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We demonstrate that the equality-based first law of thermodynamics inherently implies a universal Landauer-
like inequality, connecting variations in system entropy and energy. This Landauer-like inequality is shown to
depend solely on system information and is highly applicable in scenarios where the implementation of the
conventional Landauer principle becomes challenging. Moreover, we unveil that this Landauer-like inequality
complements the Landauer principle by establishing an alternative upper bound on heat dissipation. To un-
derscore its practicality, we illustrate the utility of the Landauer-like inequality in contexts such as dissipative
quantum state preparation and quantum information erasure applications. Our findings offer insights into iden-
tifying thermodynamic constraints, with particular relevance to the domains of quantum thermodynamics and
the energetics of quantum information processing. Additionally, this approach paves the way for investigating
systems coupled to nonthermal baths or those characterized by limited access to bath information.
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Introduction. To ensure the sustainability of quantum tech-
nologies, conducting a comprehensive assessment of their
energetic footprints is of paramount importance [1]. In this
context, the Landauer principle (LP) [2] marks the pioneering
effort, offering an inequality that establishes a lower bound
on the dissipated heat Q(t ) by the entropy change �S(t )
of information-bearing degrees of freedom during the time
interval [0, t] (setting h̄ = 1 and kB = 1):

Q(t ) � −T �S(t ). (1)

Here, T represents the temperature of the thermal bath. Within
the framework of information thermodynamics [3,4], it is now
recognized that Eq. (1) precisely corresponds to the Clausius
inequality for the total entropy production in a scenario with
a single thermal bath [5–7], with Q(t ) and �S(t ) identified as
the averaged energy change of the thermal bath �EB(t ) and
the system’s von Neumann entropy production, respectively
[5–7]. Here, we define �A(t ) ≡ A(t ) − A(0) for an arbitrary
quantity A. Nevertheless, this thermodynamic interpretation
of Eq. (1) necessitates energy measurements of a thermal
bath, which are often challenging to implement due to limited
control or access.

One established strategy for circumventing the bath en-
ergy measurement issue is to employ a dynamical map that
converges to the system Gibbs state. A widely accepted imple-
mentation employs a quantum Lindblad master equation with
Lindblad operators satisfying the detailed balance condition
[8]. By adopting this approach, a Clausius inequality is ob-
tained, where the dissipated heat Q(t ) = −�ES (t ) is directly
linked to the system’s averaged energy change �ES (t ), which
is experimentally friendly [9]. This favorable result, how-
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ever, comes at the expense of requiring weak system-bath
couplings [10].

The LP has been refined [5,11–16] and generalized
[6,17–27] in response to its fundamental and conceptual
significance. Recent experimental verifications [28–30] have
further advanced its validation. However, challenges persist
when implementing the LP equation (1) and its general-
izations in specific scenarios. Nonthermal baths frequently
encountered at the nanoscale [31–35] lead to an ambiguous
definition of thermodynamic temperature. Additionally, cal-
culating the total entropy production can be challenging when
the final state is pure [36,37], as is the case in quantum state
preparation tasks [38–40], or when systems undergo unidirec-
tional transitions [41], thereby limiting the universality of the
LP. It is also worth noting that the existing LPs are typically
derived for setups immersed in a single bath [2,5–7,14,22–
25,33,42], hindering their applicability in systems coupled to
multiple baths. Even within the validity regime of the LP,
the existence of a dual upper bound for the dissipated heat
remains largely elusive.

Exerting additional refinements to overcome the limita-
tions of the LP represents a formidable task. In this Research
Letter, we aim for alternatives and leverage the equality-based
first law of thermodynamics to derive universal Landauer-
like inequalities for undriven and driven quantum systems
[Eqs. (4) and (8), respectively]. These inequalities, originating
from a distinct framework, offer applicability in scenar-
ios where the LP fails, thereby enabling investigations into
trade-off relations between heat dissipation and system en-
tropy production in generic open quantum systems, including
those coupled to nonthermal baths or lacking access to bath
information—a scenario frequently encountered in today’s
nanoscale experiments [43,44]. Moreover, they can comple-
ment the LP in its validity regime by providing dual upper
bounds on dissipated heat, effectively constraining it from
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both sides. This provides a comprehensive assessment of the
potential range of dissipated heat during quantum processes,
a property with applications not only in computation [42] but
also beyond [1]. We showcase the practical utility of these
Landauer-like inequalities in a dissipative quantum Bell state
preparation process [45,46], where the LP is inapplicable due
to ill-defined quantities involved in the second law of ther-
modynamics, and a quantum information erasure task on a
driven qubit [16,22,24], where the LP remains valid and can
be combined.

Landauer-like inequality for undriven systems. We first
consider a generic undriven quantum system with a Hamilto-
nian HS and a time-dependent density matrix ρS (t ), allowing
for nonequilibrium conditions. Introducing a reference Gibb-
sian state ρth = e−βRHS /ZS , where βR = T −1

R is an inverse
reference parameter and ZS ≡ Tr[e−βRHS ] is the partition func-
tion, we can obtain a universal form of the first law of
thermodynamics which reduces to that in Ref. [47] for isother-
mal processes,

ES (t ) = TRS(t ) + F (t ). (2)

Here, ES (t ) ≡ Tr[HSρS (t )] denotes the average system
energy, S(t ) = −Tr[ρS (t ) ln ρS (t )], and F represents the
nonequilibrium information free energy [3,13,47,48], F (t ) ≡
F + TRD[ρS (t )||ρth], where F ≡ −TR ln ZS and D[ρ1||ρ2] ≡
Tr[ρ1(ln ρ1 − ln ρ2)] is the relative entropy of states ρ1,2.

From Eq. (2), we find that �S(t ) = βR[�ES (t ) −
TRD[ρS (t )||ρth] + TRD[ρS (0)||ρth]]. To obtain general bounds
enabling direct evaluations, we fix the reference state ρth by
ensuring that it possesses the same entropy as the actual initial
state ρS (0) [32,34,35,49,50],

Tr[ρS (0) ln ρS (0)] = Tr[ρth ln ρth]. (3)

Since Tr[ρth ln ρth] is monotonically related to βR within the
interval 0 � S(t ) � ln dS , where dS represents the dimension
of HS , a unique solution for βR can be found from Eq. (3) once
ρS (0) is specified [35]. It is important to emphasize that βR is a
parameter determined solely by the system information. Only
when the initial state is thermal does TR acquire a meaningful
thermodynamic interpretation.

With Eq. (3), one finds �ES (t ) + TRD(ρS (0)||ρth ) =
Tr{[ρS (t ) − ρth]HS} ≡ �ER

S (t ); namely, one can map the
initial quantum relative entropy, a measure characterizing dis-
tance between states in the system Hilbert space, onto the
energy contrast with respect to the reference state. Inserting
it into the expression for �S(t ) above Eq. (3), we attain an
inequality

βR�ER
S (t ) − �S(t ) � 0. (4)

The universality of inequality (4) arises from its derivation
without any approximations. Noting that the left-hand side of
Eq. (4) denoted as P ≡ βR�ER

S (t ) − �S(t ) equals the rela-
tive entropy D(ρS (t )||ρth ), the equality condition of Eq. (4)
is satisfied when the system approaches the reference state
within finite times, i.e., ρS (t ) = ρth. Thus Eq. (4) emerges as
a consequence of the non-negative distance of ρS (t ) from an
initially determined reference state ρth. Adopting the quan-
tum coherence definition Coh(t ) ≡ S′(t ) − S(t ) with diagonal
entropy S′(t ) ≡ −Tr(�[ρS (t )] ln �[ρS (t )]) and �[ρS (t )] ≡∑

n |En〉〈En|ρS (t )|En〉〈En| in the energy basis {|En〉} of HS

[51], we have �S(t ) = �S′(t ) − �Coh(t ), which allows us
to identify the quantum coherence contribution to the bound;
we relegate details to the Supplemental Material (SM) [52].

We term the inequality (4) a Landauer-like one since it
similarly imposes constraints on energy change using system
entropy production. However, the inequality (4) distinguishes
itself from the LP equation (1) in two key aspects. Firstly,
Eq. (4) operates within a broader framework, relying solely
on system information. This feature enables its applications in
scenarios where the LP may fail due to limited prior knowl-
edge of bath information or ill-defined quantities associated
with the second law of thermodynamics [36,37,46]. Moreover,
unlike the LP and its generalizations [2,5–7,14,22–25,33,42]
relying on a single-bath assumption, Eq. (4) can be applied to
systems coupled to multiple baths.

Secondly, we derive the inequality (4) exclusively from the
first-law-of-thermodynamics equation (2). This unique foun-
dation enables Eq. (4) to offer complementary constraints to
the LP equation (1). To clarify, we decompose �ER

S (t ) =
�ES (t ) + �E in

S , where �ES (t ) ≡ Tr{[ρS (t ) − ρS (0)]HS} rep-
resents the actual system energy change and �E in

S ≡
Tr{[ρS (0) − ρth]HS} accounts for the possible initial energy
contrast. Inserting this decomposition into Eq. (4), a universal
upper bound on −�ES (t ) is obtained,

−�ES (t ) � Qu(t ). (5)

Here, we have defined Qu(t ) ≡ �E in
S − TR�S(t ). Equa-

tion (5) estimates the amount of energy that the system at
most dissipates. Alternatively, Eq. (5) can be interpreted as
an upper bound on the extractable work −�ES (t ) (defined,
for instance, in Ref. [53]) from a quantum system, utilizing
protocols that extend beyond mere unitary transformations. In
arriving at the upper bound in Eq. (5), we have assumed a
non-negative reference parameter TR which can cover typical
initial states. For initial states which correspond to a negative
reference parameter TR, we will receive instead a lower bound.

At weak system-bath couplings, Q(t ) = −�ES (t ). Com-
bining Eq. (5) with the LP equation (1), we obtain dual
constraints on the dissipated heat from both sides:

−T �S(t ) � Q(t ) � Qu(t ). (6)

Equations (4)–(6) constitute our first main results. It is worth
noting that the whole equation (6) applies to systems weakly
coupled to a thermal bath at temperature T . Interestingly,
when we set βR = β and ρS (0) = ρth, we find �E in

S = 0
and Qu(t ) = −T �S(t ). Consequently, the upper and lower
bounds in Eq. (6) coincide, indicating a vanishing dissipated
heat [54]. Importantly, the left-hand side of Eq. (6) is derived
using the original LP equation (1), and one can employ its
generalizations (for instance, the one in Ref. [24]) to tighten
the lower bound while maintaining the validity of Eq. (6).

Landauer-like inequality for driven systems. We now
generalize Eqs. (4)–(6) to account for driven systems
with a time-dependent Hamiltonian HS (t ). With HS (t )
and noting the fact that the system entropy can change
during nonunitary evolution, we consider an instantaneous
reference Gibbsian state ρth(t ) = e−βR (t )HS (t )/ZS (t ) with
βR(t ) = 1/TR(t ) being a time-dependent inverse reference
parameter and ZS (t ) = Tr[e−βR (t )HS (t )]. We find that the
first law of thermodynamics still takes a similar form to
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that of Eq. (2), ES (t ) = TR(t )S(t ) + F̃ (t ), but with ES (t ) ≡
Tr[HS (t )ρS (t )] and F̃ (t ) ≡ F (t ) + TR(t )D[ρS (t )||ρth(t )];
F (t ) = −TR(t ) ln ZS (t ). We remark that βR(t ) can gain a
meaningful thermodynamic interpretation when the system
can stay in an instantaneous thermal state [18]. With the
generalized first law of thermodynamics, the change in
the system’s von Neumann entropy can be expressed as
�S(t ) = βR(t )[ES (t ) − F̃ (t )] − βR(0)[ES (0) − F̃ (0)].

In this scenario, we fix the instantaneous reference state by
requiring an instantaneous equivalence of entropy, allowing
for a unique solution for βR(t ) [35]:

Tr[ρS (t ) ln ρS (t )] = Tr[ρth(t ) ln ρth(t )]. (7)

By exploiting the above condition at t = 0, we can
transfer D[ρS (0)||ρth(0)] = Tr{[ρth(0) − ρS (0)] ln ρth(0)} =
−βR(0)Tr{[ρth(0) − ρS (0)]HS (0)}. Inserting this expression
into the above equation for �S(t ) and rearranging terms,
we obtain a generalized Landauer-like inequality that extends
Eq. (4),

βR(0)�ẼR
S (t ) − �S(t ) + C(t ) � 0. (8)

Here, we define �ẼR
S (t ) ≡ ES (t ) − E th

S (0) with E th
S (0) =

Tr[HS (0)ρth(0)], and C(t ) ≡ �βR(t )ES (t ) + ln ZS (t )
ZS (0) with

�βR(t ) = βR(t ) − βR(0). C(t ) vanishes when HS becomes
time independent, as then βR has no time dependence. The
equality condition of Eq. (8) is satisfied when ρS (t ) = ρth(t ),
as the left-hand side of Eq. (8) precisely corresponds to
D[ρS (t )||ρth(t )]. Similar to Eq. (4), one can still decompose
�S(t ) = �S′(t ) − �Coh(t ) with S′(t ) expressed in terms of
the instantaneous energy basis [51] and identify the quantum
coherence contribution to the bound as shown in the SM [52].

Equation (8) leads to generalizations of Eqs. (5) and (6),
forming the second main results of this study,

−�ES (t ) � Q̃u(t ), (9)

−T �S(t ) � Q(t ) � Q̃u(t ) + W (t ). (10)

Here, �ES (t ) = Tr[ρS (t )HS (t ) − ρS (0)HS (0)]. We define
Q̃u(t ) ≡ �Ẽ in

S − TR(0)�S(t ) + TR(0)C(t ) with �Ẽ in
S ≡

Tr{[ρS (0) − ρth(0)]HS (0)}, and W (t ) = ∫ t
0 Tr[ḢS (t ′)

ρS (t ′)]dt ′ denotes the work performed on the system
with Ȧ(t ) ≡ dA(t )/dt for an arbitrary A(t ). We remark
that Eq. (9) holds under the assumption of a non-negative
initial reference parameter TR(0) and Eq. (10) applies to
driven systems weakly coupled to a thermal bath at the
temperature T . The usual LP holds in driven systems
with dissipated heat Q(t ) = − ∫ t

0 Tr[HS (t ′)ρ̇S (t ′)]dt ′ [24] and
�ES (t ) = −Q(t ) + W (t ). Equations (5) and (6) are recovered
when HS becomes time independent. Notably, the upper and
lower bounds in Eq. (10) differ, even when ρS (0) = ρth(0)
and TR(0) = T , as the upper bound includes a nonzero work
contribution.

Application 1: Dissipative quantum state preparation. To
validate the framework, we first consider the dissipative
quantum state preparation (DQSP) which harnesses dissipa-
tive processes to prepare useful quantum pure states. One
generally utilizes a Markovian quantum Lindblad master

equation to this end [38–40,55],

d

dt
ρS (t ) = − i[HS, ρS (t )] +

∑
μ=1

γμD[Lμ]ρS (t ). (11)

Here, γμ � 0 is the damping coefficient of channel μ, and
D[Lμ]ρ = LμρL†

μ − 1
2 {L†

μLμ, ρ} is the Lindblad superopera-
tor with Lμ being the Lindblad jump operator and {A, B} =
AB + BA. The final stationary state would be a pure one |�〉
when it fulfills the conditions HS|�〉 = En|�〉 and Lμ|�〉 =
0, ∀μ [38].

The DQSP process is typically accomplished through dis-
sipation engineering [43] involving nonthermal baths [44],
wherein the engineered Lindblad jump operators do not ad-
here to the detailed balance condition [38]. Furthermore, the
final pure state challenges the conventional definition of total
entropy production, rendering it ill defined [36,37]. As a re-
sult, the LP equation (1) cannot quantify the thermodynamic
cost of DQSP processes [46]. In contrast, the inequality (4)
remains applicable.

In this application, we validate the upper bound in Eq. (6),
noting that Q(t ) = −�ES (t ) for the description equation (11)
[9,24]. We consider a concrete DQSP setup proposed in
Ref. [45] consisting of two �-type three-level Rydberg atoms,
each one containing two ground states |0〉 and |1〉, and one
Rydberg state |r〉. Combining an unconventional Rydberg
pumping mechanism with the spontaneous emission of two
atoms, Ref. [45] showed that one can dissipatively gen-
erate the Bell state |�〉 = (|00〉 − |11〉)/

√
2 with |00(11)〉

being understood as |0(1)〉 ⊗ |0(1)〉. The elements in Eq. (11)

are [45] HS = 	2(|10〉〈r0| + |01〉〈0r|) + ω[(|11〉 + |00〉) ⊗
(〈01| + 〈10|)] + H.c. (H.c. denotes the Hermitian conjugate),
γμ = γ /2, and four Lindblad jump operators describing
spontaneous emission: L1 = |01〉〈0r|, L2 = |00〉〈0r|, L3 =
|10〉〈r0|, and L4 = |00〉〈r0|. It is evident that the Bell state
satisfies conditions HS|�〉 = 0 and L1,2,3,4|�〉 = 0 as required
by the DQSP scheme. Nevertheless, one should bear in mind
that the adopted model overlooks other decaying channels
such as the dephasing one.

In Fig. 1, we depict a set of results for both Q(t ) and
its upper bound Qu(t ) for the aforementioned model. In the
main plot, we take ρS (0) = ρth with βR = 30, while in the
inset, we consider a nonthermal-form initial state obtained
by sorting the same diagonal elements of ρth in an increasing
order with respect to an ordered energy basis with increasing
eigenenergies. As can be seen from the figure, Qu(t ) indeed
bounds the dissipated heat Q(t ) from above. We also note
that the contribution from quantum coherence, TR�Coh(t ), is
only impactful at short times and gradually diminishes as time
progresses. Consequently, the dominant factor governing the
upper bound at extended times is the reduction in diagonal
entropy, −TR�S′(t ). The finite distance Qu(t ) − Q(t ) = TRP
[see definition below Eq. (4)] becomes maximum at long
times as |�〉 significantly deviates from a full-rank reference
state. One can potentially reduce the distance by strategically
adjusting the initial conditions to mitigate the contribution
−TR�S′(t ) [57]. Notably, the initial state ρth (more generally,
passive states [46]) leads to a negative dissipated heat as can
be seen from Fig. 1: This occurs because the final Bell state
is the third excited state of the system and the system gains
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FIG. 1. Results for the time-dependent dissipated heat Q(t )
(blue solid curve), the upper bound Qu(t ) given by Eq. (6) (red
dashed curve), the quantum coherence contribution TR�Coh(t )
(green dash-dotted curve), and the diagonal entropy contribution
−TR�S′(t ) (magenta dotted curve). Main panel: ρS (0) = ρth with
βR = 30. Inset: ρS (0) has the same diagonal elements with ρth

but sorted in an increasing order with respect to an ordered en-
ergy basis with increasing eigenenergies. We set 	 = 2π MHz
as the unit and adopt experimental values (	2, ω, γ ) = 2π ×
(0.02, 0.01, 0.03) MHz [56].

energy from the environment to complete the preparation
process [46]. With the LP equation (1), one can just deduce
βQ(t ) � −�S(t ) � 0, given that �S(t ) � 0 in simulations.
However, due to the undefined nature of β, extracting infor-
mation about Q(t ) alone is impossible.

Application 2: Information erasure. We then turn to an
information erasure model in which a driven qubit is coupled
to a thermal bath at the temperature T = β−1 [16,22,24]. The
system is described by a time-dependent Hamiltonian

HS (t ) = ε(t )

2
(cos[θ (t )]σz + sin[θ (t )]σx ). (12)

Here, σx,z are the Pauli matrices, and ε(t ) and θ (t ) are
time-dependent control parameters. We adopt the con-
trol protocols ε(t ) = ε0 + (ετ − ε0) sin(πt/2τ )2 and θ (t ) =
π (t/τ − 1) [22]. The evolution of ρS (t ) is still governed
by the quantum Lindblad master equation (11) but with
the time-dependent Hamiltonian in Eq. (12) and two time-
dependent jump operators, L1(t ) = √

ε(t )[NB(t ) + 1]|0t 〉〈1t |
and L2(t ) = √

ε(t )NB(t )|1t 〉〈0t | [24]. Here, |0t 〉 (|1t 〉) is
the instantaneous ground (excited) state of HS (t ), NB(t ) =
1/(eβε(t ) − 1), and γ1,2 = γ .

For this driven setup, we consider validating Eq. (10).
In the case of a maximally mixed initial state ρS (0) = I/2
with “I” being a 2 × 2 identity matrix [24], the upper bound
in Eq. (10) is trivially divergent due to the divergent initial
reference parameter. For demonstration, we consider an easily
prepared initial thermal state ρS (0) = e−βHS (0)/Tr[e−βHS (0)]
[58]. In this case, the upper bound in Eq. (10) becomes finite
and nontrivial. A set of numerical results are depicted in
Fig. 2.

In the upper panel of Fig. 2, we observe that the dissi-
pated heat Q(t ) is indeed bounded by both the derived upper
bound Q̃u(t ) + W (t ) and the LP lower bound −T �S(t ). Opt-
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FIG. 2. Validating Eq. (10) with an initial thermal state ρS (0) =
e−βHS (0)/Tr[e−βHS (0)]. Upper panel: The dissipated heat Q(t ) (blue
solid curve), the derived upper bound Q̃u(t ) + W (t ) (red dashed
curve), the LP bound −T �S(t ) (green dash-dotted curve), and the
quantum coherence contribution TR(0)�Coh(t ) (right axis, magenta
dotted curve). Lower panel: The time-dependent inverse reference
temperature βR(t ) (left axis), and the work W (t ) and −Q̃u(t ) (right
axis). Parameters are γ = 0.2, β = T −1 = 1, ε0 = 0.4, ετ = 10, and
τ = 10.

ing for βR(0) = β, both bounds in Eq. (10) incorporate an
identical quantum coherence term TR(0)�Coh(t ). This term
exhibits oscillations but does not significantly contribute to
the bound. However, decreasing τ amplifies the oscillation
magnitude of TR(0)�Coh(t ); see SM [52] for more details. In
the lower panel of Fig. 2, we notice the monotonic increase of
the inverse reference parameter βR(t ) from the initial actual
inverse temperature βR(0) = β = 1 (black dash-dotted line).
This behavior allows us to utilize βR(t ) as a monitoring tool
for the effectiveness of the erasure process, driving the qubit
towards the ground state with a divergent effective inverse
temperature. Interestingly, we also observe a negative W (t )
in the lower panel of Fig. 2, implying a work output from the
driven qubit. Given analogous heat engine setups involving
a single bath and two driving fields [59–61], there is a com-
pelling question about adapting the information erasure model
for heat engine design—a topic for future exploration.

Discussion and conclusion. Our Landauer-like inequalities
are compatible with current experimental capacities. By utiliz-
ing quantum state tomography, the reduced system state and
all relevant quantities in the inequalities, including the refer-
ence parameter, can be fully determined. While we focused
on applications related to dissipated heat, these inequalities
possess a broader scope. For instance, they can be applied
to investigate irreversibility in thermal relaxation processes,
especially those where entropy production plays a significant
role [62]. In this regard, we remark that both Eqs. (4) and (8)
can be transformed into universal upper bounds on the system
entropy production.

We note that Ref. [18] revealed a nonequilibrium Landauer
principle (NLP) using the non-negativity of quantum relative
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entropy as well. While the NLP gives rise to inequalities
resembling Eqs. (4) and (8), a meticulous analysis confirms
their distinction from Eqs. (4) and (8), with our results being
more general; detailed insights are available in the SM [52].

In conclusion, we offer a unique perspective for exploring
thermodynamic trade-off relations, departing from the tradi-
tional focus on the second law. Grounding our investigation
in the first law, we introduce an analytical framework to
establish Landauer-like inequalities, thereby contributing to
the ongoing discourse on thermodynamic principles. Notably,
our work brings us closer to a comprehensive understanding
of energy dynamics in quantum systems interfacing with di-
verse bath types, extending beyond the confines of thermal

baths alone. Importantly, the applicability of our Landauer-
like inequalities does not hinge on specific knowledge of
the bath or the degree of control over it. These alignments
with contemporary requirements in quantum thermodynamics
[35,63] and the burgeoning field of quantum informa-
tion experiments underscore the relevance of our study to
both quantum thermodynamics and quantum information
science.
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