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Quantum networks are of high interest nowadays. In short, they describe the distribution of quantum sources
represented by edges to different parties represented by nodes in the networks. Bundles of tools have been
developed recently to characterize quantum states from the network in the ideal case. However, features of
quantum networks in the noisy intermediate-scale quantum (NISQ) era invalidate most of them and call for
feasible tools. By utilizing purity, covariance, and topology of quantum networks, we provide a systematic
approach to tackle with arbitrary quantum networks in the NISQ era, which can be noisy, intermediate-scale,
random, and sparse. One application of our method is to witness the progress of essential elements in quantum
networks, like the quality of multipartite entangled sources and quantum memory.
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Numerous works have advertised from different scales the
advent of quantum network technology, as small as the stor-
age of a single entangled pair [1] and as broad as quantum
internet [2,3]. Apart from the theoretical importance, quantum
networks appear naturally in practice, especially in quantum
key distribution [4,5], quantum network metrology [6–8], and
quantum distributed computation [9]. A recent move is into
the characterization of different quantum correlations arising
from quantum networks [10–22].

A quantum network can be abstracted as a hypergraph,
where each node stands for a local laboratory and each
hyperedge represents a quantum source that distributes par-
ticles only to labs associated with the corresponding nodes;
see Fig. 1 for examples. A correlated quantum network
(CQN) allows the preshared classical protocol, i.e., global
classical correlation [11], an independent quantum network
(IQN) does not allow. Despite recent progress [10–22],
the study of quantum network states is still in its cradle.
Past research has focused mainly on IQN; bundles of tools
[16–18,23,24] have been added into the current toolbox.
However, they become incapable of detecting the underly-
ing structure of CQN even when only a small amount of
global classical correlation appears. In comparison, few meth-
ods [10,10–14] exist for CQN, which either work only for
special kinds of states like symmetric states [12–14] and
limited quantum networks like the triangle network [10,11]
or complete an n-partite network with (n − 1)-partite sources
[25–27]. However, an undeniable fact is that we progress
toward the noisy intermediate-scale quantum (NISQ) era, as
pointed out sagaciously by Preskill [28]. The global clas-
sical correlation exists then frequently in real applications,
which can even elicit from the flap of a butterfly’s wings
in Brazil [29].

Apart from the unavoidable global noise, quantum net-
works in the NISQ era share at least three other features:
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intermediate scale, random, and sparse. Though the size of
quantum networks in the NISQ era is limited, it can be not
small, considering that IBM has unveiled a quantum chip with
433 qubits [30] already. The randomness in the network can
originate from the random establishment of quantum links
with quantum repeaters [31,32] and also the decoherence of
established links as considered in waiting time [33]. Degener-
ation of a triangle quantum network until a classical network
is illustrated in Fig. 1. Since genuine multipartite entangle-
ment is hard to prepare and to maintain [34,35], the realistic
quantum networks will be sparse. Tools for quantum networks
in the NISQ era regarding those features are still missing.

In this work, we characterize correlated quantum networks
in the NISQ era by employing the purity of the state and
covariance of the measured data. Those methods are oper-
ational in the sense that only the available experiment data
is employed, without knowing the exact underlying quantum
state. Purity of the network state plays an essential role here,
as the classical correlation in a state can be captured by
its purity. Pretty recent research shows that the purity of a
multipartite state can be evaluated efficiently with only local
operations [36,37], which fits the network scenario. The meth-
ods developed here are feasible for noisy intermediate-scale
or big quantum networks. Interestingly, they work even for
a collection of networks with different kinds of topology,
which can cover the random network models, especially the
ones with probabilistic genuine bipartite sources as in the
consideration of quantum repeaters [31]. Thus they answer
one corresponding open question in the review paper on non-
locality in quantum networks [21]. We can also apply our
methods to a part of the network instead of the whole, which
fits the sparse structure of the network in the NISQ era and
reduces the difficulty of computation.

GHZ state under decoherence. As a warming-up exercise
we discuss the Greenberger-Horne-Zeilinger (GHZ) state of n
qubits under decoherence,

ρ(α) = (1 − α)|GHZ+〉〈GHZ+| + α|GHZ−〉〈GHZ−|, (1)
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FIG. 1. Three quantum networks, where each node stands for
one local laboratory, one edge in real line represents a genuine
bipartite entangled quantum source shared by different labs in the
corresponding nodes, and one edge in dashed line represents a sep-
arable quantum source. In practice, the quantum network in (a) can
degenerate to the one in (b) and even to the one in (c).

where |GHZ±〉 = (|0 · · · 0〉 ± |1 · · · 1〉)/
√

2 and α ∈ [0, 1/2]
describes the degree of decoherence. Despite its simplicity,
this example allows us to introduce our main ideas.

If all the n parties implement the same measurement
Z = |0〉〈0| − |1〉〈1|, then two possible combinations of out-
comes happen equally with probability 1/2, i.e., either all
of the outcomes are 0 or all of them are 1. To simulate this
statistical behavior without genuine n-partite entanglement,
the state for simulation can only be ρc = [|0 · · · 0〉〈0 · · · 0| +
|1 · · · 1〉〈1 · · · 1|]/2, since no other 0 − 1 string appears as
a combination of outcomes. Such a simulation invalidates
known methods with only statistical data [18,25–27]. It costs
at least one classical bit of randomness, as the Shannon
entropy or the von Neumann entropy of ρc is 1. However,
the von Neumann entropy of the state ρ(α) is −[α log2 α +
(1 − α) log2(1 − α)], which is strictly less than 1 for α ∈
[0, 1/2). This means that we cannot simulate the statistical
behavior and the von Neumann entropy of ρ(α) simultane-
ously by a quantum network with at most (n − 1)-partite
sources.

The von Neumann entropy is one way to measure the purity
of the state, capturing partially the classical correlations in
the state. To continue, we examine first different measures
of purity and choose a suitable one for our following meth-
ods. For a given state ρ in the d-dimensional space, the
common measures of its purity [38–40] are Rényi α-purity
log2 d − log2[Tr(ρα )]/(1 − α), which converges to the von
Neumann entropy as α tends to 1, and linear entropy purity
Tr(ρ2) − 1/d . Through the whole text, we take τ = Tr(ρ2) to
quantify the purity, which determines Rényi 2-purity and lin-
ear entropy purity. The advantage of τ over other quantifiers,
like the von Neumann entropy, is that it fits the covariance
of experimental data well in our approach, as both of them
contain the information of ρ2. As for the estimation of purity
of a multipartite state with different measures, it can be done
efficiently with only local operations [36,37], which are feasi-
ble in the network scenario.

Noisy quantum networks. Noise is unavoidable for the
quantum network states in the NISQ era, either the local noise
or the global one. Quantum networks with different noise
models can all be classified as CQNs. First, we develop the
covariance matrix decomposition method for CQN, where a
key step is to separate the part related to global classical
correlation out in the whole covariance matrix. For a given
hypergraph G(V, E ) and a state ρ from CQN of G, the state ρ

can be decomposed as

ρ =
∑

k

pkρk, ρk =
( ⊗

i∈V

C (k)
i

)( ⊗
e∈E

η(k)
e

)
, (2)

where {pk}k with
∑

k pk = 1 and pk > 0 is the global classical
correlation, C (k)

i is a local channel for the ith party, and η(k)
e is

an entangled state distributed from the source labeled by the
hyperedge e.

For simplicity, we assume each party has only one mea-
surement and denote Mi the measurement for the ith party.
Then we introduce three kinds of covariance matrices, �, �(k),
and �(c), whose elements in the ith row and jth column are
�i j , �

(k)
i j , and �

(c)
i j , respectively, where

�i j = 〈MiMj〉 − 〈Mi〉 〈Mj〉 , 〈Mi〉 = Tr(ρMi ),

�
(k)
i j = 〈MiMj〉k − 〈Mi〉k 〈Mj〉k , 〈Mi〉k = Tr(ρkMi ),

�
(c)
i j =

∑
k

pk 〈Mi〉k 〈Mj〉k − 〈Mi〉 〈Mj〉 . (3)

The covariance matrix � is the one that can be observed
directly in experiments. The covariance matrices {�(k)}k are
hidden in the experimental data when we assume that the
randomness of the sampling {pk, ρk}k is inaccessible. The
covariance matrix �(c) can be viewed as a classical covariance
matrix, since it is only about the distribution of classical data
{〈M1〉k , . . . , 〈Mn〉k}k . Throughout the whole paper, we only
consider the dichotomic measurements with outcomes ±1. A
pivotal observation is that the classical covariance matrix �(c)

can be separated out from the observed one � perfectly, i.e.,

� =
∑

k

pk�
(k) + �(c), (4)

whose proof can be found in Sec. A in the Supplemental Ma-
terial (SM) [41]. Since {�(k)}k are about network states from
IQN, the existing method in Ref. [18] can be employed to
impose constraints on them. However, if there is no limitation
of �(c), the observed covariance matrix � can still have an
arbitrary relation with the network topology G. As it turns
out, the purity of the state implies a nontrivial condition on
�(c), leading to a semidefinite programing (SDP) to determine
whether a state can arise from CQN with a given topology.

Observation 1. For a given state ρ from the CQN with
the network topology G(V, E ), measurements {Mi}i∈V , which
result in the covariance matrix �, it holds that

� =
∑
e∈E

ϒe + T, �eϒe�e = ϒe � 0,

T � 0, max
i∈V

Tii � β, Tr(T ) � l1β, (5)

where l1 is the maximal eigenvalue of
∑

i∈V Mi ⊗ Mi, β =
2
√

1 − τ 2, Tii is the ith diagonal term of T , and �e = ∑
i∈e Pi,

with Pi to be the projection onto ith row.
To apply the criterion in this observation, we need to first

estimate the purity of the state ρ and then implement the
measurements {Mi}i and obtain the covariance matrix from
the experimental data. It should work for arbitrary network
topology with around 50 nodes in practice. This observation
can be understood as follows. The term

∑
e∈E ϒe corresponds
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FIG. 2. Decomposition of the covariance matrix � of a noisy
state from the triangle network, where each matrix contains nine
elements; the elements in the blank area are 0. The block structure
of each ϒe imposes a constraint on itself. The critical step is to
obtain constraints of �(c) from available information of the quantum
network, like purity.

to
∑

k pk�
(k), as each �(k) has a similar decomposition [18].

The variable T plays the role of �(c) and inherits all its
constraints. A detailed proof is provided in Sec. B in the
SM [41]. The application of Observation 1 to the triangle
quantum network is illustrated in Fig. 2. We remark that
the rank of the state determines the Rényi-0 purity which
reads log2(d/r). By considering the rank r also, we can set
β = min{r(1 − τ ), 2

√
1 − τ 2} as a tighter bound.

Revisit GHZ state under decoherence. We take the state
ρ(α) in Eq. (1) and measurements Z for all parties as an
example to illustrate Observation 1. The covariance matrix �

of ρ(α) contains always only 1 as its elements.
If � is from the statistics of a state in a network without

n-partite sources, then � should satisfy the decomposition in
Eq. (5), where G is the hypergraph with n nodes and includes
all subsets with (n − 1) elements as hyperedges. Notice that
the rank of � is 1 and � � ϒe � 0, which implies that each
ϒe should be proportional to �.

Since ϒe always contains element 0 as exemplified in
Fig. 2, we have ϒe = 0, for all e ∈ E . Consequently, T = �

and maxi Tii = 1. The rank of the state ρ(α) is however 2
and the purity is τ = 1 − 2α + 2α2. Thus β = 1 happens
only for α = 1/2, in which case ρ(α) is fully separable. This
leads to the conclusion that ρ(α) can arise from a network
without n-partite sources if and only if α = 1/2. Our criterion
is therefore tight.

Intermediate-scale networks. The advantage of covariance
matrix decomposition is that it requires only experimental
data of few measurements and information of purity. How-
ever, the computation becomes heavy for intermediate-scale
networks with around 500 nodes, due to the complexity of
SDP in the method.

Here we propose another approach to solve this issue,
which can even take care of the randomness feature in
the NISQ era. First, we introduce the fact that

∑
i j |Mi j | �

rTr(M ) for a semidefinite matrix M whose rank is r and take
the triangle network as an example. According to the decom-

position of � in Observation 1,
∑

i j |�i j | �
∑

i j

∑
e[|ϒe,i j | +

|�(c)
i j |] � ∑

e 2 Tr(ϒe) + 3 Tr(�(c) ), where the last inequal-
ity is from the block structures of ϒe’s and �(c) as in
Fig. 2. Consequently,

∑
i j |�i j | � 2 Tr(�) + Tr(�(c) ) by ap-

plying the first equality in Eq. (5) again. For the general
network topology G(V, E ) with V = {1, . . . , n} and k to be
the maximal size of hyperedges in E , we have∑

i, j

|�i j | � k Tr(�) + (n − k)Tr(�(c) ). (6)

In practice, we can replace Tr(�c) in Eq. (6) by any estimation
of it, like the analytical upper bound in Eq. (5) results from a
series of relaxations [41]. A good estimation plays a vital role
in the efficiency of the inequality here, same as in the criterion
in Observation 1. Nowadays, it is still hard to prepare genuine
multiparite entangled states for a large system [34]. Thus k is
usually much smaller than n in Eq. (6), i.e., small sources in a
big network.

Random networks. The establishment of genuine multipar-
tite entanglement among remote labs is usually random as
in the scenario of quantum repeaters [31]. The established
one can still degenerate to less-partite ones randomly due to
decoherence. This urges us to introduce the concept of random
network, where the genuine multipartite entanglement in each
source exists probabilistically. As an example, we consider
a genuine tripartite entangled source, whose degeneration is
captured by the triangle network in Fig. 2, assumed to be with
probability p. The network state ρ has then the decompo-
sition ρ = p

∑3
i=1 qiρi + (1 − p)ρ0, where ρ0 is the original

tripartite state and other ρi’s are independent triangle network
states,

∑
i qi = 1 and qi � 0. This leads to the covariance

matrix � = p
∑3

i=1 qi�
(i) + (1 − p)�(0) + �(c), where �(i)’s

are the covariance matrices for ρi’s and �(c) is the classical
one. As argued before, �̃ := ∑3

i=1 qi�
(i) has the decomposi-

tion
∑

e∈E ϒe as in Fig. 2, which implies that
∑3

i, j=1 |�̃i j | �
2 Tr(�̃). Consequently,∑

i, j

|�i j | � 2p Tr(�̃) + 3[(1 − p)Tr(�(0) ) + Tr(�(c) )]

= 2 Tr(�) + [(1 − p)Tr(�(0) ) + Tr(�(c) )]

� 2 Tr(�) + 3(1 − p) + Tr(�(c) ), (7)

where the last inequality is from the fact that any variance
should be no more than 1 as the outcomes of the measure-
ments are ±1.

This result is the very first characterization of random
quantum network states, which can be generalized to arbitrary
random quantum networks as follows.

Observation 2. Assume ρ is a state from the random quan-
tum network with n parties and ck genuine k-partite sources
on average for each k. If � is a covariance matrix of measure-
ments whose outcomes are ±1, then∑

i, j

|�i j | �max
∑

k

kxk + y

such that
∑

k

xk + y = Tr(�),
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FIG. 3. Sparse network Gs with 13 nodes, which contains an
angle (in region A) as a subnetwork. The central node in region B
is the filled one.

0 � xk � kck,

0 � y = Tr(�(c) ). (8)

The proof is in Sec. C in the SM [41]. Equation (8) is
one inequality including a linear programing, which can be
verified efficiently even for large random networks.

The criterion in Observation 2 is device-independent, in the
sense that it works without any assumption of the underly-
ing quantum system and measurements. Besides, it does not
depend on the exact underlying network topology, but the pa-
rameters {ck}. Such results can also be used to benchmark the
quality of genuine multipartite entanglement, which degener-
ates randomly due to decoherence. In such a case, parameters
{ck} should be functions of time. Observation 2 answers an
open question in Ref. [21] also, i.e., how to characterize the
mixture of quantum networks with different kinds of topology.

Sparse networks. In a reasonable prospect, the quantum
network should be sparse in the near future. Even though
we have a relatively large quantum network, the size and the
amount of quantum sources would be relatively small as illus-
trated in Fig. 3. The exact numbers depend on the progress of
quantum technologies.

For a given state ρ from a large network G(V, E ), a
necessary condition is that ρS := TrS̄ρ can arise from the
network with the induced subgraph H (S, ES ) on S, where S
is an arbitrary subset of V and ES = {e ∩ S|e ∈ E}. Then we
could apply Observations 1 and 2 for each reduced state ρS .
The sparsity of the network can reduce the complexity of
this approach, as we do not need too many relatively small
subnetworks to cover the original one. Correspondingly, we
have to estimate the classical covariance matrix �

(c)
S for each

ρS . Since ρS as a reduced state could be much more mixed
than the original state ρ, the purity of ρS could lead to too
loose constraints in Observation 1. A key observation here is
that �

(c)
S,i j = �

(c)
i j for any i, j ∈ S, with �(c) to be the classical

covariance matrix corresponding to the original network state
ρ. More explanations are provided in Sec. D in the SM [41].

For instance, we consider the state ρ(α) as in Eq. (1) for 13
qubits and network Gs with only bipartite sources as shown
in Fig. 3. Then the reduced state ρA(α) = (|000〉〈000| +
|111〉〈111|)/2 for the three qubits in region A as in Fig. 3.
The rank of ρA(α) is two and the covariance matrix of ρA(α)
contains only 1. Notice that the subnetwork in the region A is
a special case of the triangle network as illustrated in Fig. 1.
The same argument as before implies that �

(c)
A contains 1 only,

which does not contradict with the purity of ρA(α), but with

the one of the original state ρ(α) for α ∈ [0, 1/2). Thus, with
the global purity and the statistical data of the qubits in the
small region A, we obtain the same tight result. This strategy
saves much effort, since we only need to measure a few qubits
in a large network.

There is another approach to employ subnetworks to deter-
mine whether a state can arise from the original network or
not, i.e., we measure out one party associated with one node
v and broadcast the outcomes. Then we can treat the party
associated with node v and all the related sources together
as a new multipartite source, which distributes particles to all
the parties in N (v) := {u|(u, v) ∈ E}. If the original network
is sparse, then the size of N (v), i.e., the size of the new
introduced entangled source, is usually not big. For example,
if v is the central node in region B as in Fig. 3, then the
new source distributes particles to parties associated with all
the other three nodes in the region B. We can perform this
procedure for a subset S of nodes sequentially. By applying
Observations 1 and 2 for the resulting subnetwork, we can
obtain new criteria for the original network state.

Conclusion and discussion. Quantum networks work as
a playground for various quantum technologies, like quan-
tum repeaters and quantum memory. Concerning the real-life
implementation of quantum networks, we examine them
in the background of the noisy intermediate-scale quantum
(NISQ) era. In this paper, we have focused on four aspects
of such quantum networks—that is, they should be noisy,
intermediate-scale, random, and sparse. We developed oper-
ational methods based on purity and covariance to address all
those four features.

There exist already methods to tackle with the noisy
quantum network states, e.g., the witness based on fidelity
[10,11,13,14] and nonlocality inequalities [25–27]. However,
the witness based on fidelity works mostly either for small
networks or special states like graph states in practice. The
nonlocality inequalities are designed specially for the n-partite
network with all (n − 1)-partite sources. In comparison, our
methods work for any kind of network topology, by em-
ploying experiment data only, without knowing the exact
underlying quantum state and measurements. Nevertheless,
quantum theory is assumed here, which is another difference
between our consideration and network nonlocality.

“Quantum technologists should continue to strive for more
accurate quantum gates and, eventually, fully fault-tolerant
quantum computing” [28] and networks, for which our meth-
ods can provide the witness.
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