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The quantum mechanical weak value Aw = 〈φ|A|ψ〉/〈φ|ψ〉 of an observable A is a measurable quantity
associated with an observable A and pre- and postselected states |ψ〉, |φ〉. Much has been discussed about the
meaning and metrological uses of anomalous weak values, lying outside of the range of eigenvalues of A. We
present a simple proof that anomalous weak values require that the (possibly mixed) pre- and postselection states
have coherence in the eigenbasis of A. We also present conditions under which anomalous Aw are witnesses of
generalized contextuality, dispensing with the operational weak measurement setup.
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Introduction. Superposition states are a defining hallmark
of quantum mechanics. For general mixed states this resource
is known as quantum coherence, and is defined with respect
to a specific choice of basis {|a〉}a associated with a (non-
degenerate) observable A. In this context, coherent states ρ

are defined as those which have non-null off-diagonal density
matrix elements 〈a|ρ|a′〉 �= 0 for a �= a′. Coherence can be
formally treated as a resource [1], and shown to be responsible
for various nonclassical phenomena, providing an advantage
in information processing tasks [2].

While standard projective measurements typically strongly
disturb a quantum system, in 1988, Aharonov, Albert, and
Vaidman [3] proposed a new measurement scheme allowing
for a tunable degree of disturbance on the measured systems.
A weak measurement scheme involves preparing a quantum
state |ψ〉, followed by a weak interaction between the system
and a measurement apparatus, generated by some observable
A, with a final postselection onto some other state |φ〉. The
average change in the apparatus pointer, for a sufficiently
weak interaction between the measurement device and the
state, will be given by the so-called weak value

Aw = 〈φ|A|ψ〉
〈φ|ψ〉 . (1)

The weak value Aw differs from common averages of the
observable A in that it can lie outside the range of the spectrum
σ (A) of A. When this happens, Aw is called an anomalous
weak value, and this property has been shown to provide
some advantage in metrology [4,5]. It has been argued that
classical interference models can reproduce this effect [6].
Later it was shown that those effects would only be possible
for models capable of precisely reproducing the same kind of
interference phenomenology that makes nonclassical effects
possible for physical systems [7]. Under specific operational
constraints, statistics arising from anomalous weak values
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in weak measurements was shown to be explained only by
contextual models [8,9].

We advance the analysis of the role of coherence in weak
values [7,10–12] by studying the quasiprobability distribution
mentioned in Ref. [7], revisiting it from the perspective of
unitary-invariant properties of a set of quantum states known
as Bargmann invariants [13,14]. Our Theorem 1 shows that
weak value anomaly requires a rather specific type of coher-
ence to be present, namely, coherence as a relational property
between the pre- and postselection states and the eigenbasis
of the observable A. We provide several examples showing
that coherence alone is not sufficient for anomaly to appear.
In Corollary I we also show that negativity or imaginarity of
the quasiprobabilities guarantees anomalous weak values for
certain observables.

The fact that a weak value anomaly implies coherence
opens up the possibility of witnessing coherence using weak
value measurements, without the need for state tomog-
raphy, knowledge of dimension, purity, or commutativity.
This could be done using recently proposed quantum cir-
cuits that measure weak values [12,14]. We also remark
on the relevance of recently established connections be-
tween unitary invariants and contextuality [15], together with
techniques for testing contextuality without relying on oper-
ational constraints [16–18]. These results enable us here to
present simple ways to robustly quantify contextuality using
measurements of weak values, allowing simplified tests of
contextuality.

A quasiprobability distribution associated with weak val-
ues. Consider an arbitrary observable A, with eigenbasis
{|ai〉}d

i=1 and corresponding eigenvalues {ai}d
i=1. The weak

value [3,19] Aw of A is defined as

Aw = 〈φ|A|ψ〉
〈φ|ψ〉 =

∑
i

ai
〈φ|ai〉〈ai|ψ〉

〈φ|ψ〉 , (2)

where we assume 〈φ|ψ〉 �= 0. In Refs. [7,12,20], it was ob-
served that multiplying by 〈ψ |φ〉/〈ψ |φ〉 = 1 we can rewrite
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FIG. 1. Frame graph characterizing relational information of pre-
and postselection states, and a basis for observable A. Vertices rep-
resent quantum states in a d-dimensional Hilbert space. For general
mixed states, edges represent two-state overlaps Tr(ρψρφ ). Two of
the vertices represent the preselected state ρψ and the postselected
state ρφ , with all other vertices representing the vector eigenbasis of
A, the observable of interest.

this as

Aw =
∑

i

ai
〈φ|ai〉〈ai|ψ〉〈ψ |φ〉

|〈φ|ψ〉|2 =
∑

i

ai
�3(ρφ, ai, ρψ )

�2(ρφ, ρψ )
, (3)

where ρψ = |ψ〉〈ψ |, ρφ = |φ〉〈φ| are, respectively, the pre-
and postselected states, and �n is the nth order Bargmann
invariant [13,21] of an n-tuple of states:

�ρ1ρ2···ρn ≡ �n(ρ1, . . . , ρn) = Tr(ρ1 · · · ρn). (4)

Bargmann invariants are capable of witnessing the pres-
ence of a recently introduced notion of nonclassicality, termed
set coherence [22]. It corresponds to the property that states
in a given set cannot all be diagonal with respect to any single
basis, as investigated in Ref. [23]. Reference [12] noted that
negativity and imaginarity of weak values are witnesses of
set coherence. In particular, for the case of weak values of a
given observable A, this will imply coherence with respect to
the eigenbasis of A. Figure 1 shows the graph characterizing
relational information for all quantities defining Aw. Our treat-
ment of coherence applies to general pre- and postselection
states, including mixed states, for which weak values are
defined in terms of Bargmann invariants as

Aw = Tr(ρφAρψ )

Tr(ρφρψ )
=

∑
i

ai
Tr(ρφ|ai〉〈ai|ρψ )

Tr(ρφρψ )
(5)

=
∑

i

ai
�3(ρφ, ai, ρψ )

�2(ρφ, ρψ )
. (6)

Circuits based on the cycle test [14] were proposed in
Ref. [12] to directly estimate Aw in this more general form,
which has appeared elsewhere [7,24]. It is easy to check
that in Eqs. (3) and (6), the weight terms �3(ρφ,ai,ρψ )

�2(ρφ,ρψ ) define
quasiprobabilities, in the sense that these terms sum to 1:

g(ρφ, ρψ |ai ) := �3(ρφ, ai, ρψ )

�2(ρφ, ρψ )
,

∑
i

g(ρφ, ρψ |ai ) = 1.

(7)
However, these quasiprobabilities can be anomalous, that
is, outside of the real interval [0,1]. The quasiprobabilities

g(ρφ, ρψ |ai ) characterize relational, unitary-invariant proper-
ties of the set of states that includes A’s eigenbasis and the two
states ρψ, ρφ . In related recent work, negativity and imaginar-
ity of the Kirkwood-Dirac (KD) quasiprobability distribution
has been linked to anomalous weak values [20,25]. As pointed
out in Ref. [12], the KD distribution is written in terms of re-
lational properties of a single state and two different bases. By
focusing on the minimal scenario involving just A’s eigenbasis
and the pre- and postselected states, we will obtain a sharper
characterization of the connection between anomalous weak
values and coherence.

Constructions related to our proposed distribution g have
appeared before in the literature. In the continuous phase-
space setting, a complex-valued quasiprobability distribution
was introduced in the context of the cross-Wigner dis-
tribution [26]. The distribution g can be viewed as a
discrete version of the continuous distribution ρφ,ψ (z) de-
scribed in Ref. [26], sharing its key properties, but with
respect to the discrete phase space provided by the eigen-
basis of A. Denoting gi ≡ g(ρφ, ρψ |ai ), it is easy to show
that (i)

∑
i Re[gi] = 1,

∑
i Im[gi] = 0, (ii) g(ρφ, ρψ |ai )∗ =

g(ρψ, ρφ|ai ), (iii) g(αρφ, αρψ |ai ) = g(ρφ, ρψ |ai ),∀α ∈ C,
and (iv) Aw = ∑

i aigi. All these properties are also satisfied
by ρφ,ψ (z) in Ref. [26] where z = (x, p) ∈ R2N constitutes the
continuous phase space of N degrees of freedom, with tech-
nical differences associated with the continuous phase-space
framework.

The idea of studying anomalous weak values from the
perspective of anomalous quasiprobabilities has also appeared
before in a less general description. From a rather broad
view, negative joint quasiprobabilities are always capable of
reproducing experimental data in quantum theory [27,28], but
there are many such distributions capable of reproducing the
strongest possible quantum correlations [29–32], a fact that
somewhat disfavors those as good explanations due to fine-
tuning arguments. Reference [33] introduced the notion of
“weak value quasiprobability,” that relates to our description
of g. Their distribution corresponds to the real part of the
Kirkwood-Dirac quasiprobability distribution [34,35], also
known as Terletsky-Margeneau-Hill quasiprobabilities [7,36–
38]. In our terms, it is the real part of the numerator defining
g, with anomalous values then simply real values outside the
range [0,1]. Reference [39] later argued that negative values in
this quasiprobability distribution can be used to single out the
many possible joint distributions explaining quantum data, as
this would be the only such distribution capable of explaining
the results of weak measurements.

Anomalous weak values require coherence. An anomalous
weak value Aw is one that is outside of the range of eigenval-
ues of A. Clearly, the existence of an anomalous Aw requires
at least one anomalous quasiprobability [7]. Our first result is
as follows:

Theorem 1. The appearance of an anomalous weak value
Aw of observable A requires coherence of both ρφ, ρψ in the
eigenbasis of A.

Proof. First, let us show that a pair of (pure or mixed) states
ρψ, ρφ that are incoherent, that is, diagonal in the basis of
A, cannot result in anomalous Aw. Let us assume ρφ, ρψ are
diagonal in A’s eigenbasis. As discussed in Ref. [12], for any
set of states which are diagonal in a basis A, the invariants
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are the probability p of getting the same outcome when mea-
suring A independently on all states. So the quasiprobabilities
associated with Aw can be rewritten as

g(ρφ, ρψ |ai ) = �ρφaiρψ

�ρφρψ

=
d∑

k=1

p(ak, ρφ )p(ak, ai )p(ak, ρψ )

�ρφρψ

= �aiρφ
�aiρψ

�ρφρψ

. (8)

For diagonal, coherence-free states the quasiprobabilities
g(ρφ, ρψ |ai ) above define a genuine probability distribution:
They are real non-negative values within [0,1], and add up to
1. In this case, g(ρφ, ρψ |ai ) is the renormalized probability of
obtaining equal outcomes ai after independent measurements
of A on |ψ〉, and |φ〉. As coherence-free states result in no
anomalous quasiprobabilities, anomalous weak values are im-
possible for those states.

Let us now prove that anomalous weak values Aw require
that both ρφ and ρψ be coherent in A’s eigenbasis. Sup-
pose, without loss of generality, that ρφ is diagonal in A’s
basis, but ρψ is not. This implies that ρφ commutes with
any |ai〉〈ai|, and hence �ρφaiρψ

= Re[�ρφaiρψ
] � 1, the last in-

equality being a general feature of Bargmann invariants. Also,
�ρφaiρψ

= Tr(ρφ|ai〉〈ai|ρψ ) = Tr(τρψ ), where τ = ρφ|ai〉〈ai|
is a diagonal positive semidefinite matrix. It is known that for
any two positive semidefinite matrices X,Y , the trace satisfies
Tr(XY ) � 0 (see Theorem 1 of Ref. [40]). So, for the exis-
tence of negative or imaginary values of the invariants �ρφaiρψ

we need both ρψ, ρφ to be coherent. Positivity of all third-
order invariants implies that g is nonanomalous, and therefore
Aw will also be nonanomalous. As we have seen, anoma-
lous Aw require at least one anomalous quasiprobability g. In
case g(ρφ, ρψ |ai ) > 1, we note that there must exist another
a j �= ai such that g(ρφ, ρψ |a j ) < 0 (due to the normalization
of quasiprobabilities). As we have shown that negative values
of g are ruled out unless both ρφ, ρψ are coherent, this directly
implies that values of g larger than 1 are also ruled out in this
case. �

Some of the aspects outlined in the theorem above have
appeared before. For instance, as mentioned in Ref. [41],
negativity of g arising from anomalous values of Aw has been
studied in the context of the so-called three-box problem in
quantum foundations [42], and in connections of anomalous
weak values with Bell nonlocality [43]. Reference [12] shows
that negativity and imaginarity of the weak values P(i)

w of
eigenprojectors of A are witnesses of coherence, but not the
general case of anomalous Aw, as in our Theorem 1.

Corollary 1. Anomalous values of g are sufficient for the
existence of anomalous weak values for some observable,
specifically, some eigenprojector of A’s.

The proof is an immediate consequence of Theorem 1: Any
anomalous quasiprobability gi is an anomalous weak value
P(i)

w for the associated eigenprojector P(i) ≡ |ai〉〈ai| of A.
Comparison with prior work. Here, we review some

of the previously studied connections between quantum
coherence and anomalous weak values, as a way to contex-
tualize our results. In our view, these connections have been

underappreciated up to now, as they are not mentioned in some
comprehensive reviews on weak values [4,5].

Reference [10] presented an analysis of how entanglement
between the detection apparatus and the initial system is nec-
essary for anomalous values that can be used in weak value
amplification tasks. Their analysis is significantly less general
than ours as it applies to an initial qubit system, discusses only
real-valued weak values, relying on the usual weak measure-
ment scheme, and using a much more intricate analysis of the
Holevo quantity to conclude the necessity of quantum coher-
ence. Our analysis, on the other hand, is broadly applicable,
valid also for complex-valued weak values, and is not attached
to any specific measurement scheme.

Reference [7] has a conceptual goal that is similar to ours:
to show that anomaly arises from nonclassical interference
phenomena. The authors present a discussion of different
methods for estimating weak values, and also briefly connect
anomaly to negativity of quasiprobability distributions. No
simple, general, and formal argument such as Theorem 1 is
provided favoring an interpretation that weak values require
quantum coherence. Nevertheless, their results firmly estab-
lish the same conceptual result as ours, i.e., that any classical
model reproducing the results of weak measurements with
anomalous weak values must be capable of simulating prop-
erties of coherent quantum states. They make the connection
between coherence and anomaly clear through negativity of
quasiprobability, using a less general distribution than ours.
For a comparison between our distribution g and other con-
structions previously proposed in the literature, we refer to the
previous section on a quasiprobability distribution associated
with weak values.

Finally, it is important to note that since anomalous weak
values are proofs of quantum contextuality [8,9], they are also
proofs of the necessity of quantum coherence, as coherence
is a necessary (yet not sufficient) condition for contextual-
ity [15]. Still, the results from Refs. [8,9] heavily rely on the
specific operational aspects of the weak measurement scheme,
lacking in simplicity of the argument, especially if one is
solely interested in coherence. We provide other comments
on the connection with contextuality in a following section.

Coherence is not sufficient for weak value anomaly. The-
orem 1 above establishes that coherence is necessary for the
appearance of anomalous weak values Aw. It is natural to ask
whether it is also sufficient. In the following we show that in
general coherence does not imply anomaly of Aw, and discuss
particular conditions enabling results in this direction. We
start with a simple example where anomalous quasiprobability
values gi result in a nonanomalous weak value.

Example 1: Anomalous quasiprobabilities yielding
nonanomalous weak values. Consider two rank-1 projectors
A = |0〉〈0|, B = |1〉〈1| in a two-dimensional Hilbert space.
We can maximize negativity of Aw with a configuration
where |0〉, |ψ〉, |φ〉 are separated by 120◦ in a great
circle of the Bloch sphere (see Fig. 2). This results in a
negative Aw = −1/2. The same choice of |ψ〉, |φ〉 results
in an anomalous weak value Bw = 3/2 > 1. This example
illustrates two points: (1) Anomalous weak values may arise
from anomalous quasiprobabilities larger than 1, and not just
from complex or negative values of the quasiprobabilities;
and (2) even though both Aw and Bw are anomalous in this
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FIG. 2. Example of anomalous weak values. The weak value
Aw for the projector A = |0〉〈0|, with |φ〉, |ψ〉 chosen as in
the figure, results in the anomalous Aw = 1

1/4 〈φ|0〉〈0|ψ〉〈ψ |φ〉 =
1

1/4 ( 1
2 )( 1

2 )(− 1
2 ) = − 1

2 < 0. A similar calculation gives anomalous
Bw = 3/2 > 1. The weak value of the identity operator is nonanoma-
lous: Iw = Aw + Bw = 1.

case, their sum gives a nonanomalous weak value for the
identity operator Iw = 1. As we can see, the fact that Aw is
an average weighted by quasiprobabilities means anomalous
quasiprobabilities can average into a nonanomalous Aw.

As discussed in Refs. [13,14], all unitary-invariant quan-
tities of a set of states can be written in terms of Bargmann
invariants. As we have seen in the proof of Theorem 1, each
quasiprobability g(ρφ, ρψ |ai ) is a function of such unitary-
invariant quantities, which in the case of coherence-free states
must be nonanomalous, i.e., real in the range [0,1]. A natural
question is whether any pair of coherent states ρφ, ρψ leads
to anomalous values for gi. This would signal that coherence
is sufficient for the appearance of anomalous values of some
observable.

As it turns out, various sets of coherent states lead to
nonanomalous distributions g, independently of whether the
pre- and postselected states are pure or mixed.

Example 2: Coherent states yielding nonanomalous
quasiprobabilities. Let ρφ, ρψ ∈ D(H) be an arbitrary pair of
noncommuting density matrices: [ρφ, ρψ ] �= 0. Noncommu-
tativity guarantees coherence with respect to any basis, hence
in particular A’s eigenbasis. Consider the corresponding real-
amplitude states, by mapping ρφ �→ ρR

φ = (ρφ + ρT
φ )/2 and

similarly for ρψ . Random generation of state pairs will rapidly
turn up examples with only nonanomalous g(ρR

φ , ρR
ψ |ai ) ∈

[0, 1],∀i. Here is a qubit example,

ρψ =

⎛
⎜⎝

3
4

√
3

32√
3

32
1
4

⎞
⎟⎠, ρφ =

⎛
⎝

3
4

√
3

8√
3

8
1
4

⎞
⎠,

for which g0 = 0.829 997 and g1 = 0.170 003.
Anomaly of Aw as a witness of generalized contextuality. Of

particular significance for the discussion of nonclassicality of
weak values is their connection with generalized contextual-
ity [44]. Noncontextual models can reproduce some aspects of
quantum superpositions [45,46], despite being arguably clas-
sical from many viewpoints [47–51]. References [8,9] show
that noncontextual models cannot explain the data arising
from weak measurements. As weak values can be measured

in other ways [12], we wonder if it is possible to obtain
no-go results such as those in Refs. [8,9], without relying on
specifics of the operational weak measurement setup. In light
of our results, a simple way to do so is to use the event graph
approach [15], by studying the graph of Fig. 1 where one
only imposes constraints over edge-weights, hence two-state
overlaps (as opposed to cycles in the frame graph representing
higher-order invariants). Given a graph G, one defines poly-
topes CG whose facets can be translated into noncontextuality
inequalities [15]. For the graph of Fig. 1 the only nontrivial
inequalities will be 3-cycle inequalities,

h3 := �φψ + �φai − �ψai � 1, (9)

and sign permutations.
Consider the simplest case, which corresponds to the graph

associated with dimension d = 2. Again, we will use the
quasiprobability gi to establish a connection of anomaly with
a notion of nonclassicality, in this case generalized contextual-
ity. For qubits with only real-valued amplitudes, whenever we
have an anomalous value gi > 1, this implies, from the results
of Ref. [12], that some h3 > 1, an example of inequality viola-
tion. This violation can be used, together with the results from
Refs. [15,52], to construct prepare-and-measure fragments of
quantum theory [17], defined by a pair (S, E ) of sets of states
and sets of measurement effects. If g(φ,ψ |ai ) > 1 holds, then
letting S = {|φ〉, |ψ〉, |a1〉, |a2〉, |φ⊥〉, |ψ⊥〉}, where |φ⊥〉 is
the antipodal state of |φ〉 in the Bloch sphere, and effects
E = S , then it can be shown that the fragment (S, E ) cannot
have a noncontextual explanation. To robustly test this, one
can use linear programming techniques that will indicate the
presence of contextuality directly, and moreover return robust-
ness to depolarizing [18] and dephasing noise [53]. The case
for d > 2, or anomalous imaginary values of g, are not so
direct but can also be analyzed with the tools discussed here.
This is an alternative argument that anomalous weak values
imply generalized contextuality, different from the approach
of Refs. [8,9].

Discussion and further directions. We have character-
ized anomalous weak values in terms of a complex-valued
quasiprobability distribution. Although this distribution has
appeared before, our treatment can be viewed either as a gen-
eralization of other constructions for real-valued quantities,
or as a discrete version of a continuous-variable analog. With
this tool, we show that coherence is necessary for anomalous
weak values to occur; moreover, we show that specifically
imaginarity or real values for g outside the range [0,1] are
also sufficient for the appearance of anomalous weak values.
We also presented examples showing that coherence does not
necessarily yield anomalous weak values.

Our results have applications in terms of simplifying tests
of generalized contextuality associated with anomalous weak
values, via direct quantum circuit measurements of weak val-
ues that do not appeal to specific operational aspects of weak
measurement schemes.
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