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Nonlinear interference challenging topological protection of chiral edge states
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We report on a nonlinear scattering effect that challenges the notion of topological protection for wave packets
propagating in chiral edge modes. Specifically, in a Floquet topological system close to resonant driving and with
a nonlinear potential, we demonstrate how a wave packet propagating in a chiral edge mode may be irreversibly
deflected by scattering off a localized wave packet, or pass the collision region virtually unaffected in an
approximately linear fashion. An experimentally accessible knob to tune between those two scenarios is provided
by the relative phase between the involved wave packets. This genuinely nonlinear interference phenomenon is
in stark contrast to linear scattering off a static impurity, which cannot destroy a topological edge state. Besides
corroborating our findings with numerically exact simulations, we propose two physical platforms where our
predictions may be verified with state-of-the-art experimental techniques: first, a coupled waveguide setting
where nonlinearity has been engineered via an intensity-dependent optical index, and second, a Bose-Einstein
condensate of cold atoms in an optical honeycomb lattice governed by a nonlinear Gross-Pitaevskii equation that
effectively accounts for many-body interactions.
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Introduction. As a direct consequence of linear equa-
tions of motion, the superposition principle is ubiquitous
in physics, with ramifications ranging from classical waves
to quantum wave functions. Nonlinear terms violating the
superposition principle are often introduced to model com-
plex interactions at a simpler effective level [1–4]. There,
intriguing phenomena and applications arise, such as quan-
tized vortices in Bose-Einstein condensates (BECs) [5,6],
self-focusing of laser beams [7,8], or novel diagnostic pro-
cedures [9,10].

Very recently, nonlinear effects have been identified in the
realm of topological matter [11–18], even though the under-
lying topological classification schemes are based on linear
systems [19–22]. Specific manifestations have been found to
occur in a variety of settings in photonics [23–27], mechanics
[28–30], and electrical circuits [31,32]. Nonlinear phenom-
ena discovered in this context include self-localization [33]
and edge solitons [34–36]. Furthermore, optical nonlineari-
ties have been observed to be capable of affecting photonic
band-structure parameters so as to induce intensity-dependent
linearized topological properties [37].

Here, we reveal a striking violation of the superposition
principle characterizing the nonlinear dynamics of wave pack-
ets colliding in a Floquet chiral edge mode. This intriguing
interplay of topology and genuine nonlinearity depends cru-
cially on the interference between the involved wave packets
which determines the overall peak intensity in the collision
region. Concretely, by tuning the initial relative phase of two
wave packets, qualitatively distinct scenarios may be observed
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(see Fig. 1 for an illustration): For destructive interference
in the collision region, linear dynamics hallmarked by the
superposition principle prevails [see Fig. 1(a)]. By contrast,
in the case of constructive interference, the chiral edge state
perishes above a threshold peak intensity, thus overwriting the
topological protection of the incident wave packet irreversibly
[see Fig. 1(b)].

As a platform, we consider a Floquet system with a nonlin-
ear on-site potential that scales with the density of the wave
function. The linear part of the system is tuned to resonant
driving [38,39], which allows for a perpetually circulating
bulk excitation. Within an anomalous Floquet topological
phase [40–42], nonlinear scattering may then occur between
a wave packet in the chiral edge state and the aformen-
tioned circulating bulk mode (cf. Fig. 1). Floquet systems
with anomalous topology and intrinsic nonlinearity have been
realized with state-of-the-art experimental technology in var-
ious physical platforms [37,43–45]. In the following, after
a general theoretical analysis, we will illustrate our findings
with two model systems of immediate experimental relevance,
a square lattice model of coupled waveguides [37,46–48], and
a honeycomb model for ultracold bosonic atoms where the
dynamics of BEC wave packets is highly controllable [45].

Nonlinear Floquet dynamics of wave packets. We consider
a system governed by the nonlinear generalized Schrödinger
equation

i
d

dt
ψ j (t ) =

∑
j′

HF ( j, j′, t )ψ j′ (t ) + γ |ψ j (t )|2ψ j (t ), (1)

where ψ j (t ) are the spatial components of the state vector on
a lattice and units are chosen such that h̄ = 1. Here, HF (t )
denotes a linear Floquet Hamiltonian with period T , and the
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FIG. 1. Illustration of a nonlinear topological Floquet system [cf.
Eq. (1)], where an edge mode (red) may propagate uninhibited up to
a certain intensity threshold. If it passes a locally circulating wave
packet (blue), the dynamics heavily depends on the interference
between the wave packets. (a) Destructive interference keeps the
overall intensity below the threshold so as to maintain quasilinear
dynamics within the realm of edge protection by linear Floquet topol-
ogy. (b) Constructive interference escalates the peak intensity above
the threshold so as to cause strongly nonlinear scattering in violation
of both the superposition principle and topological protection. The
initial relative phase ei� provides a knob to switch between scenarios
(a) and (b).

nonlinear term with coupling strength γ may be seen as an
on-site potential that scales with the density |ψ j |2. A nonlin-
earity of this type emerges naturally in a variety of physical
platforms, for instance through an intensity-dependent op-
tical index in photonic systems [27] or from a mean-field
treatment of weak interactions in a BEC, which yields the
Gross-Pitaevskii equation [3–6].

We start by discussing on a general note the nonlinear
interference mechanism in the dynamics of two wave packets
� and � that is at the heart of our present analysis. Let � j (t )
and � j (t ) be two solutions to Eq. (1). Then, ei�� j (t ) is also a
solution for any � ∈ R, but the superposition gj (t ) = � j (t ) +
ei�� j (t ) generally has a different intensity distribution and
thus does not satisfy Eq. (1). In particular, the local intensity
of g j (t ) is highly sensitive to the relative phase ei�, which can
be exploited to tune the importance of the nonlinearity in the
combined dynamics of � and �. Specifically, we find for the
time dependence of the superposition

i
d

dt
g j =

∑
j′

HF ( j, j′, t )g j′ + γ |g j |2g j

− γ (2 Re[�∗
j ei�� j]g j + � je

i�� jg
∗
j ), (2)

where the time argument has been suppressed for brevity, and
the excess terms as compared to Eq. (1) in the second line de-
scribe the nonlinearity-induced violation of the superposition
principle. While the superposition principle is always fulfilled
as long as the two wave packets do not overlap, the second line
of Eq. (2) can be of crucial importance in the collision region
of � and �. Assuming the initial � j and � j as Gaussian wave
packets with a homogeneous phase around their peaks, the

relative phase � can be used to minimize or maximize the
peak intensity of g j (t ) = � j (t ) + ei�� j (t ) during the time of
the overlap. Thus, depending on the choice of � the superpo-
sition principle may remain to good approximation in place
[cf. Fig. 1(a)] or may be drastically violated by maximizing
the peak amplitude, thus leading to strong interaction between
the two wave packets [cf. Fig. 1(b)].

Now, we turn to discussing the intriguing interplay of non-
linearity and chiral edge states, i.e., we assume HF (t ) to be
a topologically nontrivial Floquet Hamiltonian [42]. There,
the total system described by Eq. (1) will generally support
chiral edge states only for intensities below a certain thresh-
old. For higher amplitudes of the wave function, the nonlinear
term will effectively act as a dynamical sublattice potential
that breaks the topological phase. A complementary type of
intensity-dependent Floquet topology has recently been ex-
perimentally observed in an array of optical waveguides [37],
where edge transport is enabled by higher light intensities.

Here, inspired by Ref. [37], we analyze the dynamical
interaction of wave packets so as to predict the irreversible
breakdown of topological protection due to the aforemen-
tioned nonlinear interference mechanism. To this end, we
consider as initial condition a wave packet � propagating
in a chiral edge state and a pulse � circulating close to the
edge (see Fig. 1). While the existence of chiral edge states
is guaranteed by the topology of HF , the stationarity of the
circulating bulk mode relies on a resonant driving condition
[38,39]. The individual intensities of both pulses are below
the intensity threshold that would break the topological phase.
Depending on the total relative phase � of the two wave
packets, we predict the edge mode to either pass the circulat-
ing pulse virtually unaffected or to be strongly scattered into
localized bulk states, as will be corroborated with numerical
simulations on two microscopic lattice models below.

Square lattice model. We illustrate our findings on the basis
of a nonlinear version of a minimal square lattice model for
an anomalous Floquet insulator proposed by Rudner et al.
[42]. This model has been realized in recent experiments using
coupled waveguide arrays, also in its nonlinear form [37,43].
There, the driving period is divided into four steps of equal
length, and the hoppings c j (t ), j = 1, 2, 3, 4 along the dif-
ferent nearest-neighbor (NN) links are set to c during the jth
step, respectively, and zero otherwise. The linear part Hphot

F (t )
of the model is thus entirely determined by the driving period
T , the lattice spacing a, and the hopping amplitude c. The
system has two sublattices A, B, and its bulk is described in
reciprocal space by the Bloch Hamiltonian

Hphot
F (k, t ) =

4∑
j=1

(
0 c j (t )eib j k

c j (t )e−ib j k 0

)
, (3)

with b1 = −b3 = (a, 0) and b2 = −b4 = (0, a) (for more de-
tails, see the Supplemental Material [49]). In the following,
we use units where a = 1.

Resonant driving is achieved for c = 2π
T , which places

the linear part of the system in an anomalous topological
Floquet phase. There, the winding number W [42] of the
bulk system [cf. Eq. (3)] is given by W = 1, such that a
single counterclockwise propagating edge mode appears in a
finite geometry. We set the strength of the on-site nonlinear-
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FIG. 2. (a) Schematic of square lattice model [see Eq. (3)] with
sublattices A and B indicated by white and black circles, respectively.
The system size is 16 × 16 sites and parameters are c = 2π

T , γ = 3
T .

Initial excitations as per Eq. (4) are located on the lower left edge,
with the chiral edge state amplitude ei� (red) and the circulating bulk
state amplitude 1 (blue). We measure the transmitted probability flux
φT = ∫ 10T

0 φ j,δ(t )dt as per Eq. (5) through the link marked in orange.
(b) φT as a function of the relative phase � between the red and blue
pulse. The flux generated by the edge state (red pulse) alone in the
nonlinear system (γ = 3

T ) is indicated as a red dashed line and in the
linear system (γ = 0) as a gray dotted line for reference.

ity to γ = 3
T and solve the resulting nonlinear Schrödinger

equation [cf. Eq. (1)] for a finite lattice of 16 × 16 sites nu-
merically. For this value of γ , a pulse of up to unit intensity
can still propagate virtually uninhibited. Hence, as sketched in
Fig. 2(a), our initial conditions consist of an edge state (red)
with amplitude ei� and a circulating bulk state (blue) with
amplitude 1. Indexing the physical sites of the lattice by jx,
jy (irrespective of the A, B sublattice structure), this can be
written as

ψ jx, jy (t = 0) = ei�δ jx,0δ jy,0 + δ jx,0δ jy,5. (4)

For these initial conditions, our numerical calculations
show that the dynamics are highly sensitive to the relative
phase � of the pulses. To quantify the influence of � on the
nonlinear interaction between the wave packets, we define the
flux density through a lattice link starting from a continuity
equation. Consider a nonlinear time evolution as per Eq. (1)
with some HF (t ) containing only time-dependent NN hop-
pings Jδ(t ). The density then obeys

d

dt
|ψ j (t )|2 =

∑
δ∈NN

2 Im[Jδ(t )ψ∗
j (t )ψ j+δ(t )]︸ ︷︷ ︸

−φδ, j (t )

, (5)

where φδ, j can be interpreted as the probability flux density
leaving site j through the NN link δ. This expression holds
for any lattice type and a generalization to longer-ranged
hoppings is straightforward. Now, we pick a link further down
the edge, i.e., far away from the scattering region in propaga-
tion direction of the edge state. Specifically, we choose the
link connecting the 11th and 12th site of the lower edge [cf.

Fig. 2(a)], and integrate the flux over a sufficiently long time
such that the entire remainder of the edge pulse has passed.
Here, an integration time of ten driving periods is sufficient to
capture all of the transmitted flux, i.e., φT = ∫ 10T

0 φ j,δ(t )dt .
Figure 2(b) shows the resulting φT as a function of �, with

the total flux generated by the wave packet in the edge mode
alone indicated as a red dashed and gray dotted line for γ =
3
T and γ = 0, respectively, for comparison. The deviation of
φT from the red dashed line thus quantifies the violation of
the superposition principle by nonlinear scattering of the two
wave packets, while the deviation of the red dashed line from
the gray dotted line is a correction to the ideal linear Floquet
topology at finite intensity. Depending on the relative phase,
we observe that the edge mode can either be scattered almost
completely into the bulk [the dip around � ≈ 1.2π marked
by a black arrow in Fig. 2(b); see also Fig. 1(b)], pass the
circulating bulk mode unaffected (the intersections with the
red dashed line), or even scatter a portion of the circulating
mode so as to amplify the edge state propagation (the peaks at
� ≈ π and � ≈ 1.8π ).

Honeycomb model. To illustrate the generality of our
findings, we also investigate a periodically driven optical
honeycomb lattice that hosts a BEC. This system has been
realized in Ref. [45] and can be tuned to exhibit a similar effect
to the square lattice model considered before. The system
is effectively described by a tight-binding honeycomb lattice
with two atoms per unit cell and time-dependent hoppings,

Jl (t ) = AeB cos(ωt+(l−1)φ) + C, φ = 2π

3
, (6)

along the directions l = 1, 2, 3, where the parameters A, B, C
can be tuned externally for more details refer to the Supple-
mental Material [49]. The driving period is T = 2π

ω
.

To ensure resonant driving and facilitate a stable locally
circulating excitation, it is necessary that only one NN link
is active at a time. Here, this can be achieved by picking
a large value of B = 7 in order to localize the exponentials
in Eq. (6) and setting C = 0. Furthermore, the ratio of the
driving period and the overall hopping amplitude has to be
chosen such that 100% intensity is transferred during link
activation time, which amounts to taking A = 0.0015 2π

T [49].
For these parameters, the linear part of the system enters an
anomalous Floquet topological phase with W = 1 protecting
a counterclockwise propagating edge state in a finite geom-
etry. Turning on interactions leads to a nonlinearity similar
to Eq. (1) in the Gross-Pitaevskii equation governing the dy-
namics of the BEC [3–6], which is readily tunable through
Feshbach resonances [50]. We set γ = 1.5 2π

T , which allows
for basically uninhibited propagation of pulses with up to unit
intensity.

Following a similar protocol as before, we consider a
lattice of 10 × 10 unit cells and start an edge state and a circu-
lating bound state as illustrated in Fig. 3(a), with a relative
phase ei�. The measurement of the transmitted probability
flux over 20 driving periods as per Eq. (5) through a link
down the edge [cf. Fig. 3(a)] yields a largely similar result
to the square lattice system which is shown in Fig. 3(b). The
total flux generated by the wave packet in the edge mode
alone is indicated again as a red dashed and gray dotted line
for γ = 1.5 2π

T and γ = 0, respectively. The gray dotted line

L021501-3



BENJAMIN MICHEN AND JAN CARL BUDICH PHYSICAL REVIEW A 108, L021501 (2023)

FIG. 3. (a) Schematic of honeycomb model [see Eq. (6)]. The
system size is 10 × 10 unit cells and further parameters are A =
0.0015 2π

T , B = 7, C = 0, γ = 1.5 2π

T . Initial excitations of the edge
state amplitude ei� (red) and the locally circulating state of am-
plitude 1 (blue) as well as the transmitted probability flux φT =∫ 20T

0 φ j,δ(t )dt over 20 driving periods T = 2π

ω
[cf. Eq. (5)] through

a link (orange) are indicated. (b) φT as a function of the relative
phase � between the red and blue pulse. The flux generated by the
edge state (red pulse) alone in the nonlinear system (γ = 1.5 2π

T ) is
indicated as a red dashed line and in the linear system (γ = 0) as a
gray dotted line for reference.

deviates slightly from one because the system is not perfectly
tuned to resonant driving [49] such that a small portion of the
initial unit intensity pulse escapes into the bulk. Analogous to
the square lattice model of coupled waveguides, by tuning �

we can mostly destroy the edge state [� ≈ 1.2π , marked by a
black arrow in Fig. 3(b)], let it pass relatively unaffected (the
intersections with the red dashed line), or amplify the edge
current (the peaks around � ≈ π and � ≈ 1.8π ).

Conclusion. We have identified and analyzed a
nonlinearity-induced scattering mechanism that can be
observed in topological Floquet systems with existing
experimental techniques. In particular, a wave packet
propagating in a chiral edge state can scatter off another
wave packet, which can almost entirely destroy the edge

state. By contrast to scattering off static impurities which
merely locally redirect the edge state, the circulating wave
packet should be seen as an effectively time-dependent
impurity potential, for which the protection of edge states is
no longer guaranteed. Saliently, this effect can be controlled
by an initial relative phase between the wave packets,
which provides an accessible knob to switch the nonlinear
scattering on or off. To illustrate the general applicability of
our findings, we have presented qualitatively similar results
on two microscopic lattice models representing recently
implemented experimental settings in the context of coupled
waveguide arrays and ultracold bosonic atoms, respectively.

We note that the collision of counterpropagating edge soli-
tons in a nonlinear Floquet system was investigated in an
earlier work [51]. There, the nonlinearity effectively modifies
the dispersion of edge states from different band gaps such
that solitons with opposite direction of propagation on the
same edge emerge. However, this effect requires a specific
intensity regime that is not able to break the topological phase
even at constructive interference of the pulses, such that the
solitons in this scenario are robust against scattering and vary-
ing their relative phase only induces a small spatial shift.

On a more general note, chiral edge states as one-way
streets for transport and information processing may be seen
as a promising platform for quantum and nanotechnology. To
this toolbox, our present findings add a simple experimen-
tal switch for blocking and opening propagation through a
chiral edge state by means of nonlinear scattering. Within
our present description in terms of nonlinear wave equations,
nonlinearity emerges at a mean-field level. In this light, iden-
tifying a counterpart to our findings in the quantum regime,
where the interplay of many-body correlations and Floquet
driving may qualitatively affect the properties of chiral edge
modes, in our view defines an interesting direction of future
research.
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