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According to the Schiff theorem, an external electric field vanishes at atomic nucleus in a neutral atom in a
stationary state, i.e., it is completely shielded by electrons. This makes a nuclear electric dipole moment (EDM)
unobservable. We show that if atom or molecule is not in a stationary state (e.g., in a superposition of two
stationary states), electric field on the nucleus is not zero and interaction with nuclear EDM does not vanish. In
molecules this effect is enhanced by the ratio of nuclear mass to electron mass, Mn/me, since nuclei in a molecule
are slow (compare to electrons) and do not provide efficient screening in a nonstationary environment. Electric
field on the nucleus may also affect nuclear reactions.
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I. INTRODUCTION

Existence of electric dipole moments (EDM) of elemen-
tary particles, nuclei, atoms and molecules in a state with a
definite angular momentum violates time-reversal invariance
(T) and parity (P). EDM also violates CP invariance if the
CPT invariance holds. A very extensive experimental and
theoretical activity related to EDM is motivated by the need
to test unification theories predicting T, P, and CP violation.

However, there is a problem here. A homogeneous static
electric field does not accelerate a neutral atom. This means
that the total electric field E acting on the atomic nucleus is
zero since otherwise the charged nucleus would be accelerat-
ing, i.e., the external field is completely shielded by atomic
electrons. The absence of the electric field means that the
nuclear EDM d is unobservable, d · E = 0. One may also
present this result differently: total atomic EDM is zero even
if the nucleus has EDM, i.e., EDM of electron cloud in atom
is exactly opposite in sign to nuclear EDM.

A quantum-mechanical derivation of this result for an arbi-
trary nonrelativistic system of pointlike charged particles with
EDMs has been done by Schiff [1]. Schiff also mentioned
that his theorem is violated by the finite nuclear size. The
effect of the finite nuclear size was implemented as the nuclear
Schiff moment, which was introduced in Refs. [2–5]. An elec-
trostatic interaction between the nuclear Schiff moment and
electrons produces atomic and molecular EDM. References
[2,3] calculated the finite nuclear size effect of the proton
EDM. References [4,5] calculated (and named) the nuclear
Schiff moment produced by the P, T -odd nuclear forces. It
was shown in Ref. [4] that the contribution of the P, T -odd
forces to the nuclear EDM and Schiff moment is ∼40 times
larger than the contribution of the nucleon EDM. An addi-
tional 2–3 orders of magnitude enhancement appears in nuclei
with the octupole deformation [6].

The suppression factor for the atomic EDM relative to the
nuclear EDM, proportional to a very small ratio (∼10−9) of
the squared nuclear radius to the squared atomic radius, is

partly compensated by the factor Z2RS , where Z is the nuclear
charge and RS is the relativistic factor [4].

The Schiff theorem is also violated by the magnetic inter-
action [1,7]. Corresponding atomic EDMs produced by the
nuclear EDM and electron-nucleus magnetic interaction have
been calculated in Ref. [8]. In light atoms this mechanism of
atomic EDM dominates but in heavy atoms it is smaller than
the effect of the finite nuclear size since the latter very rapidly
increases with the nuclear charge, as Z2RS , while the magnetic
effect increases slower, as ZRM where RM is the relativistic
factor for the magnetic effect [8].

There is no complete shielding in ions. For example, in
a molecular ion the shielding factor for the nuclear EDM is
(Zi/Z )(Mn/Mm), where Zi is the ion charge, Z is the nuclear
charge, Mn is the nuclear mass and Mm is the total molecular
mass [9].

Screening of time-dependent electric field is incomplete.
External electric field can even be enhanced if the frequency
of electric field oscillations is in resonance with atomic or
molecular transition. Screening of oscillating field has been
investigated in Refs. [10–14].

Penetration of electric field to atomic nucleus may affect
nuclear reactions; see, e.g., Refs. [15,16], where neutron cap-
ture to a nucleus, enhanced by a laser field, is discussed.
For example, electric field may admix large s-wave neutron
capture amplitude to a kinematically suppressed p-wave am-
plitude in a p-wave resonance and produce effects such as
asymmetry in the photon distribution correlated with the di-
rection of the electric field. This effect is somewhat similar to
the effects of parity-violating interaction, which mixes s-wave
and p-wave resonances. Such kinematic enhancement factor
(ratio of s-wave and p-wave amplitudes) is ∼103 for slow
neutrons. Another enhancement factor is due to a very small
energy interval between the energy levels in a compound
nucleus. These two enhancement factors lead to a 106 en-
hancement of the parity violating effects in neutron reactions
predicted in Refs. [17–20] and confirmed in numerous exper-
iments involving 100 of p-wave resonances in many nuclei;
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see reviews [21,22]. The same enhancement may appear if the
s and p resonances mixing is produced by the electric field.

The aim of this Letter is to show that for atoms and
molecules in a nonstationary state the electric field on the
nucleus does not vanish and to derive formulas for this electric
field. This electric field may interact with nuclear EDM and
affect nuclear reactions.

II. SHIELDING THEORY FOR NONSTATIONARY
ATOMIC STATES

The Hamiltonian of a neutral atom in an external electric
field along the z axis E ext = E ext

z may be presented as

HE = H0 − E ext
z Dz, (1)

Dz = −e
Z∑

k=1

zk, (2)

where H0 is the Schrödinger or the Dirac Hamiltonian for the
atomic electrons in the absence of the external field E ext

z , Z
is the number of the electrons and protons, −e is the electron
charge (i.e., e is the proton charge), zk is the z-axis projection
of the electron position relative to the nucleus. We assume that
the nuclear mass is infinite and neglect very small effects of
the Breit and magnetic interactions. The total electric field on
the nucleus may be presented as Et = Eext + 〈Ee〉, where the
z component of the electron electric field on the nucleus is

Ee
z = e

Z∑
k=1

zk

r3
k

= i

Zeh̄
[Pz, H0], (3)

where Pz = ∑Z
k=1 pz,k is the total momentum of the atomic

electrons. The second equality follows from the differen-
tiation of the nuclear Coulomb potential in the Dirac or
Schrodinger Hamiltonian H0 since the total electron momen-
tum Pz commutes with the electron kinetic energy and the
electron-electron interaction. Similarly, the z component of
the total electric field on the nucleus may be presented as

Et
z = i

Zeh̄
[Pz, HE ]. (4)

In agreement with the Schiff theorem, in a stationary state
|n〉 expectation value of the total electric field on the nu-
cleus vanishes, 〈n|Et

z |n〉 = 0, since 〈n|[Pz, HE ]|n〉 = (εn −
εn)〈n|Pz|n〉 = 0.

A nonstationary state may be presented as a sum over
stationary states. For brevity, we include two states in the sum:

ψ = caψa exp

(
− i

h̄
εat

)
+ cbψb exp

(
− i

h̄
εbt

)
. (5)

In such state the z component of the total electric field on the
nucleus is

〈
Et

z

〉 = − i(εa − εb)

Zeh̄

{
c∗

acb〈a|Pz|b〉 exp

[
i(εa − εb)t

h̄

]

− cac∗
b〈b|Pz|a〉 exp

[
− i(εa − εb)t

h̄

]}
. (6)

It is also instructive to present 〈Et
z 〉 using a substitu-

tion of the nonrelativistic expression for the momentum,

Pz = − im
eh̄ [HE , Dz]:

〈
Et

z

〉 = − (εa − εb)2m

Ze2h̄2

×
{

c∗
acb〈a|Dz|b〉 exp

[
i(εa − εb)t

h̄

]

+ cac∗
b〈b|Dz|a〉 exp

[
− i(εa − εb)t

h̄

]}
, (7)

where m in this expression is electron mass. Note that ψa =
ψ (0)

a + δψa and ψb = ψ
(0)
b + δψb are eigenfunctions of the

Hamiltonian HE including interaction with the external elec-
tric field E ext. Here ψ (0)

a and ψ
(0)
b are eigenfunctions of the

unperturbed Hamiltonian H0.
We have two different cases here. If the matrix element be-

tween unperturbed wave functions satisfies selection rules for
the electric dipole matrix element, i.e., 〈ψ (0)

a |Dz|ψ (0)
b 〉 is not

equal to zero, we have oscillating electric field on the nucleus
even in the absence of external electric field E ext. Indeed, atom
in such state Eq. (5) has oscillating electric dipole moment
〈Dz〉, which produces electric field on the nucleus. For real ca,
cb, and 〈a|Dz|b〉 we obtain

〈Dz〉 = 2cacb〈a|Dz|b〉 cos

[
(εa − εb)t

h̄

]
(8)

and

〈
Et

z

〉 = −2(εa − εb)2m

Ze2 h̄2 cacb〈a|Dz|b〉 cos

[
(εa − εb)t

h̄

]
.

(9)

Numerical estimate for the amplitude of this oscillating field
is

∣∣Et
z

∣∣ ∼ (εa − εb)2

Z (eV)2
107V/cm. (10)

We assumed cacb ∼ 1. For Z ∼ 1 and (εa − εb) equal to few
eV, this field may exceed by three orders of magnitude electric
fields, which have been used to measure neutron and atomic
EDM. However, this is a very rapidly oscillating electric field.
In the case of a small oscillation frequency, the electric field
is strongly suppressed by the factor (εa − εb)2.

When 〈ψ (0)
a |Dz|ψ (0)

b 〉 = 0, we should consider the effect
produced by the external electric field E ext. Substitution of the
perturbation theory expression for δψ gives, for real ca, cb and
matrix elements of electric dipole moment operator 〈a|Dz|n〉
and 〈b|Dz|n〉,

〈
Et

z

〉 = 2cacb(εa − εb)2m

Ze2h̄2 αa,bE ext
z cos

[
(εa − εb)t

h̄

]
, (11)

where

αa,b =
∑

n

〈a|Dz|n〉〈n|Dz|b〉
εa − εn

+ 〈a|Dz|n〉〈n|Dz|b〉
εb − εn

(12)

is the Stark amplitude between the states a and b, and |n〉 are
intermediate states in the perturbation theory sum for δψ . We
see that constant external electric field E ext

z is transformed into
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oscillating electric field on the nucleus. Numerical estimate
for the amplitude of the field on the nucleus for cacb ∼ 1 is

∣∣Et
z

∣∣ ∼ (εa − εb)2

Z (27 eV)2
E ext

z . (13)

Thus, for εa − εb smaller than atomic unit of energy 27 eV,
electric field on the nucleus is smaller than external electric
field.

III. SHIELDING IN NONSTATIONARY
MOLECULAR STATES

In molecules in a stationary rotational state the screening of
external electric field is produced by both electrons and nuclei.
However, in a nonstationary state electric field on the nucleus
is proportional to mass of the particles, which produce this
screening; see Eq. (7). Mass of nuclei is from 3–6 orders of
magnitude bigger than mass of electron. Therefore, electric
field on the nucleus may be significantly bigger in molecules
compare to atoms (for equal values of εa − εb). Indeed, nuclei
in molecules are slow, they are not as efficient screeners as
electrons in the case when (electron) electric field varies. We
observed similar enhancement when considered screening of
oscillating external electric field in molecules [14].

Let us consider electric field on the nucleus 1 in a dia-
magnetic diatomic molecule, which is given by the following
expression:

E(1) = − i

Z1eh̄
[P(1), HE ], (14)

where P(1) is the momentum of the nucleus 1, Z1 is its charge,
and the Hamiltonian HE includes both nuclei and electrons.
We may subtract from the momentum P(1) the contribution
of the center-of-mass motion with velocity v = Pt/Mt , where
Pt is the total momentum and Mt is the total mass of the
molecule:

�1 = P(1) − M (1)Pt/Mt . (15)

Center-of-mass momentum commutes with the Hamiltonian,
therefore, we may rewrite Eq. (14) using commutator with
�1:

E(1) = − i

Z1eh̄
[�1, HE ], (16)

The expectation value of the total electric field on the nucleus
1 in the state (5) is

〈E(1)〉 = − i(εa − εb)

Z1eh̄

×
{

c∗
acb〈a|�1|b〉 exp

[
i(εa − εb)t

h̄

]

− cac∗
b〈b|�1|a〉 exp

[
− i(εa − εb)t

h̄

]}
. (17)

Now we can use the following relation from Ref. [14], where
we have neglected terms proportional to electron mass in
comparison with the terms proportional to the nuclear masses:

�1 = iμ[R, H ′
E ], (18)

where μ = M1M2/(M1 + M2) is the reduced nuclear mass,
R = R(1) − R(2) is the relative coordinate for the first and
second nucleus and H ′

E is the Hamiltonian with subtracted
contribution of the center-of-mass motion. Using this relation
we obtain

〈E(1)〉 = − (εa − εb)2μ

Z1eh̄2

×
{

c∗
acb〈a|R|b〉 exp

[
i(εa − εb)t

h̄

]

+ cac∗
b〈b|R|a〉 exp

[
− i(εa − εb)t

h̄

]}
. (19)

We consider rotational molecular states |a〉 = Y00(θ, φ)� and
|b〉 = Y10(θ, φ)� in a diamagnetic diatomic polar molecule,
where Y00 and Y10 describe rotational L = 0 and L = 1 molec-
ular states and � is an internal molecular wave function,
describing electron state and nuclear vibrational state, which
are the same for 〈a| and 〈b|. Assuming real ca and cb we obtain

〈
E (1)

z

〉 = −2(εa − εb)2μR√
3Z1eh̄2

cacb cos

[
(εa − εb)t

h̄

]
, (20)

where R is the distance between the nuclei. Note that the
second nucleus experiences electric field of opposite sign
(R → −R). The electric field is inversely proportional to the
nuclear charge, therefore, the electric forces are equal in mag-
nitude and have opposite sign, so there is no acceleration of
the center of mass.

The oscillation frequency of the electric field on the
nucleus may be many orders of magnitude smaller than
frequency of optical transitions in atoms. Indeed, the in-
terval between molecular rotational levels is ∼μ/me times
smaller than the interval between the electron levels. More-
over, molecules may have doublets of levels with the energy
interval much smaller than the rotational energy. Note, how-
ever, that in this case there is strong suppression of the field
by the small factor (εa − εb)2.

IV. CONCLUSION

The Schiff’s shielding theorem about total screening of
electric field on atomic nucleus does not apply to atoms and
molecules in a nonstationary state, i.e., electric field on a
nucleus in a neutral system in a nonstationary state may be
not equal to zero. The field on the nucleus is much bigger in
molecules than in atoms (for equal values of εa − εb) since
nuclei in molecules are slow and do not produce such efficient
screening in a nonstationary case as electrons do. The field en-
hancement factor is the ratio of nuclear mass to electron mass.
In principle, electric field penetrating to the nucleus makes nu-
clear EDM observable and may also affect nuclear reactions.

Schiff theorem has a simple classical explanation. Applica-
tion of a homogeneous electric field to a neutral system does
not lead to its motion. In this case the nucleus does not move,
despite the fact that it has nonzero charge. This means that the
total electric field on the nucleus is zero. The case of a neutral
system in a nonstationary state is different. Nuclei may move,
keeping center of mass of the system at rest.

For brevity, we presented nonstationary state as a sum of
two basis stationary states. In general case the number of
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terms in the sum may be arbitrarily large and we have to
add summation over basis states (

∑
b>a) to the formulas for

electric field on the nucleus.
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