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Comment on “Multiparty quantum mutual information: An alternative definition”
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We show that, contrary to the claim by Kumar [Phys. Rev. A 96, 012332 (2017)], the quantum dual total
correlation of an n-partite quantum state cannot be represented as the quantum relative entropy between n − 1
copies of the quantum state and the product of n different reduced quantum states for n � 3. Specifically, we
argue that the latter fails to yield a finite value for generalized n-partite Greenberger-Horne-Zeilinger states.
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In [1], a quantum version of the dual total correlation [2]
for an n-partite quantum state ρ was proposed as

In(ρ) ≡
n∑

k=1

S(ρk̄ ) − (n − 1)S(ρ), (1)

where S(τ ) = −tr(τ log2 τ ) is the von Neumann entropy of
τ and ρk̄ = trkρ denotes the (n − 1)-partite quantum state
obtained by taking the partial trace on the kth party of ρ. In
addition, it was claimed that Eq. (1) can be represented as

In(ρ) = Jn(ρ) ≡ S

(
ρ⊗(n−1)

∣∣∣∣
∣∣∣∣

n⊗
k=1

ρk̄

)
, (2)

where ρ⊗ j represents j copies of ρ and S(τ ||σ ) is the quantum
relative entropy of τ with respect to σ [3],

S(τ ||σ ) =
{

tr(τ log2 τ ) − tr(τ log2 σ ) if supp(τ ) ⊆ supp(σ )
∞ otherwise,

(3)
where the support of ω is the Hilbert space spanned by the
eigenstates of ω with nonzero eigenvalue [4].

It is well known that I2(ρ) can be represented as the
quantum relative entropy of a global quantum state ρ with
respect to the product of two local quantum states ρ1 and ρ2,
i.e., I2(ρ) = S(ρ||ρ1 ⊗ ρ2) [5]. We emphasize that the parties
between global and local quantum states must be properly
matched to avoid the infinity in Eq. (3). While supp(ρ) ⊆
supp(ρ1 ⊗ ρ2) is always met, supp(ρ) ⊆ supp(ρ2 ⊗ ρ1) is not
satisfied in general. It leads to a discrepancy between I2(ρ) =
S(ρ||ρ1 ⊗ ρ2) and J2(ρ) = S(ρ||ρ2 ⊗ ρ1). For instance, we
have I2(ρ) = 0 and J2(ρ) = ∞ for ρ = |ψ1〉〈ψ1| ⊗ |ψ2〉〈ψ2|
satisfying 〈ψ1|ψ2〉 = 0.

One can generalize this observation to the case of n � 3.
Looking into the order of the parties in ρ⊗(n−1) and

⊗n
k=1 ρk̄ ,

one immediately sees that they are mismatched for all n
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because the former and the latter start with the first and second
parties of ρ, respectively. Similar to the case of n = 2, if
we look into a product state ρ = ⊗n

k=1 |ψk〉〈ψk| satisfying
〈ψi|ψ j〉 = δi, j , we obtain In(ρ) = 0 and Jn(ρ) = ∞.

One may think that rearranging the parties of quantum
states can resolve the support condition problem. It is pos-
sible for n = 2 but impossible for n � 3. We show this by
investigating the case of ρ = |φ〉〈φ| with |φ〉 = √

p|0〉⊗n +√
1 − p|1〉⊗n. The state of |φ〉⊗(n−1) is represented by the

superposition of the basis states having the multiples of n,
i.e., {0, n, 2n, . . . , n(n − 1)}, copies of |1〉. On the other hand,
the eigenstates of

⊗n
k=1 ρk̄ have multiples of n − 1, i.e.,

{0, (n − 1), 2(n − 1), . . . , n(n − 1)}, copies of |1〉. As n and
n − 1 are coprimes, |φ〉⊗(n−1) is orthogonal to the eigenstates
of

⊗n
k=1 ρk̄ except for |0〉⊗n(n−1) and |1〉⊗n(n−1), which means

supp(ρ⊗(n−1)) 	⊆ supp(
⊗n

k=1 ρk̄ ) for n � 3. Importantly, the
observation just described remains valid even if we rearrange
the parties. Therefore, we have In(ρ) = −n[p log2 p + (1 −
p) log2(1 − p)] and Jn(ρ) = ∞ independent of the matching
structure between ρ⊗(n−1) and

⊗n
k=1 ρk̄ .

In [1], the equivalence between Eqs. (1) and (2), i.e.,
In(ρ) = Jn(ρ), was invoked in order to prove the non-
negativity and monotonicity of In(ρ) under a partial trace
and completely positive maps. In addition, the proof for
non-negativity was reproduced in [6]. Our counterexample
invalidates these proofs which rely on the facts that the relative
entropy is non-negative and nonincreasing under completely
positive and trace-preserving (CPTP) maps. Interestingly,
however, one can find alternative proofs for the non-negativity
and monotonicity in [7]. In Ref. [7], In(ρ) was proposed
as a quantum secrecy monotone and was shown to be non-
negative and nonincreasing under local CPTP maps, owing
to strong subadditivity of the conditional quantum mutual
entropy. Therefore, In(ρ) is a suitable monotonic measure of
multipartite correlations, while Jn(ρ) is not.
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