. (4), suggesting that
the output homodyne current is essentially a pure white noise.
This is in contrast with what happens above the critical point
[see Fig. 3(e)], where θ (s) becomes singular.

Summary and conclusions. Motivated by recent experi-
mental progress, we analyzed signatures of a time-crystal
phase transition in experimentally accessible quantum jump
and homodyne trajectories. We illustrated how stationary and
oscillatory phases manifest in these trajectories and unveiled
peculiarities of the dynamics at the critical point. We found
the time-crystal phase to display persistent oscillations in
individual realizations and for finite systems, thus emerging
in the presence of significant fluctuations beyond the mean-
field limit. At criticality, we disclosed the occurrence of large
fluctuations and we could show the average time between
them to display a power-law scaling with system size. We
moreover showed that the time-integrated photocurrent can
serve as a dynamical order parameter for the time-crystal
phase transition. From this perspective the time-crystal phase
can be regarded as a phase in which many oscillatory pat-
terns coexist. This dynamical phase coexistence manifests in
strongly intermittent behavior of the photocurrent. It would
be interesting to understand, whether the dynamical transition
may be useful as a resource for quantum enhanced metrology,
as discussed in [76].
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[38] B. Buča, J. Tindall, and D. Jaksch, Nat. Commun. 10, 1730

(2019).
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