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Deterministic single-photon source in the ultrastrong-coupling regime
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We propose a high-quality deterministic single-photon source which can not only works in the ultrastrong
light-matter coupling regime, but also emits two single photons with an arbitrary time separation, in one exci-
tation process. We find that the special solutions of the two-qubit quantum Rabi and Jaynes-Cummings models
which have at most one photon and constant eigenenergies can be used to implement this proposal through two
consecutive adiabatic evolutions, and the system goes back to the initial state of the next period automatically
after photon emission. Due to their peculiarities and reach of the ultrastrong coupling, the adiabatic evolution can
be quite fast and further accelerated with the Stark shift. This Letter paves the way to fast quantum information
protocols which take advantage of the ultrastrong coupling and avoid its dynamical complexity simultaneously.
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I. INTRODUCTION

Single-photon sources are fundamental building blocks in
quantum information, with applications ranging from quan-
tum computation [1,2] to quantum communication [3–5]
and sensing [6]. Recently developed technologies for single-
photon sources can be classified into two families [7]. The
first one considers a nonlinear material process such as sponta-
neous parametric downconversion [8,9], which is probabilistic
[7,10]. The second approach is based on single quantum emit-
ters, which deterministically emit one photon at a time. This
has been demonstrated in atoms [11], molecules [12], ions
[13], color centers in diamonds [14], Rydberg atoms [15],
cavity QED [16,17], and quantum dots [18,19]. However, the
spontaneous emission in all directions makes photon collec-
tion difficult. One way to solve this problem is to couple the
emitters to a cavity [20,21] to enhance the radiation into the
cavity mode, so that the photon can be emitted from the cavity
through a certain direction [22]. Meanwhile, the emission rate
can be increased by Purcell effect [23]. Using a quantum dot
coupled to cavities, near-unity indistinguishability and purity
are realized simultaneously, with an extraction efficiency of

*jpeng@xtu.edu.cn
†enr.solano@gmail.com

66% [24], a polarized single-photon efficiency of 60% [25],
and an overall efficiency of 57% [26], respectively. Besides
high efficiency [27], purity [28], and indistinguishability [29],
a microwave single-photon source realized in circuit QED can
also be tunable [27,30–32].

The Purcell effect, which enhances the emission rate, is
proportional to the qubit-cavity coupling strength [33]. When
we enter the strong-coupling regime, the swap between the
qubit excited state and the single-photon state in the cav-
ity will be further accelerated. Now the ultrastrong [34–41]
and even deep strong coupling [42] have been realized in
circuit QED, where Sánchez-Burillo et al. [43] and Huang
and coworkers [44,45] proposed delicate schemes to gener-
ate photons. Hence it is natural to consider implementing a
deterministic single-photon source using these stronger cou-
pling strengths, which most likely will accelerate the photon
generation speed. However, to the best of our knowledge, this
has not been realized yet. Because the ultrastrong coupling
will invoke counter-rotating terms, which excite the qubit
and photon simultaneously, all photon number states become
connected, and the system, described by the quantum Rabi
model [46–48], normally involves an infinite number of pho-
tons [49–51].

Recently we have found special dark states of the two-
qubit quantum Rabi model [52–54], which contain at most
one photon, and have constant eigenenergy in the whole
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coupling regime. Here, we propose to implement a deter-
ministic single-photon source that takes advantage of the
ultrastrong coupling using these dark states. Our scheme be-
gins with the two-qubit and resonator ground states, and then
the qubits are excited. Next, the system undergoes an adiabatic
evolution along the aforementioned dark state, and ends up
with a product state of a single-photon state and a two-qubit
singlet state. Because of the peculiarities of the dark state [55],
the target state can be fast generated with fidelity 99.7% in a
time of 12 × 2πω−1, where ω is the cavity frequency. This
time can be further reduced to 1.9 × 2πω−1, with the addi-
tion of Stark shift terms [56–58], which are used to ultrafast
generate the single-photon multimode W states [59]. After the
photon is emitted, the system will be in an eigenstate of the
two-qubit Jaynes-Cummings (JC) model with the excitation
number C = 1, which has also constant eigenenergy in the
whole coupling regime. So through another adiabatic process,
another single photon can be generated and emitted through
dissipation, leaving the system in its ground state, which is
also the initial state of the next period. This adiabatic evolution
can also be quite fast. Unlike the typical stimulated Raman
adiabatic passage, no recycling of the qubit between photon
generations is required here, which will increase the repeti-
tion rate [60]. Here one excitation process emits two single
photons with efficiencies over 98% and an arbitrary time sepa-
ration. Their purities approach unity and indistinguishabilities
are over 95%. We also design a circuit to simulate the two-
qubit quantum Rabi model and JC model.

II. SCHEME AND CIRCUIT QED IMPLEMENTATION

Our scheme of the deterministic single-photon source is
based on the one-photon solutions to the two-qubit Rabi and
JC models (h̄ = 1)

HR = ωa†a + g1σ1x(a + a†) + g2σ2x(a + a†)

+�1σ1z + �2σ2z, (1)

HJC = ωa†a + g1(σ †
1 a + σ1a†) + g2(σ †

2 a + σ2a†)

+�1σ1z + �2σ2z, (2)

where a† and a are the photon creation and annihilation op-
erators with frequency ω, respectively. Also, σ jα (α = x, y, z)
are the Pauli matrices corresponding to the jth qubit. 2� j

is the energy level splitting of the jth qubit, and g j is the
qubit-photon coupling parameter between the resonator and
jth qubit. Normally, there is no solution with finite photon
numbers to HR since all the photon number states are con-
nected. However, we have found special dark states with at
most one photon [52]:

|ψR〉 = 1

N [(�1 − �2)|0 ↑↑〉 + g|1(↓↑ − ↑↓)〉] (3)

when �1 + �2 = ω and g1 = g2 = g, which has constant
eigenenergy E = ω in the whole coupling regime. The co-
herent superposition of |1 ↓↑〉 and |1 ↑↓〉 could cancel the
population of higher photon number states. Surprisingly,
energy levels with constant eigenenergies E/ω = N (N =
0, 1, 2, . . .) emerge in the spectrum of the two-qubit JC model
under the same conditions [61].

FIG. 1. (a) Relevant energy levels and transitions of our scheme.
(b) Setup for the scheme: Two superconducting qubits are coupled to
one resonator, whose photon emission rate into the TL is controlled
by a variable coupler C. The lower part is a superconducting circuit
design for the two-qubit Rabi and JC models with tunable couplings
[55].

The corresponding eigenstates read [61]

|ψJC〉 = 1

N ′ [(�1 − �2)|1 ↓↓〉 + g|0(↓↑ − ↑↓)〉] (4)

for N = 0. Constant-energy solutions Eq. (3) with E = ω and
Eq. (4) with E = 0 have the same structure if we simply
reduce the excitation number of the former by one. We will
show that |ψR〉 and |ψJC〉 can be used to produce a special
single-photon source through two consecutive adiabatic trans-
fers.

Our scheme is depicted in Figs. 1(a) and 1(b). Two qubits
are coupled to one resonator, which is connected to a trans-
mission line (TL) through a variable coupler C, so that its
dissipation rate κc is tunable. The qubits and the resonator
are cooled down to the ground state |0 ↓↓〉 initially. Then
pumping pulses

H = 	

2
(σ †

1 e−iωq1t + σ1eiωq1t + σ
†
2 e−iωq2t + σ2eiωq2t ) (5)

are applied to excite the qubits, where ωq1 and ωq2 are the
frequencies of the two qubits, respectively. Initially, we set
ωq1 = 2�1 �= ωq2 = 2�2, and the coupling g = g1 = g2 = 0.
After excitation, |0 ↑↑〉 just corresponds to |ψR〉 of Eq. (3)
since g = 0 and �1 �= �2. Next, we increase g to a nonzero
value and decrease �1 − �2 to zero, so that the state |0 ↑↑〉
evolves adiabatically to |1ψB〉 through |ψR〉, where |ψB〉 =

1√
2
| ↓↑ − ↑↓〉, a two-qubit singlet Bell state, which is de-

coupled from the resonator, such that the changes of g and
resonator dissipation rate will not affect the qubit state. Then,
we activate C to increase the dissipation rate of the resonator
into the TL to a very large value [62] to emit the single photon.
During this process, we can decrease g to the JC regime
simultaneously without affecting the system state, and the
photon emission can be simply described by the decay of the
resonator. Afterwards, the system state becomes |0ψB〉, corre-
sponding to the one-photon solution |ψJC〉 of Eq. (4) for the
two-qubit JC model. After an arbitrary time separation, we
begin another adiabatic evolution along |ψJC〉 by decreasing
g to zero and increasing �1 − �2 to a nonzero value, which
generates |1 ↓↓〉, and the single photon can be emitted during
this process. After that, the system returns to the initial state
|0 ↓↓〉 which can be utilized for the next period automatically.
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Usually, one excitation process can only emit one photon
for deterministic single-photon sources, and the system has
to be repumped afterwards, so there is always an unavoid-
able time separation between the photons emitted. However,
with our protocol one pumping process can emit two single
photons, since the system reaches the “excited state” of the
second emission process automatically after the first photon is
emitted, which also provides a controllable time separation of
the photons.

The qubit frequencies [63–66] and couplings [67,68] are
tunable in circuit QED [69,70], even independently [71]. Fur-
thermore, we propose a superconducting circuit design to
simulate the two-qubit Rabi and JC models by tuning the
proportion between the rotating and counter-rotating terms,
shown in the lower part of Fig. 1(d), with a detailed demon-
stration in Ref. [55]. First, we activate both the rotating and
counter-rotating terms in our circuit design to simulate the
two-qubit Rabi model. When |1ψB〉 is generated, we increase
the dissipation rate of the resonator to release the photon. In
this process, the two-qubit singlet |ψB〉 is decoupled from the
resonator, so we can decrease the coupling strength g = g1 =
g2 to the JC regime g < 0.1 and simulate the JC model, with-
out affecting the system states. After that, another adiabatic
evolution along |ψJC〉 begins. The qubit frequencies will have
better tunability if we use a tunable transmon [63], flux qubit,
or fluxonium [64] in our circuit design.

Surprisingly, the adiabatic evolution can be quite fast be-
cause the peculiarities of |ψR〉 (see Supplemental Material
[55] for a brief description, which includes Refs. [72–74]) and
|ψJC〉. If �1,2 and g evolve linearly as in Ref. [55], then |1ψB〉
can be generated from |0 ↑↑〉 along |ψR〉 in 12 × 2πω−1

with fidelity 99.7%. After photon emission, |1 ↓↓〉 can be
generated from |0ψB〉 along |ψJC〉 in 12 × 2πω−1 with fidelity
99.8%. If we choose ω = 2π × 3GHz, then the generation
time is 4 ns.

However, the parameters cannot evolve that fast in current
circuit QED experiments. E.g., the transmon frequency can be
tuned by 1 GHz in 10–20 ns [70], so we consider this limit in
our numerical simulation, although in principle the flux qubit
can be faster tuned [64]. We simulate the process described
above using master equations [55] according to real circuit
QED experiment, with the resonator frequency ω = 2π ×
3 GHz and intrinsic lifetime T1 = 5 µs [62]. The dissipation
rate into the TL can be tuned from zero to κc = 1/(5 ns)
in 2 ns [62]. The tunable transmon or flux-qubit frequency
is tuned from 2π × 4.41(2π × 1.59) to 2π × 3 GHz [64],
with relaxation time T1 = 17 µs [65] and pure dephasing time
τφ = 17 µs [63]. We find the Lindbladian master equation and
dressed master equation for ultrastrong coupling [75,76] give
almost the same result in this specific case [55]. The evolution
of different states in a period is shown in Fig. 2(a), with
corresponding parameters depicted in Fig. 2(b). The absolute
values of the detunings of both qubits with respect to the res-
onator |2�1,2 − ω| are always the same during the evolution,
making its implementation easier. The photon emission rate
into the TL is shown in Fig. 2(c), where the time separation
between two emitted photons is zero. The first photon has
a typical single-sided exponential waveform decaying with
the lifetime of the resonator, because the qubit singlet is
decoupled from the resonator although the coupling strength

FIG. 2. (a) The evolution of system states during one period,
where |ψB〉 = 1√

2
| ↓↑ − ↑↓〉. (b) The corresponding evolution of

the parameters. (c) The waveforms of the emitted photons. The solid
line corresponds to the numerical simulation, fitted by an exponential
decaying function exp(−κt ) and a Gaussian function, represented by
the dashed line. The emission of the first photon ends at t = 50 ns,
and the second photon just begins to emit. (d) A sequence of single
photons is generated when we repeat the above processes.

is nonzero. The second photon has a Gaussian shape which
is optimal for tolerance to mode mismatch [77], because the
dissipation rate is a constant and has the same magnitude of
the coupling, shown by numerical test. We use an exponential
function exp(−κt ) and a Gaussian function to fit the simulated
data and find good consistency, as depicted in Fig. 2(c). The
system is reset to |0 ↓↓〉 automatically after the second photon
emission, so we can repeat the above process to obtain a
sequence of single photons, as shown in Fig. 2(d).

III. FIGURES OF MERIT

There are commonly three important figures of merit for
a single-photon source [78]: efficiency, purity, and indistin-
guishability. We will study them using numerical simulations.
First, the generation and collection efficiency are defined as
the photon generated and collected for one excitation pulse,
respectively, which is equal to 1 for a perfect single-photon
source. Here, two single photons are generated in one ex-
citation process, with emission and collection probabilities
(efficiencies), κc

∫
a†(t )a(t )dt , both larger than 98%, since

the qubits are strongly coupled to the resonator, and their
interaction is much faster than the decoherence rate of the
qubit. The single photon is generated in the resonator and
almost fully collected by the TL through the variable coupler
because κc can be tuned to be 1000 times the intrinsic decay
rate in 2 ns [62]. The emission efficiency is robust with respect
to dissipation and decoherence of the resonator and qubits
[55].

The second requirement for a single-photon source is high
purity, which means exactly one photon is emitted at a time. It
can be characterized by the second-order correlation functions
in the Hanbury-Brown-Twiss (HBT) experiment:

G(2)(t, τ ) = 〈a†(t )a†(t + τ )a(t + τ )a(t )〉,
G(2)(τ ) =

∫
G(2)(t, τ )dt, (6)
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FIG. 3. (a) The second-order correlation function in HBT ex-
periment for the single-photon source proposed above, which
characterizes its purity. (b) Our scheme to collect two single pho-
tons separately. (c) The second-order correlation function in HBT
experiment for the first single-photon source. (d) The second-order
correlation function in HBT experiment for the second single-photon
source. (e) The second-order correlation function in Hong-Ou-
Mandel (HOM) experiment for the first single-photon source, which
characterizes its indistinguishability. (f) The second-order correlation
function in HOM experiment for the second single-photon source.
All these correlation functions are obtained from numerical simula-
tions and normalized to the highest peak.

where the former represents the probability of detecting a pho-
ton at time t and another one at time t + τ , and the later is its
integration over t , as shown in Fig. 3(a). We have normalized
G(2)(τ ) to the highest peak at τ = Tperiod = 100 ns to obtain
g(2)(τ ). There is a strongly suppressed g(2)(0) ≈ 0.0225, giv-
ing a clear evidence of the single-photon emission. g(2)(τ ) has
the same period as the single-photon source, and two kinds of
peaks other than τ = 0, because the waveforms of photons in
a period are not identical. The first peak arises at τ ≈ 50 ns,
corresponding to the coincidence detection of the first and
the second photons in a period, and the coincidence detec-
tion of the second photon and the first photon from the next
period. The highest peak arises clearly at τ ≈ 100 ns = Tperiod

because of the periodicity.
The third requirement is high indistinguishability, which

means the photons must be identical in all degrees of freedom,
to ensure the successful implementation of the two-photon
gate through interference. The Hong-Ou-Mandel (HOM) ex-
periment [79] is used to characterize this notion, where two
photons are interfered on a 50 : 50 beam splitter. If they
are completely indistinguishable, they will coalesce and exit
through the same beam splitter output. Here two single
photons are emitted in one period with different temporal

waveforms which may be made identical with error less
than 1% by the photon waveform reshaping technology [80],
to achieve high indistinguishability, so as to implement the
high-fidelity two-photon controlled-NOT gate. Since the time
separation between these two single photons is arbitrary, we
have much freedom to choose the delay time between the
control and target photons.

To make better use of this single-photon source, we can add
another output channel to the resonator with a variable coupler
to collect these two single photons separately, as shown in
Fig. 3(b), so that the photons in each channel are indistin-
guishable, and with only one excitation process in a period
we efficiently generate two sequences of indistinguishable
single photons. The first one has a single-sided exponen-
tial waveform. Its simulated g(2)(τ ) is shown in Fig. 3(c),
with g(2)(0) ≈ 0.03. The second one has a Gaussian shape,
whose g(2)(τ ) is shown in Fig. 3(d), with g(2)(0) ≈ 0.001.
They can be applied in different situations. We also simulated
the normalized HOM experiment counts g(2)

HOM(τ ) of photon
detection in different outputs at time delay τ . Typical small
peaks around τ = 0 arise in Figs. 3(e) and 3(f), since the
decoherence of the qubits causes random photon frequency
differences. The indistinguishability is defined by dividing the
area of the peaks around τ = 0 by that of the uncorrelated
peak around τ = T , and subtracting this number from unity.
This quantity can also be calculated as [33]

I =
∫ ∞

0 dt
∫ ∞

0 dτ |〈a†(t + τ )a(t )〉|2∫ ∞
0 dt

∫ ∞
0 dτ 〈a†(t + τ )a(t + τ )〉〈a(t )†a(t )〉 . (7)

Because of periodicity, we only need to consider the integra-
tion over one period [81]. The indistinguishability I obtained
from both methods reaches 95.2% for the first photon and
99.2% for the second photon.

Another way to generate indistinguishable photons is to
turn off the coupler C during the adiabatic evolution from
|0ψB〉 to |1 ↓↓〉, so the second photon will be generated inside
the resonator and then emitted into the TL when C is turned
on, just like the first photon. These two single photons will
clearly be indistinguishable. Tuning C will also not introduce
too much error, because the qubits are either in a singlet Bell
state or under the condition g = 0 when we are tuning C.

IV. ULTRAFAST GENERATION OF THE SINGLE PHOTON
WITH THE ASSISTANCE OF THE STARK SHIFT

Another requirement for the single-photon source is high
speed; meanwhile, the most prominent advantage of the ultra-
strong coupling is the possibility of ultrafast state generation,
which can be realized here by adding Stark shift terms [82–85]
to the two-qubit quantum Rabi model

HRS = ωa†a + g1σ1x(a + a†) + g2σ2x(a + a†)

+�1σ1z + �2σ2z + U1a†aσ1z + U2a†aσ2z, (8)

as proposed in Ref. [59] for the ultrafast generation of
the single-photon multimode W states, where U1 and U2

are couplings of the Stark terms. The photon frequency is
shifted by U1σ1z + U2σ2z, so the stability of the system re-
quires U1 + U2 � ω. HRS has a Z2 symmetry generated by
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FIG. 4. (a) The change of parameters during the adiabatic evolu-
tion from |0 ↑↑〉 to |1ψB〉 along |ψRS〉, where U = U1 = U2 = 0.5ω.
(b) The corresponding states population.

exp(iπa†a)σ1zσ2z. We have found a similar special dark state
[59] for even parity:

|ψRS〉 = 1

N [(�1 − �2 + U1 − U2)|0 ↑↑〉
+ g(|1 ↓↑〉 − |1 ↑↓〉)] (9)

with constant energy E = ω in the whole coupling regime,
under the same condition �1 + �2 = ω and g = g1 = g2 as
for HR [Eq. (8)], which can be used to accelerate the adiabatic
evolution [59], since the energy gap between |ψRS〉 and its
closest eigenstates is enlarged by the Stark terms. E.g., |2 ↓↓〉
is degenerate with |ψR〉 = |0 ↑↑〉 at g = 0 for HR, but the stark
terms will reduce the energy of the former by U1 + U2, so
these two energy levels are separated in the spectrum. If the
parameters evolve as in Fig. 4(a), |1ψB〉 can be generated from
|0 ↑↑〉 through an adiabatic evolution along |ψRS〉 with fi-
delity 99.3%, operating at a time t = 0.64 ns (1.9 × 2πω−1),
proportional to the inverse of the resonator frequency ω/2π =
3 GHz, which is a sign of ultrafast generation [86], as shown
in Fig. 4(b). This high adiabatic speed is due to the peculiari-
ties of the dark state |ψRS〉 [59]. Note that many other choices
of U bring almost the same speed, e.g., U1 = U2 = 0.45ω. If
U1 = 0.66ω and U2 = 0.33ω, the generation can be further
accelerated. Following the same procedure detailed above, a
faster single-photon source can be implemented.

V. CONCLUSION

We have proposed a scheme for a deterministic single-
photon source that can work in the ultrastrong-coupling
regime, that is, through two consecutive adiabatic transfers
along the one-photon solutions of the two-qubit Rabi model
and JC model, respectively. An important advantage of our
scheme is that one pumping process can emit two determin-
istic single photons with an arbitrary time separation that is
easily controlled. Furthermore, with our protocol, the system
evolves naturally to the initial state of the next period after
photon emission. We characterize our single-photon source by
calculating efficiency, purity, and indistinguishability numer-
ically, showing that all of them can reach near-unity values.
Moreover, by introducing Stark shift terms, we can accelerate
the speed of the single-photon generation to a degree propor-
tional to the inverse of the resonator frequency. Our scheme
paves the way for the application of ultrastrong coupling in
fast computation and deterministic state generation.
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