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Polaritons for testing the universality of an impurity in a Bose-Einstein condensate
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Universality is a fundamental concept in physics that allows for the description of properties of systems that
are independent of microscopic details. In this work, we demonstrate that the propagation of slow light in the
form of a dark-state polariton can encode universal aspects of an impurity strongly coupled to a Bose-Einstein
condensate. This unveils a nondemolition scheme to probe impurity physics beyond the quasiparticle properties.
Based on a field theory that includes the two-body correlations at the exact level we demonstrate that under
appropriate conditions, the damping rate of slow-light propagation reveals the high-energy universal tail in the
polaron spectrum.
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Introduction. The concept of universality is ubiquitous
in physics, referring to properties of systems that remain
unchanged across interaction strengths, temperatures, and mi-
croscopic details of certain classes of phenomena. Ultracold
gases have provided a platform in which to test universal
features related to the properties of strongly correlated Fermi
[1–8] and Bose gases [9–12].

The study of a quantum impurity coupled to a bosonic
bath is a long-standing problem that dates back to Landau’s
and Pekar’s studies on the behavior of electrons in a crystal
[13]. The understanding of the so-called Bose polaron has
been renewed in light of new experiments with ultracold
gases [14–18], which has encouraged the development of new
theoretical and numerical approaches [19–33] far beyond the
regimes accessible in condensed-matter systems. Despite this
interest, many aspects of the Bose polaron remain elusive
today. In this sense, the universal aspects of the Bose polaron
are key features for understanding properties that are invariant
to the microscopic details of the system.

One of these properties is the universal frequency tail
of the spectrum of the polaron, which is related to Tan’s
contact [34–38] and provides direct information on the
short-range interaction and initial dynamics of the polarons
[17,39–43].

Polaritons, compound quasiparticles of light and matter,
have entered into the realm of strongly correlated phases of
matter in condensed matter by serving as a powerful probe
and measurement mechanism. Much of this sensing has ex-
ploited the ability of polaritons to interact via their matter
component with a complex reservoir, forming new many-body
states coined polaron-polaritons [44–51]. The recent progress
in quantum gases has established a bridge that has been
fruitful in transferring formalisms, numerical approaches, and
knowledge between the fields of polarons in quantum gases
and polaritons in semiconductor microcavities [52–58]. In the
context of atomic gases, dark-state polaritons have been stud-
ied in relation to polaron-polaritons, leading to the prediction
of intriguing phenomena such as mass tuneable polaritons
[59], lossless polariton propagation above Landau’s critical

velocity [60], and strongly interacting polaritons [61]. Con-
trary to the progress made in condensed-matter systems where
polaritons are routinely utilized to investigate many-body
phases of matter, this approach remains largely unexplored
with ultracold gases.

Polaritons offer alternative routes for addressing two
critical aspects: (a) Detecting strongly correlated states of
quantum matter in a nondestructive manner, circumventing
measurement schemes such as time-of-flight and (b) study-
ing polaron physics in the genuinely single-impurity limit by
harnessing the capabilities of single-photon sources.

Motivated by this open problem, in this article we
propose polaritons in a BEC to measure the universal
tail spectrum of the Bose polaron in ultracold gases. A
field-theoretical approach, which incorporates two-body cor-
relations of impurity-boson scattering, demonstrates that the
damping rate of the polariton carries information about the
universal tail highlighting the potential of polaritons to inves-
tigate features of strongly correlated systems in atomic gases
beyond the quasiparticle picture.

Universal tail of the polaron. Before we enter into the study
of slow-light and polaritons to test the universal aspects of
an impurity let us first briefly revise the problem of the Bose
polaron and its universal aspects.

Consider a system formed by bosonic atoms

Ĥb =
∑

k

εkb̂†
kb̂k + gbb

2V

∑

k,k′,q

b̂†
k+qb̂†

k′−qb̂k′ b̂k, (1)

where b̂†
k creates a boson with momentum k and energy

εk = k2/2m where m is the mass of the bosons and gbb the
boson-boson interaction strength. We assume that the bosons
form a three-dimensional weakly Bose-Einstein condensate
(BEC) correctly described by the Bogoliubov theory with a
density n0. The energy and momentum scale associated with
the BEC are En = k2

n/2m and kn = (6π2n0)1/3, respectively.
We take h̄ = 1.
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A single impurity interacts with the BEC, described by the
term

ĤI = g

V

∑

k,k′,q

b̂†
k+qĉ†

k′−qĉk′ b̂k, (2)

where ĉ†
k creates an impurity atom with momentum k. The

strength of the interaction g = 4πa/m in terms of the boson-
impurity scattering length that can be tuned on demand by
means of a Feshbach resonance. The volume of the system
is denoted by V whereas the kinetic energy of the c impuri-
ties is described by the standard term Ĥc = ∑

k ε
(c)
k ĉ†

kĉk with
ε

(c)
k = k2/2m + εc being the energy offset εc of the c state with

respect to the b atoms.
The study of the many-body properties of the Bose polaron

remains an outstanding problem that is far beyond the scope
of this paper. Instead, in this article, we focus on the universal
aspects of the Bose polaron, which appear regardless of the
theoretical approach employed. For an impurity immersed at
t = 0 in a BEC, the spectral function is defined as A(0, ω) =
Re

∫ ∞
0 〈ψ0|e−iĤt |ψ0〉eiωt dt/π , where |ψ0〉 = ĉ†

0|BEC〉. Here
Ĥ = Ĥb + ĤI + Ĥc, and |BEC〉 is the ground state of the
bosons forming a BEC state. Here the energy is referred to
the noninteracting ground state.

We write the spectral function of the impurity as A(0, ω) =
AP(0, ω) + Atail(0, ω), where Atail(0, ω) represents the uni-
versal tail of the polaron spectrum and AP(0, ω) relates to
the many-body correlations that may form in the low-energy
sector, which is not our current focus. The tail of the spectrum
is given by [39]

Atail(0, ω) = 8πn0

m3/2ω5/2

mωa2

1 + mωa2
(3)

and holds for large ω. In Fig. 1, we illustrate the different
regimes of the polaron spectrum. It consists of a universal
regime marked by the blue area that scales as ω−5/2. For weak
interactions, a weakly interacting high-energy tail appears,
marked by the pink area. The third regime, illustrated by the
green area, corresponds to energies at which the polaron and
many-body correlations form. Although there is still debate
on the properties of the green region; that is, how the spectral
function looks when many-body correlations arise- the tail of
the polaron spectrum in Eq. (3) is an exact result that stems
from the analytical expression for the two-body scattering,

Atail(0, ω) = n0
A(0)

T (ω)

ω2
. (4)

This equation, equivalent to Eq. (3) remarks that the tail of
the polaron spectrum only relates to the two-body scatter-
ing properties. Where A(0)

T (ω) = −2ImTv (0, ω) is the spectral
function of the two-body scattering matrix, in turn given by
Tv (0, ω) = (4πa/m)/(1 + ia

√
mω).

Polaritons. We now turn our attention to the description of
slow-light in the presence of atomic interactions. We consider
atoms with an internal three-level structure as illustrated in
Fig. 2 (inset) in a � scheme. Atoms form a Bose-Einstein
condensate in the |b〉 atomic state, an excited state |e〉 couples
to a photon field |a〉 whereas a classical field couples the
excited state |e〉 and a third state |c〉. In this case, the optical

FIG. 1. Diagram of the spectral response of an impurity coupled
to a Bose-Einstein condensate as a function of the inverse of the
impurity-boson scattering length and the frequency ω. Universal
high-energy tail spectrum that scales with ω−5/2 (blue region) and
weak-coupling universal regime a2ω−3/2 pink region. Many-body
correlations form within the green area. Dashed line are guides to
the crossover to the different scaling regimes, which are smooth
transitions given by blue to pink: ω = 1/ma2, pink to green: ω =
4π |a|n0/m, and green to blue: ω = (4πn0/m3)2/3. Here, the red
and orange balls illustrate the majority and impurity atoms and the
different energy regimes.

medium is the BEC, which is driven by a weak probe light
denoted |a〉. The absorption of a photon in the BEC excites an
atom into the state |e〉. A stronger classical field then couples
the excited state to the metastable state |c〉. As we explain in
the following, this configuration leads to EIT and dark-state
polaritons.

The coupling of the atoms in the BEC to the photons
and excited state |e〉 is described by the standard light-matter

FIG. 2. The damping rate of the dark-state polaritons is plotted as
a function of �/γe for several values of the inverse of the scattering
length 1/kna. The red lines represent unitarity (1/kna = 0), with the
solid curve giving the exact numerical result and the dashed line
corresponding to Eq. (15). The black lines correspond to 1/kna = −1,
with the solid line illustrating the full numerical solution and the
dashed curve showing the asymptotic behavior. The blue lines repre-
sent weak interactions (1/kna = −2). The inset shows the � scheme
of the atoms as detailed in the main text.
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Hamiltonian

Ĥl−m = gp√
V

∑

k,q

(ê†
k+qâkb̂q + â†

kb̂†
qêk+q)

≈ √
n0gp

∑

k

(ê†
kâk + â†

kêk ). (5)

In the second line, we make use of the fact that for a BEC,
the ground state is macroscopically populated with b̂0 ≈ b̂†

0 =√
N0, where N0 represents the number of condensate atoms.

The single-photon coupling is denoted by gp. The ideal dis-
persion of the photons and the excited state are given by Ĥa =∑

k ωkâ†
kâk and Ĥe = ∑

k ε
(e)
k ê†

kêk, respectively. As usual, the
photons have a linear dispersion ωk = ck with c being the
speed of light, while the dispersion of the excited state ε

(e)
k =

k2/2m + εe − iγe, where εe is the energy of the excited state
relative to the b state and γe its damping rate. The � scheme is
completed by a classical control field that couples the excited
and metastable state and is given by the Hamiltonian

Ĥcl = �
∑

k

(
ĉ†

k−kcl
êkeiωclt + ê†

kĉk−kcl e
−iωclt

)
, (6)

with ωcl and kcl being the energy-momentum of a classical
field and � is the Rabi frequency.

To treat the light-matter coupling together with the atomic
interactions we introduce the imaginary Green’s function [62]

Gαβ (k, τ ) = −〈Tτ {ψ̂αk(τ )ψ̂†
βk(0)}〉,

where the indices α, β = {c, e, a} for the metastable, excited,
and photon field, respectively. τ is the imaginary time and
Tτ is the time-ordering operator. Our formalism allows us
to explore finite-temperature and consider a finite density of
impurities, in this work, however, we restrict our calculations
to zero temperature and a single polariton in the BEC. The
Dyson’s equation in energy-momentum space governing the
photon field is

G−1
aa (k, ω) = G(0)

aa (k, ω)−1 − �aa(k, ω), (7)

with the bare photonic Green’s function G(0)
aa (k, ω)−1 = ω −

c|k|. First, the diagonal self-energy of the photons is given by

�aa(k, ω) = n0g2
pGee(k, ω). (8)

The Green’s function of the excited state |e〉 is

G−1
ee (k, ω) = G(0)

ee (k, ω)−1 − �2Gcc(k − kcl , ω), (9)

where G(0)
ee (k, ω)−1 = ω − ε

(e)
k , includes the induced damp-

ing and energy shifty due to the coupling to the b state as
described by the Weisskopf-Wigner theory [63]. We consider
a weak probe photon with momentum pr we introduce the
one- photon detuning  = c|pr | − Reε (e)

pr
, and define the two-

photon detuning as δ = εc + ωcl − cpr .
In the absence of atomic interactions, we can use the bare

propagator of the c state in Eq. (9): G−1
cc (k, ω) = ω − ε

(c)
k .

In the rotating frame ĉ†
k → ĉ†

keiωclt , the energy of the c state
is given by ε

(c)
k = k2/2m + δ + cpr . In this case, when the

two-photon detuning vanishes, light propagates in the form
of a dark-state polariton [64–66], which has a dramatically
reduced group velocity of vg/c = 1/(1 + n0g2

p/�
2) and prop-

agates without losses in an opaque medium, a phenomenon

also coined electromagnetically induced transparency (EIT)
[67,68]. In our study, we only consider δ = 0.

We now include the boson-impurity interactions. Although
the predicted state of the polaron may depend on the theo-
retical framework used, in this study, we focus only on the
high-energy spectrum of the polaron. Therefore, we account
for a formalism that includes this high-energy tail exactly
using the so-called ladder approximation [24]. Within this
approximation, the self-energy of the c Green’s function is
given by

�cc(k, ω) = n0T (k, ω). (10)

Here, the scattering matrix T describes the interaction be-
tween a single polariton and a boson of the BEC; that is,

T (k, ω) = 1
m

4πa − �(k, ω)
, (11)

with

�(k, ω) = −
∑

p,iων

GBEC(p, iων )G(0)
cc (k − p, ω − iων ). (12)

This approach is called the non-self-consistent T -matrix
(NSCT) approximation; it accounts for the infinite sum of di-
agrams in the ladder approximation: forward boson-impurity
scattering [24]. This approximation takes into account that
the impurity can only excite one Bogoliubov mode out of
the condensate and is equivalent to the bosonic version of
the so-called Chevy’s ansatz. Here G−1

BEC(k, ω) = ω − k2/2m
corresponds to the Green’s function of the BEC which for sim-
plicity we assume to be ideal, and iων is a bosonic Matsubara
frequency. On the other hand, Gcc(k, ω) corresponds to the c
propagator, which is now dressed by the light-matter coupling,

[
G(0)

cc (k − kcl, ω)
]−1 = ω − ε

(c)
k−kcl

− �2

ω − ε
(e)
k − n0g2

p

ω−ck

. (13)

The scattering matrix depends therefore on the coupling
between the different states to light and, as we shall reveal,
the properties of the T matrix reflect on the propagation of
the dark-state polaritons.

Probing polaron universality with polaritons. Before delv-
ing into technical and numerical details, let us first discuss
some limits that will guide the physical interpretation of our
results.

Under perfect EIT conditions, light can propagate without
losses in an otherwise opaque BEC. In this study, we use
the losses induced by atomic interactions on the dark-state
polariton to probe the universal tail of the polaron spectrum.
We begin by defining the damping rate of the polariton, which
will serve as a starting point for our analysis:

�a = −ZaIm�aa(pr, cpr ), (14)

where Za is the residue of the polariton, Za = 1/(1 +
n0g2

p/�
2).

The main result of our work is summarized in the following
equation:

�a ≈ Atail(0, ωl )ω
2
l , (15)

where ωl = −�2/ with  < 0. This expression relates the
losses of the polariton to the universal tail of the polaron
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spectrum. It provides a nondemolition probing scheme, al-
lowing for the measurement of the high-energy spectrum of a
strongly interacting impurity coupled to a BEC via polaritons.
That is, by tuning the light-matter parameters � and , one
can measure the tail of the polaron spectrum as in Eq. (15).
Equation (15) links the tail of the two-body scattering to
the damping rate of the polariton as it can be rewritten as
�a ≈ n0A(0)

T (0, ωl ).
The physical origin and validity of our main result in

Eq. (15) rely on two considerations.
First, from Eq. (7) evaluated for an incoming photon with

energy-momentum (pr, cpr ), we have

G−1
aa (pr, cpr ) = − n0g2

p

 + iγe + �2

n0T (0,cpr )

. (16)

We observe that if the polaron energies which are of the order
of n0T (0, cpr ) remain smaller than the width of the EIT, i.e.,

�2

√
γ 2

e + 2n0T (0, cpr )
	 1,

then we can estimate the imaginary part of the dressed photon
propagator as ImG−1

aa (pr, cpr ) ≈ (n0g2
p/�

2)n0ImT (0, cpr ).
Second, when the one-photon detuning is also larger than

the typical energies of the impurity, the Green’s function of
the c atoms can be approximated as [G(0)

cc (k − kcl, ω)]−1 ≈
ω − ε

(c)
k−kcl

− �2/ in Eq. (13). This approximation allows us
to replace the polariton-boson scattering matrix in Eq. (11)
with the impurity-boson scattering matrix evaluated at energy
ωl , i.e., T (0, cpr ) → Tν (0, ωl ). Under these two conditions,
we obtain Eq. (15). We emphasize that, in our numerical cal-
culations, we retain the full Green’s function for the impurity
and photon.

To test numerically our theoretical analysis, we now obtain
the photon propagator numerically. For relevant EIT experi-
ments [69], the energy of the c state is typically on the order
of εc ≈ 100–400 MHz above the energy of the b state. Achiev-
ing a vanishing two-photon detuning requires εc + ckcl −
cpr = 0. By rewriting kcl = pr + p, we find that p/kn ≈
10−6 for current polaron experiments (kn ∼ 1/1000a0, with
a0 being the Bohr radius) [14]. In other words, due to the
steep dispersion of light, the momentum shift needed to fix
δ = 0 for a realistic value of εc is completely negligible,
p/kn � 1. Consequently, we can effectively probe the zero-
momentum polaron. In addition, we take γe = 10 MHz, a
one-photon detuning of  = −10γe, kcl = 0.1kn, a BEC with
En = 500 kHz, and

√
n0gp/γe = 30 500.

To understand our results, let us link the damping rate �a

to a physical observable. We note that a photon propagating in
a BEC with � = 0 spends an amount t (0)

a = L/c of time in the
condensate of length L. Thus, it is convenient to introduce the
dimensionless quantity termed optical depth OD0 = �(0)

a t (0)

where �(0)
a = n0g2

p/γe, is the damping rate of the photon in the
two-level medium (� = 0). Comparing the same quantity for
slow-light OD = �ata and ta = L/vg we obtain that the ratio
OD/OD0 = �a/σe can be written in terms of σe = �2/γe,

which is the normalization we will use under strict EIT con-
ditions �a = 0.

Figure 2 shows the damping rate of the dark-state polariton
as a function of � for different values of the boson-impurity

FIG. 3. Universal tail from the damping rate of polaritons. In
red we show the unitary regime 1/kna = 0, in black we have
1/kna = −0.2 while the blue line gives 1/kna = −1. Solid curves
give the numerical results, the orange line gives the universal limit.
The remaining parameters are as in Fig. 2.

scattering length. The solid lines are the result of the full
numerical solutions, while the dashed line corresponds to the
asymptotic tail in Eq. (15). Overall, we see that the polariton
damping agrees well with the high-energy tail of Eq. (15). For
strong interactions, in particular, at unitarity 1/kna (red lines),
we observe that the polariton damping joins the universal tail
at �/γe ≈ 1 and seems to agree very well with the tail for
large �. On the other hand, as � is decreased, we obtain
significant deviations from Eq. (15) until the comparison no
longer makes sense. If at unitarity the typical polaron energies
are of the order of En, for �/γe = 1.0, we obtain that for the
parameters taken, �2/[(2 + γ 2

e )1/2En] = 2. Thus, in accor-
dance with our analysis, we expect to start agreeing with the
universal tail close to this value and higher values of �.

At intermediate coupling strengths (1/kna = −1), we also
observe agreement between the high-energy tail and the nu-
merical results. However, the agreement shifts to larger values
of �. Physically, this can be understood from Fig. 1: as the
interaction strength decreases, the universal tail shifts to even
higher energies. Thus, in our case, we are required to tune �

to higher values.
Finally, for weak interactions (1/kna = −2), we find that,

as the universal tail is pushed further in energies, the agree-
ment between the numerics and Eq. (15) occurs only at large
values of �, consistent with our previous discussion.

Our analysis indicates that the damping rate of the dark-
state polariton scales with the inverse of the Rabi frequency,
�a ≈ n0/�. However, it is difficult to directly confirm this
hypothesis from Fig. 2. To demonstrate this relationship, we
present �a� on a logarithmic scale in Fig. 3. We observe
that, for strong interactions, the value of �a� approaches the
unitary value of �a� ≈ (n0/m3/2)

√|| (dashed orange line).
At unitarity (solid red line), we observe an evident change of
slope close to �/γe = 1, when �2/[(2 + γ 2

e )1/2En] = 1. As
the interaction is decreased, we find that the high-energy tail
is reached at larger values of �, as discussed previously.

Our result unveil an intriguing and nontrivial link between
the universal aspects of the polaron and slow light. It demon-
strates that the damping rate of the polariton encodes the
high-energy universal tail of the impurity and can be used as
as a nondemolition probing scheme, that is, procedures like
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time-of-flight where the BEC is destroyed during the mea-
surement protocol are avoided with polaritons. Unlike polaron
experiments with highly imbalanced population mixtures,
where the signal of the impurity typically scales linearly with
the density of the impurities, state-of-the-art experiments with
polaritons in quantum gases with single photons [70] suggest
that our proposal can test genuinely single-impurity physics.

Conclusions. In this article, we have shown that the damp-
ing rate of the polariton can be used to probe the high-energy
spectrum of a quantum impurity coupled to a BEC. Our results
relate the propagation of slow-light to the universal properties
of an impurity strongly interacting with its surroundings be-
yond the quasiparticle picture. This work suggest polaritons as

a nondemolition probing scheme that can test single-impurity
physics.

Our study reflects a rich interplay between well-established
polariton physics and high-energy polaron physics. The vast
playground of these two phenomena may serve as a bench-
mark for future experiments and theories to explore polariton
and polaron physics beyond the linear regime [71–74].
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