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Maximally entangled single-particle states (MESPS) are opening new possibilities in quantum technology, as
they have the potential to encode more information and are robust to decoherence compared to their nonlocal
two-particle counterparts. We find that a single coin can generate MESPS at recurrent time steps (periodically)
via discrete-time quantum walks on both 4- and 8-site cyclic graphs. This scheme is resource saving, with
possibly the most straightforward experimental realization since the same coin is applied at each time step.
We also show that recurrent MESPS can be generated on any arbitrary k-site cyclic graph, k ∈ {3, 4, 5, 8} via
effective-single (identity and arbitrary coin) or two-coin evolution sequences. Beyond their use in fundamental
research, we propose an application of the generated MESPS in quantum cryptography protocols. MESPS as
cryptographic keys can strengthen quantum-secure communication.
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Introduction. Hybrid or single-particle entanglement (SPE)
refers to the entanglement between different degrees of free-
dom such as spatial mode, polarization, and orbital angular
momentum belonging to the same particle [1]. The quantum
signature of SPE is contextuality, which rules out realistic
noncontextual hidden-variable theories and violates Bell’s
inequality. Though SPE lacks in nonlocality, it has its sig-
nificance plus advantages over the nonlocal or multiparticle
entanglement [1,2]. SPE enables encoding more information
at the single-particle level, is more robust against decoher-
ence, and has simpler experimental implementation than its
nonlocal bipartite counterpart [1,3,4]. SPE has significant ap-
plications in photonic quantum information processing and
analysis of states of photons and elementary particles [1].
Since an entangled state can be transmitted employing a sin-
gle particle, SPE is a proven resource to improve existing
QKD (quantum key distribution) protocols like the BB84 for
secret key sharing and a QKD scheme with single-particle
entangled photons, see [1,5]. Quantum joining, a physical
process that allows the transfer of interparticle entanglement
between photons into a single output photon’s hybrid en-
tanglement and its inverse, has been reported, and it has
applications in quantum networking [6]. Photonic SPE states
are potentially advantageous in optical quantum networks be-
cause they enable a more flexible network with every photon
transmitted via a suitable channel [7]. SPE has also been
used in experimental tests of noncontextual hidden-variable
theories [1].

A quantum walker (or particle) is represented by a wave
function and obeys the quantum superposition principle, and
this makes quantum walks (QWs) superior compared to their
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classical counterparts [8]. A discrete-time quantum walk
(DTQW) evolves by repeatedly applying two quantum oper-
ators: coin and shift. A quantum walk can be described on
a one- or two-dimensional (1D, 2D) lattice and analogously
on a cyclic graph with k sites (k cycle). For some detailed
studies on QWs on k cycles, see Refs. [9–11]. Reference [11]
reports on the experimental implementation of QW on cyclic
graphs with photons using linear optical elements. A recent
work [12] shows that it is possible to design an ordered or
periodic QW by combining two chaotic QWs on 3- or 4-cycle
via the Parrondo strategy [13]. Intriguingly, the emergence of
order from chaos and its inverse in QWs has applications in
quantum cryptography [12], quantum-secure direct communi-
cation protocols [14], and in developing a theory of quantum
chaos control [15].

Several manuscripts recently reported that DTQWs on
1D lines could be efficient tools to generate entangled
single-particle states (SPS) or SPE, see Refs. [3,4,16–21].
Refs. [4,17] report on the experimental realization of SPE gen-
eration. Reference [16] shows that by incorporating Parrondo
sequences of coin operators in 1D DTQWs one can obtain
phase-independent SPE and, in a particular case, maximal
SPE independent of the initial state parameters for time steps
of 3 and 5.

There has been no attempt to generate maximally entan-
gled SPS (MESPS), and for that matter, SPE in cyclic graphs.
Also, seeing the versatility of DTQWs and the preeminent
applicability of SPE, exploring different methods to generate
highly or maximally entangled SPS via DTQWs is an impor-
tant task, as it would contribute to extending the horizons of
quantum technologies [1]. Our main aim in this work is to
study the propensity of DTQWs on cyclic graphs in gener-
ating MESPS using a single coin. In addition, we also study
MESPS generation using an effective-single coin (i.e., coin
operator and identity operator) or two coins in a deterministic
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FIG. 1. 4-cycle (a) and 8-cycle (b), 3-cycle (c) and 5-cycle (d),
with sites marked by green dots.

evolution-operator sequence and their relation to ordered QW
dynamics.

DTQW on cyclic graphs. A DTQW on a k cycle (Fig. 1)
is defined on a tensor product space (H) of position (HP)
and coin (HC) Hilbert spaces, i.e., H = HP ⊗ HC . HC is de-
fined on the computational basis {|0c〉, |1c〉}, whereas HP has
the computational basis {|xp〉 : xp ∈ {0, 1, 2, ..., k − 1}}. If the
quantum walker is initially localized at the site |0p〉 in a
general superposition of the coin states, it is represented by
|ψi〉 or |ψ (t = 0)〉, i.e.,

|ψ (t = 0)〉 = cos

(
θ

2

)
|0p, 0c〉 + eiφ sin

(
θ

2

)
|0p, 1c〉, (1)

with θ ∈ [0, π ] and φ ∈ [0, 2π ). The unitary coin operator is

Ĉ2(ρ, γ , η) =
( √

ρ
√

1 − ρeiγ

√
1 − ρeiη −√

ρei(γ+η)

)
, (2)

where 0 � ρ � 1 and 0 � γ , η � π .
The walker moves to the left (right) by one site for coin

state |0c〉 (|1c〉). For the walker on k cycle, we use the shift
operator Ŝ = ∑1

q=0

∑k−1
j=0 |(( j + 2q − 1) mod k)p〉〈 jp| ⊗

|qc〉〈qc|. The full evolution can be expressed as

Uk (t ) = Ŝ · [Ik ⊗ Ĉ2(ρ(t ), γ (t ), η(t ))], (3)

where Ik is a k × k identity matrix. The time evolution of the
system (quantum walker) after t time steps is then

|ψ (t )〉 = Uk (t )|ψ (t − 1)〉 = Uk (t )Uk (t − 1)...Uk (1)|ψ (0)〉,

=
k−1∑
j=0

[α0( j, t )| jp, 0c〉 + α1( j, t )| jp, 1c〉], (4)

where α0( j, t ) and α1( j, t ) are amplitudes for the states
| jp, 0c〉 and | jp, 1c〉, respectively.

Measuring entanglement. The initial quantum state in
Eq. (1) is pure and separable, and it evolves unitarily via
DTQW. We use entanglement entropy (E ) to quantify the
entanglement between the coin and position degrees of free-
dom of the time-evolved quantum state |ψ (t )〉 [22]. Let ρψ

be density operator for |ψ (t )〉 i.e., ρψ = |ψ (t )〉〈ψ (t )| and
reduced density operator (ρc) for the coin space is, ρc ≡
Trp(ρψ ), where the partial trace Trp is taken over the position
degrees of freedom. The eigenvalues of the reduced density
matrix ρc are, E± = 1

2 ± |�n|, with �n = (	(
 jα1( j, t )α∗
2 ( j, t )),

�(
 jα1( j, t )α∗
2 ( j, t )), 1

2
 j (|α1( j, t )|2 − |α2( j, t )|2)). The en-
tanglement entropy E is the von Neumann entropy for the coin
state’s reduced density matrix ρc. E is defined as E (ρc) =
−Tr(ρclog2ρc), with 0 for separable states and 1 for MESPS,
and can be calculated via E = −E−log2E− − E+log2E+ .

To check whether our results are correct, we also calculate
the Schmidt norm (another entanglement measure), which is
given by S = √

E− + √
E+, and for the present system with

min(dim HP, dim HC ) = 2, S for a MESPS is
√

2 [3,16]. In
the Supplemental Material (SM) [23] Sec. II, we show results
from both the entanglement measures and their similar nature.

Periodicity of DTQW on cyclic graphs. Further, the QW on
a k cycle is said to be ordered or periodic if the walker reverts
to its initial state after a time step, say t = N , irrespective of
the initial quantum state. For an ordered QW with period N ,
we may write

|ψ (N )〉 = Uk (N )Uk (N − 1)...Uk (1)|ψi〉 = |ψi〉. (5)

If we apply the same coin at each time step in the above QW
evolution, i.e., Uk (t ) = Uk (t − 1) = ...Uk (1) = Uk(say), then
Eq. (5) is equivalent to U N

k |ψi〉 = ∑2k
i=1 aiλ

N
i |λi〉, wherein

the arbitrary |ψi〉 is expressed in terms of the eigenvalues
{λi} and eigenvectors {|λi〉} of Uk , i.e., |ψi〉 = ∑2k

i=1 ai|λi〉.
From Eq. (5) the condition of periodicity for the QW fol-
lows: U N

k = I2k or λN
i = 1, ∀ i ∈ {1, 2, ..., 2k}. Any unitary

evolution operator which satisfies this condition gives a
periodic probability distribution for the walker’s position
and yields ordered QW. Otherwise, the QW is said to be
chaotic. Furthermore, to simplify the problem of finding the
eigenvalues of Uk and hence the periodicity of the QW,
the 2 × 2 block circulant matrix Uk is block diagonalized
by using a commensurate Fourier matrix tool as done in
Ref. [9]. Then the block-diagonalized form of Uk is given
by FcUkF †

c = diag[Uk,0,Uk,1, ...,Uk,k−1], wherein Fc = F k ⊗
F 2 with F M (with M ∈ {k, 2}) being an M × M commensu-
rate Fourier matrix, i.e., F M = (F M

m,n) = 1√
M

(e2π i mn
M ), where

m, n = 0, 1, ..., M − 1. The periodicity condition is satisfied
if the eigenvalues λ±

k,l of each block Uk,l satisfy the condition,

(λ±
k,l )

N
v = 1, where v is the number of steps in the evolution-

operator sequence which repeat. In Refs. [9,10], examples of
parameter values for Uk to obtain ordered QWs have been
given. We discuss an analytical approach for obtaining values
of such parameters, viz. {ρ, γ , η} yielding recurrent MESPS
via ordered QWs, with various evolution-operator sequences
in the Results section.

Results. MESPS with single-coin evolution sequences. A
general framework for any single coin Ĉ2(ρ, γ , η) to yield
MESPS at time step t = 1 for the QW on any k cycle via the
single-coin evolution sequence AkAkAk ... with evolution oper-
ator Ak = Uk (ρ, γ , η) = Ŝ · [Ik ⊗ Ĉ2(ρ, γ , η)] is established
in the SM Sec. I [23]. A single coin of the form

Ĉ2

(
ρ = 1

2
, γ , η

)
= 1√

2

(
1 eiγ

eiη −ei(η+γ )

)
, (6)

under the constraint (γ + φ) ∈ {π
2 , 3π

2 }, generates MESPS at
t = 1 for any odd or even cycle, or a line, from an arbitrary
separable initial state Eq. (1). In addition, a subset of such
arbitrary single coins, i.e., Ĉ2(ρ = 1

2 , γ ∈ [0, π ], η ∈ [0, π ]),
with parameters (γ + η) ∈ {0, π

2 , π, 3π
2 }, yields recurrent or

periodic MESPS (starting at time step t = 1) on both 4-cycle
and 8-cycle, see SM Sec. I [23].

Initial states [Eq. (1)] having arbitrary φ ∈ [0, 2π )
values like φ = π

6 , π
5 , π

4 , π
3 , π

2 , π , etc. can generate MESPS
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FIG. 2. Eav vs time steps (t) for single-coin evolution sequences:
R4R4R4... (solid green), Q4Q4Q4... (dashed magenta) for 4-cycle, and
R8R8R8... (dotted blue) for 8-cycle, and an arbitrary separable initial
state with φ = π

6 .

recurrently on both 4- and 8-cycles. For example, see
Fig. 2, where the single-coin evolution sequence RkRkRk ...,
with Rk = Uk (ρ = 1

2 , γ = π
3 , η = 2π

3 ) = Ŝ · [Ik ⊗ Ĉ2(ρ =
1
2 , γ = π

3 , η = 2π
3 )], yields recurrent MESPS on both

k = 4-cycle and k = 8-cycle, for the initial state with φ = π
6 .

Note that each data point in Fig. 2 (and in the following
figures) is an average of the entanglement entropy (Eav),
and the average is taken over θ with the mentioned φ value
and is evaluated as Eav = 1

π

∫ π

0 E dθ . For MESPS, Eav = 1.
The sequence R4R4R4... at t = 1, 5, 9, ... yields MESPS on
4-cycle, with period 4, whereas the sequence R8R8R8... yields
MESPS at t = 1, 13, 25, ... (with period 12) on 8-cycle.
Here the coin R̂ = Ĉ2( 1

2 , π
3 , 2π

3 ), which is applied at each
QW time step, is involutory i.e., R̂2 = I2. However, the use
of involutory coins is not a necessary condition to generate
recurrent MESPS; for instance, the single noninvolutory coin
evolution sequence Q4Q4Q4... with Q4 = U4( 1

2 , π
3 , π

6 ) (i.e.,
an noninvolutory coin Q̂ = Ĉ2(ρ = 1

2 , γ = π
3 , η = π

6 ) with
Q̂2 = I2, applied at each time step) on 4-cycle, yields MESPS
with period 3 at t = 1, 4, 7, 10... (see, Fig. 2), for the same
initial state.

By considering another separable initial state Eq. (1)
with φ = π , we find that noninvolutory Fourier coin F̂ =
Ĉ2( 1

2 , π
2 , π

2 ), via its single-coin evolution sequence FkFkFk ...

with Fk = Uk ( 1
2 , π

2 , π
2 ), yields recurrent MESPS on both

k = 4- and k = 8-cycles, as shown in Fig. 3. The se-
quences F4F4F4... and F8F8F8... generate MESPS respectively
at t = 1, 5, 9, 13, ... with period 4 and at t = 1, 13, 25, ...

with period 12. Again, for φ = π , the involutory single-
coin evolution sequence H4H4H4... with H4 = U4( 1

2 , 0, 0)
[i.e., Hadamard coin Ĥ = Ĉ2(ρ = 1

2 , γ = 0, η = 0) applied
at each time step] on 4-cycle yields MESPS (with period 4)
at t = 2, 6, 10, ... (since γ + φ = π ), as shown in Fig. 3.

Furthermore, with separable initial state Eq. (1) having
φ = π

2 , the sequence H4H4H4... on 4-cycle, yields MESPS at
t = 1, 5, 9, ... (here γ + φ = π

2 ) with period 4, as shown in
Fig. 4. Similarly, sequence H8H8H8... with H8 = U8( 1

2 , 0, 0)
yields recurrent MESPS at t = 1, 13, 25, ... with period 12

FIG. 3. Eav vs time steps (t) with single noninvolutory coin
evolution sequences: F4F4F4... (solid green) for 4-cycle, F8F8F8...

(dashed magenta) for 8-cycle, and single involutory coin evolution
sequence H4H4H4... (dotted blue) for 4-cycle, for arbitrary separable
initial state with φ = π .

on 8-cycle for the same initial state, see Fig. 4. (See more
examples in SM Secs. I and II [23].) The periodic behavior of
HkHkHk ... in generating MESPS is supported by its ordered
QW dynamics on both k = 4 and k = 8-cycles, see SM Sec.
II [23] for its analytical proof. Besides, we show that more
than one MESPS can also occur within the period of the QW.

Unfortunately, for both the k = 3-cycle and k = 5-cycle,
we do not see periodic MESPS with single-coin evolution
sequences. However, an arbitrary coin from Eq. (6) subject
to the constraint (γ + φ) ∈ {π

2 , 3π
2 } yields MESPS at t = 1

irrespective of whether it is an even or odd cycle, see SM
Sec. II [23].

Note that a QW for a single-coin evolution sequence
AkAkAk ... is the simplest in terms of experimental setup, as
it just uses the same coin Ĉ2 [Eq. (6)] at each time step [11].
In other words, the same setup will be sufficient for its real-
ization. Thus, the above-established general framework using

FIG. 4. Eav vs time steps (t) with evolution sequences H4H4H4...

(solid green), I4H4I4... (dotted blue) for 4-cycle, and H8H8H8...

(dashed magenta) for 8-cycle, for arbitrary separable initial state with
φ = π

2 .
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a single coin [Eq. (6)] for recurrent generation of MESPS is
pivotal and resource saving.

MESPS with effective-single or two-coin evolution
sequences. We execute several numerical experiments by
forming multiple deterministic coin evolution sequences
such as AkBkAkAkBkAk ..., AkBkAkBk ..., AkBkBkAkBkBk ...,
AkAkBkAkAkBk ..., etc., where Ak = Uk (ρ, γ , η) =
Ŝ · [Ik ⊗ Ĉ2(ρ, γ , η)] and Bk = Uk (ρ ′, γ ′, η′) = Ŝ · [Ik ⊗
Ĉ2(ρ ′, γ ′, η′)]. Here we consider three coin operators
[Eq. (2)]: Hadamard Ĥ , Grover X̂ = Ĉ2(ρ = 0, γ = 0, η =
0), and Identity Î = Ĉ2(ρ = 1, γ , η � γ + η = π ). If
Ĉ2 = X̂ , we have evolution operator Xk = Uk (0, 0, 0) =
Ŝ · [Ik ⊗ X̂ ], and if Ĉ2 = Î , then evolution operator
Ik = Uk (1, 0, π ) = Ŝ · [Ik ⊗ Î]. The primary idea behind
such experiments was to reveal evolution-operator sequences
involving either two coins such as HkHkXk ..., HkXkHkXk ...,
etc. or effective-single coin (i.e., Ik with either Hk or Xk) such
as IkHkIk ..., HkIkIk ..., etc., which yield recurrent MESPS. We
first discuss effective-single coin evolution sequences and
then the two-coin evolution sequences to generate MESPS
via DTQWs on either even (k = 4) or odd (k ∈ {3, 5})-cycle.
Notably, the effective-single coin evolution sequences like
IkHkIk... or HkIkIk ... consist of a single coin (here Ĥ )
with Identity (Î) and their experimental implementation is
resource saving too, as no extra device is required for Identity
coin operation, although it is slightly more complex than
single-coin implementation [4].

We consider an arbitrary separable initial state Eq. (1) with
φ = π

2 and first discuss with the 4-cycle, the effective-single
coin evolution sequences I4H4I4..., H4I4I4... and H4I4H4I4....
We observe that the Eav values generated via the sequence
I4H4I4... follow a periodic trend, see Fig. 4. This observa-
tion is well supported by the periodic probability distribution
P(x = 0) for the walker position at |0p〉, in other words,
the sequence I4H4I4... not only generates MESPS at t =
5, 7, 9, 17... with period 12 but also an ordered QW, see
SM Sec. II [23]. Analytically one can also prove this by
exploiting the periodicity condition, beginning with the eigen-
values of the U4,1 block of the evolution operator (U4)3, see
Eq. (3), λU4U4U4

4,1 = 1
2 i

√
ρe

3
2 i(γ+η)(e− 1

2 i(γ+η) + e
1
2 i(γ+η) )( − 3 +

2ρ + (e−i(η+γ ) + ei(γ+η) )ρ). Similarly, the U4,1 block’s eigen-
values for the sequence I4H4I4 give λ

I4H4I4
4,1 = i√

2
. Herein,

λŨ
4,1 represents the sum,

λ+
4,1+λ−

4,1

2 , for the evolution Ũ = (U4)3

or I4H4I4. Equating λ
U4U4U4
4,1 with λ

I4H4I4
4,1 for (γ + η) = 0, we

get ρ = 2+√
3

4 , which is an exact match with ρ obtained
in Ref. [9] for a periodic QW with period N = 24. With
this description for the I4H4I4... sequence giving an ordered
QW, we observe that a single involutory-coin evolution se-
quence C4C4C4... (i.e., coin Ĉ = Ĉ2(ρ = 2+√

3
4 , γ = 0, η = 0)

applied at each time step) generates MESPS with period 12
at t = 5, 17, 29, ..., see Fig. 5. It is another method besides
Eq. (6) to obtain the condition for the single coin to give
recurrent MESPS. Moreover, effective-single coin evolution
sequences H4I4I4... and H4I4H4I4... yield periodic MESPS
with periods 12 and 4 at time steps t = 1, 3, 5, 13, ... and
t = 1, 5, 9, ..., respectively (see SM Sec. II [23]).

We also observe that the two-coin evolution sequence
H4H4X4... gives recurrent MESPS with period 6 at

FIG. 5. Eav vs time steps (t) with evolution sequences: C4C4C4...

(solid green) for 4-cycle, and H3I3I3... (dashed magenta), H3H3X3...

(dotted blue), H3X3... (dot-dashed brown), for 3-cycle, for an arbi-
trary separable initial state with φ = π

2 .

t = 1, 3, 7, 9, 13, ... (proof of this periodicity is in SM Sec. II
[23]), whereas the sequence H4X4H4X4... gives recurrent
MESPS with period 4 at t = 1, 5, 9, ..., for 4-cycle.

Moving now to 3-cycle, the effective-single coin evolu-
tion sequence H3I3I3... yields periodic MESPS with period
6 at t = 1, 2, 7, 8..., but the sequence I3H3I3... renders or-
dered QWs without MESPS, whereas H3I3H3I3... renders
chaotic QW with MESPS at t = 1, 2, see Fig. 5 and SM
Sec. II [23]. However, exploiting the periodicity condition
for the H3I3I3... sequence does not yield a MESPS-generating
single-coin evolution sequence, unlike the case for I4H4I4...

sequence.
From Fig. 5 we also observe that the two-coin evolu-

tion sequences H3H3X3... and H3X3H3X3... generate recurrent
MESPS respectively at t = 1, 3, 4, 6, 10, ... (with period 9)
and t = 1, 5, 9, ... (with period 4) via the DTQW on the 3-
cycle. For proof of this periodicity and results on 5-cycle
yielding recurring MESPS via effective-single and two-coin
evolution sequences, see SM Sec. II [23].

Interestingly, by only employing HkHkXk ..., HkIkIk ..., and
HkXkHkXk ... on a (k = 3)-cycle one can obtain MESPS at
all time steps up to 10, whereas on a (k = 4)-cycle these
sequences give MESPS at all odd time steps t � 10, see Fig. 5
and SM Sec. II [23]. As these sequences also beget periodic
QWs, thus one obtains MESPS at larger time steps (t > 10)
as well. Moreover, on a (k = 5)-cycle, just the sequences
HkHkXk ... and HkIkIk ... generate MESPS at all time steps
t � 10, see SM Secs. II and III [23].

Cryptography protocol. Periodic MESPS generation via
our DTQW scheme can be exploited to design a quantum
cryptographic protocol [12,24]. Herein we put forth an ex-
ample with the single-coin evolution sequence H4H4H4... for
a 4-cycle (i.e., the Hadamard QW as shown in Fig. 4) to
perform a secure encryption-decryption of a message with the
following steps.

Step 1: Alice wants to send a message m ∈ {0, 1, 2, 3} to
Bob. Bob forms the public key as |ψpk〉 = A| jp〉|qc〉, where
A = (H4)5, | jp〉 with j ∈ {0, 1, 2, 3} and |qc〉 = cos( θ

2 )|0c〉 +
i sin( θ

2 )|1c〉, with θ ∈ [0, π ], φ = π
2 , respectively, the
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position and coin states of the quantum walker. As shown
in Fig. 4, (H4)4n+1 with n = 0, 1, 2... can generate MESPS
periodic in time, with (H4)8 = I8. Thus |ψpk〉 is a MESPS.
After generating this MESPS |ψpk〉, which acts as the public
key, Bob sends it to Alice.

Step 2 (Encryption): Alice encodes the mes-
sage via |ψ (m)〉 = (Tm ⊗ Ic)|ψpk〉, where Tm =∑3

i=0 |((i + m) mod 4)p〉〈ip|, akin to the shift operator
with Ic = I2, and sends it to Bob.

Step 3 (Decryption): Bob then decrypts the mes-
sage by operating W = (H4)3 from which he gets
|(( j + m) mod 4)p, qc〉. Bob reads m′ = ( j + m) mod 4
from the position ket, and from which he securely obtains
Alice’s message m.

The security of this MESPS-based cryptographic protocol,
i.e., resilience against any eavesdropper attack like man-in-
the-middle, intersept-and-resend, etc. [25], is described in SM
Sec. IV [23].

Conclusions. This Letter provides a scheme to generate
MESPS from separable initial quantum states via DTQWs
on k cycles with k ∈ {3, 4, 5, 8}, with just a single coin and
with both effective-single coin and two-coin evolution se-
quences. We established a general framework that predicts
coins yielding MESPS at time step t = 1 via QW on any k
cycle with single-coin evolution sequences from any arbitrary
initial separable state (with any φ value subject to certain con-
straints) [23]. A subset of the coins yields recurrent MESPS
on both 4- and 8-cycles. An analytical proof for periodic QW
which supports the recurrent generation of MESPS has been
established, and more than one MESPS can occur within the
period of the QW, see SM Secs. I and II [23].

In addition, we show that with a 4-cycle, effective-single
and two-coin evolution sequences (e.g., I4H4I4, H4H4X4...,
etc.) and single-coin evolution sequence C4C4C4... (obtained
from I4H4I4), individually yield recurrent MESPS, from the
initial separable state with φ = π

2 . Finally, with effective-
single and two-coin evolution sequences, we show recurrent

MESPS generation (with the same initial state) on 3- and 5-
cycles. In the 3-cycle case, the sequences H3I3I3..., H3H3X3...,

and H3X3H3X3... altogether give MESPS at all t � 10,
whereas in the 5-cycle case, with sequences H5H5X5... and
H5I5I5..., one can obtain MESPS at all t � 10. In SM Sec. III
[23], we summarize the evolution sequences to generate
MESPS at time steps up to 10 and beyond with the cyclic
graphs.

We have also outlined the steps to implement our scheme
in quantum cryptography. One can experimentally implement
our proposed scheme using linear optical elements such as
half-wave plates (HWPs), quarter-wave plates (QWPs), and
polarizing beam splitters (PBSs), along with a fast switch-
ing electro-optical modulator (EOM), wherein the photon’s
polarization degree of freedom encodes the coin state with
the position state is encoded into different time bins of the
photon [11,19]. Evaluating the entanglement entropy requires
postprocessing measurements like average polarizations of the
photon by proper arrangement of an HWP and QWP [19,26].

A comparison of our work with other relevant works
(DTQWs on 1D line) [3,4,16,21,27] can be found in SM
Sec. V [23]. Apart from opening an avenue for MESPS gen-
eration, our Letter significantly outperforms other schemes in
model simplicity and resource-saving architecture and peri-
odically yields MESPS at both small and large time steps.
We provide a PYTHON code for numerical experiments in SM
Sec. VI [23].

Our presented work significantly contributes towards
state-of-art controlled (maximal) entanglement generation
protocols, a fundamental resource in quantum comput-
ing, teleportation, and cryptography, and a prerequisite for
quantum-information-processing tasks.
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