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We analyze the anisotropic Dicke model in the presence of a periodic drive and under a quasiperiodic drive.
The study of drive-induced phenomena in this experimentally accessible model is important since, although
it is simpler than full-fledged many-body quantum systems, it is still rich enough to exhibit many interesting
features. We show that under a quasiperiodic Fibonacci (Thue-Morse) drive, the system features a prethermal
plateau that increases as an exponential (stretched exponential) with the driving frequency before heating to an
infinite-temperature state. In contrast, when the model is periodically driven, the dynamics reaches a plateau
that is not followed by heating. In either case, the plateau value depends on the energy of the initial state and
on the parameters of the undriven Hamiltonian. Surprisingly, this value does not always approach the infinite-
temperature state monotonically as the frequency of the periodic drive decreases. We also show how the drive
modifies the quantum critical point and discuss open questions associated with the analysis of level statistics at
intermediate frequencies.
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I. INTRODUCTION

The idea of modifying the properties of a system with an
external drive has a long history with early examples including
the spin echo [1] and the Kapitza pendulum [2]. The drive can
induce chaos in systems with one degree of freedom, where
chaos is otherwise inaccessible, as in the kicked rotor [3] and
the Duffing oscillator [4]. It can lead to the emergence of
double wells [5,6], which have application to the generation
of Schrödinger cat states [7], and it can affect the critical
point of quantum phase transitions (QPTs) and excited-state
quantum phase transitions (ESQPTs) [8,9], as verified for the
Lipkin-Meshkov-Glick model [10,11].

In the case of quantum systems with many degrees of
freedom, there have been significant efforts in exploring the
use of external drives to achieve new phases of matter and new
physics phenomena not found at equilibrium. This interest is
in part due to experimental advances that have allowed, for ex-
ample, the observation of a discrete-time crystal [12], Floquet
prethermalization in dipolar spin chains [13] and in Bose-
Hubbard models [14], and Floquet topological insulators [15].
A problem faced by the use of external drives to engineer
Hamiltonians with desired properties is that the drive usually
heats the system to an infinite-temperature state [16,17]. Al-
ternatives that have been examined to suppress heating involve
the inclusion of strong disorder [18,19], high-frequency drive
[20], and spectrum fragmentation [21].

In this paper we focus on the Dicke model [22], which is a
many-body system with two degrees of freedom and therefore
bridges the gap between the two extremes mentioned above
of systems with one degree of freedom and systems with
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many interacting particles and many degrees of freedom. We
investigate how the Dicke model’s static and dynamical prop-
erties change when a periodic external drive or a quasiperiodic
drive is applied. Our analysis addresses modifications to the
quantum critical point; the regular-to-chaos transition; the on-
set of a prethermal plateau in the quench dynamics; how the
duration of this plateau depends on the driving frequency, the
energy of the initial state, and the parameters of the undriven
Hamiltonian; and whether the plateau is followed by heating
to an infinite-temperature state.

Introduced as a model of light-matter interaction to explain
the phenomenon of superradiance [23,24], the Dicke model
describes a system of N two-level atoms that collectively
interact with a single-mode bosonic field [22]. The model
can be experimentally realized with optical cavities [25–30],
trapped ions [31], and circuit quantum electrodynamics [32].
Depending on the Hamiltonian parameters and excitation en-
ergies, the undriven system can be in the regular or chaotic
regime [33–35], and in addition to the normal to superradiant
QPT [33,36–39], it also exhibits an ESQPT [40–48]. The
model has also been used in studies of quantum scars [49–52],
the onset of the correlation hole (ramp) [53], and
thermalization [54].

Under a periodic drive, the analysis of the Dicke model has
focused on the normal to the superradiant phase and chaos
[55–57]. We extend these studies to the anisotropic Dicke
model [35,39,45,58–61], which is a generalization to the case
of two independent light-matter couplings. This version of the
model is also experimentally accessible [62]. We show that
the normal phase is stretched under a high-frequency periodic
drive and, using the Magnus expansion [63], we establish a
modified condition for the normal-to-superradiant transition.

For the periodically driven system, we also investigate level
statistics and find that at intermediate frequencies, the results
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suggest regularity even when the undriven system is chaotic.
In contrast, the evolution of the average boson number [33]
and of the entanglement entropy [37,64] indicate a degree of
spreading in the Hilbert space that is at least equivalent to that
reached by the undriven system, which implies that the results
for level statistics may be an artifact. An intriguing element
to this picture is that for high-energy initial states, there is a
narrow range of intermediate frequencies for which the satu-
ration value of the average boson number becomes larger than
the infinite-temperature result. We believe that this is caused
by a lack of full ergodicity and that near equipartition only
happens for small driving frequencies.

The core of this paper is the comparison of the dynamics
of the anisotropic Dicke model under periodic and quasiperi-
odic drives, which show distinct behaviors. When periodically
driven, the average boson number and the entanglement en-
tropy saturate to a plateau that is not followed by heating
to the infinite-temperature state. The saturation value de-
pends on the frequency of the drive, the energy of the initial
state, and whether the undriven system is in the regular or
chaotic regime. The spreading of low-energy initial states at
intermediate to high frequencies is very restrained. In con-
trast, under a quasiperiodic drive modeled by the Thue-Morse
[65–70] (Fibonacci [70–73]) sequence, the model presents
a prethermal plateau that grows as a stretched exponential
(exponential) with the driving frequency and is later followed
by heating. This is similar to what was found for many-body
spin models, where the heating time was shown to grow ex-
ponentially with the driving frequency for the Fibonacci drive
protocol [71]. In contrast, under the Thue-Morse protocol, it
was found [69] that the heating time is shorter than exponen-
tial and longer than algebraic in the driving frequency.

The presence (absence) of the heating process for
quasiperiodic (periodic) drives is aligned with the discus-
sion in [74], where complete Hilbert-space ergodicity was
proven for systems under nonperiodic drives but discarded
for time-independent or time-periodic Hamiltonian dynamics.
Paradoxically, there are results that indicate prethermaliza-
tion followed by heating in periodically driven many-body
spin systems with short- and long-range interactions [75] and
in periodically driven arrays of coupled kicked rotors [76],
although it might be that these systems do not reach full
ergodicity in the sense presented in [74].

II. MODEL HAMILTONIAN

The Hamiltonian of the generalized Dicke model with
time-dependent couplings is given by

H(t ) = ωa†a + ω0Jz + g̃1(t )√
2 j

(a†J− + aJ+)

+ g̃2(t )√
2 j

(a†J+ + aJ−), (1)

where we have set h̄ = 1; a and a† are the annihilation and cre-
ation bosonic operators, respectively, with [a, a†] = 1; J±,z =∑2 j

i=1
1
2σ

(i)
±,z represent the angular momentum operators of a

pseudospin consisting of N = 2 j two-level atoms described
by Pauli matrices σ

(i)
±,z, which act on site i and satisfy the

relations [Jz, J±] = ±J± and [J+, J−] = 2Jz; ω is the mode

frequency of the bosonic field; ω0 is the level splitting of
the atoms; and the parameters g̃1(t ) and g̃2(t ) are the time-
dependent rotating and counterrotating interaction terms of
the light-matter coupling, respectively. For all of our numeri-
cal results, we set ω = ω0 = 1.

The Hilbert space is spanned by the basis states |Bn,m〉 =
{|n〉 ⊗ | j, m〉}, where |n〉 are the Fock states, a†a|n〉 =
n|n〉, and | j, m〉 are the eigenstates of J±,z with J±| j, m〉 =√

j( j + 1) − m(m ± 1)| j, m ± 1〉. To perform our numeri-
cal calculations, the Hilbert space of the bosonic modes
is truncated to a finite number nmax, which is large
enough to guarantee convergence, that is, by increasing
nmax one does not see qualitative changes in the calculated
quantities. The total truncated Hilbert-space dimension is
N = (N + 1)(nmax + 1).

The finite undriven system presents a precursor of a
second-order QPT from the normal to the superradiant phase
[44], which takes place in the thermodynamic limit (N →
∞), and presents a transition from the regular to the chaotic
regime [35] that depends on the coupling parameters and the
excitation energies. The point for the two transitions do not
necessarily coincide. In the absence of the counterrotating
term, when g̃2(t ) = 0 and g̃1(t ) = g1, the Hamiltonian (1)
describes the Tavis-Cummings model, which is regular for any
excitation energy.

The undriven Dicke model has two degrees of freedom. In
systems with few degrees of freedom and a properly defined
classical limit, such as the Dicke model, the notion of quan-
tum chaos is well established. It refers to properties of the
spectrum, level repulsion and rigidity, in particular, that signal
chaos in the classical limit, where the Lyapunov exponent is
positive and there is mixing. A parallel between the values of
the Lyapunov exponent and the degree of level repulsion for
the Dicke model with g1 = g2 can be found in [54], where it
is seen that classical and quantum chaos are evident for strong
interaction and large excitation energies. In the present paper,
we use the terms “quantum chaos” and “quantum ergodicity”
as synonyms.

In what follows, we investigate how the properties of the
generalized Dicke model change under a time-dependent peri-
odic drive (Sec. III) and under a quasiperiodic drive (Sec. IV).

III. PERIODIC DRIVE

The periodic driving protocol that we consider is

g̃i(t ) =gi + � sgn(sin ωdt ), (2)

where i = 1, 2 identifies the two coupling parameters, gi are
positive constants, � is the amplitude of the drive, sgn(·) is the
sign function, and ωd = 2π/T is the frequency of the drive.
The unitary operator over a cycle is constructed as

U (T ) = e−iHBT/2e−iHAT/2 ≡ e−iHF T , (3)

where

HA = H + V, HB = H − V,

H = ωa†a + ω0Jz+ g1√
2 j

(a†J− + aJ+)+ g2√
2 j

(a†J+ + aJ−),

V = �√
2 j

(a†J− + aJ+) + �√
2 j

(a†J+ + aJ−), (4)
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FIG. 1. Inverse participation ratio of the ground state of the effec-
tive Hamiltonian in Eq. (5) as a function of the coupling parameters
g1 and g2; � = 3 and T is indicated. The green solid line represents
the critical line for the QPT of the undriven case and the black dash-
dotted line is the modified critical line for the periodically driven
system; N = 10, nmax = 199, and ω = ω0 = 1.

and HF is the time-independent Floquet Hamiltonian.
The unitary operator can be decomposed as U (T ) =∑

ν e−iφν |ϕν〉〈ϕν |, where φν are the Floquet phases, εν =
mod(φν, 2π )/T are the quasienergies, and |ϕν〉 are the cor-
responding Floquet modes [77].

A. Quantum phase transition

We start our analysis with a discussion of how the quantum
critical point depends on the drive. The critical point for the
undriven system is given by g1 + g2 = √

ωω0 [35] and is
marked with a green solid line in Fig. 1. To see how this gets
modified by the periodic drive, we perform the Magnus ex-
pansion and obtain an effective Hamiltonian Heff up to second
order in ωd (see details in Appendix A 1):

Heff = ωa†a + ω0Jz + g1√
2 j

(a†J− + aJ+)

+ g2√
2 j

(a†J+ + aJ−) − T 2

12

(
− 4ω�2

N
J2

x

+ 2ω0�
2

N
(a† + a)2Jz + (g1 − g2)�2

N
√

N
[8(a† + a)JxJz

+ (a† − a)(a† + a)2(J+ − J−)]

)
. (5)

Taking the limit N → ∞ (see Appendix A), we arrive at a
modified condition for the normal-to-superradiant transition
that holds for T 2�2 < 1 and depends on the period and am-
plitude of the drive as

g2 ≈ χ̃
√

ωω0 − χg1, (6)

where

χ = 1 + δ

1 − δ
, χ̃ = 1 + δ̃

1 − δ

and

δ = T 2�2

3
, δ̃ = δ

2

(
ω

ω0
+ ω0

ω

)
.

The line determined by Eq. (6) is marked with a black
dash-dotted curve in Fig. 1. In comparison with the green line
for the undriven system, one sees that with proper choices
of the driving parameters T and �, the normal phase can
be extended. Figure 1 corresponds to the ground-state phase
diagram for the effective Hamiltonian Heff in Eq. (5). The
different shades of blue indicate the numerical value of the
inverse participation ratio

Igs =
∑
n,m

|cn,m|4

of the ground state |ψgs〉, where cn,m = 〈Bn,m|ψgs〉. This quan-
tity measures the level of delocalization of the ground state
with respect to the basis states. When the ground state co-
incides with a basis state, Igs = 1, while a very delocalized
ground state has Igs ∝ N−1. In Fig. 1, darker tones of blue
indicate more localization. The values of Igs are shown as
a function of the coupling parameters g1 and g2 for two
values of the driving period, namely, T = 0.15 [Fig. 1(a)]
and T = 0.2 [Fig. 1(b)]. The abrupt separation between dark
blue (normal phase) and light blue (superradiant phase) coin-
cides with the critical line (black dash-dotted line) obtained in
Eq. (6). The panels make it clear that as the period increases
(ωd decreases), the critical line appears at larger values of the
coupling parameters, which indicates that the normal phase
gets extended. One can then take advantage of the drive to
control the point of the transition from the normal to the
superradiant phase.

B. Level statistics

As mentioned above, the anisotropic Dicke model presents
regular and chaotic regimes that can be identified in the quan-
tum domain with the analysis of level statistics. Here we
investigate how the two regimes get affected by the presence
of the periodic drive. For this, we consider the ratio of consec-
utive levels, defined as [16,78]

rν = min(sν−1, sν )

max(sν−1, sν )
,

where sν = εν+1 − εν is the spacing between consecutive
quasienergies (or between consecutive eigenvalues in the case
of time-independent Hamiltonians). In the regular regime,
where the nearest-neighboring level spacing distribution is
Poissonian, the average level spacing ratio 〈r〉 ≈ 0.386. For
chaotic systems described by time-dependent Hamiltonians,
level statistics depend on the driving frequency. If the fre-
quency is high and H(t ) is well described by a chaotic static
effective Hamiltonian that is real and symmetric, thus ex-
hibiting time-reversal symmetry, the level spacing distribution
follows the Gaussian orthogonal ensemble (GOE) and 〈r〉 ≈
0.536. On the other hand, if the frequency is small and U (T )
is a symmetric unitary matrix, level statistics follow that of a
circular orthogonal ensemble (COE) and 〈r〉 ≈ 0.527 [16]. In
finite systems, the repulsion is slightly stronger for the GOE
than for the COE, but the results for both ensembles should
coincide in the thermodynamic limit [16].

For the undriven anisotropic Dicke model, chaos emerges
for large values of the coupling parameters g1 and g2, as
shown in the inset of Fig. 2(d). Lower and upper band en-
ergies, which are in the nonchaotic region, are discarded for
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FIG. 2. Average consecutive level spacing ratio 〈r〉 of the
anisotropic Dicke model as a function of (a) and (c) the driving
frequency and (b) and (d) the driving frequency rescaled by the
energy bandwidth of the undriven system for (a) and (b) g2 = 0.1
and (c) and (d) g2 = 1.0. We set g1 = 1.25, � = 1, and atom number
N = 10. Different bosonic cutoffs are used as indicated in the legend.
The inset in (d) shows 〈r〉 as a function of g1 and g2 for the undriven
model. We have set ω = ω0 = 1 for the data shown in all the panels.

the analysis of level statistics [45]. We use this figure as a
reference for our choices of g1 and g2 in the driven scenario.
The main panels in Fig. 2 display the average level spac-
ing ratio for the driven system using different values of the
bosonic cutoff nmax. The results are shown as a function of the
driving frequency in Figs. 2(a) and 2(c) and as a function of
the driving frequency rescaled by the energy bandwidth  of
the undriven system in Figs. 2(b) and 2(d). The purpose of the
rescaling is to check the convergence of the results. The solid
lines for the different values of nmax in Figs. 2(b) and 2(d) are
indeed close and, for large frequencies, they nearly coincide
with the curve for the effective Hamiltonian from Eq. (5)
(dashed line), the agreement being excellent for the largest
value of nmax = 199. Notice that our Heff depends on the
value of T , which contrasts with similar plots from previous
studies, where the effective Hamiltonian used was obtained
to zeroth order of the Magnus expansion [16]. However, even
when higher orders of the Magnus expansion are used, we
naturally do not expect coincidence with the results for the
driven system when ωd is small.

For the chosen coupling parameters in Figs. 2(a) and 2(b),
the undriven system is regular, while in Figs. 2(c) and 2(d)
it is chaotic. This explains why, at high frequencies, 〈r〉
in Figs. 2(a) and 2(b) reaches Poisson values, while 〈r〉 in
Figs. 2(c) and 2(d) reaches GOE values. The saturation at
the GOE value for large ωd is more evident for the largest
nmax. At low frequencies, the effective Hamiltonian ceases to
be valid and the system becomes chaotic, independently of the
regime of the undriven case. In this case, 〈r〉 should approach
the COE value.

This last paragraph in this section is dedicated to a possible
explanation of what happens at the intermediate frequencies
in Figs. 2(c) and 2(d), where one sees a significant dip in the
values of 〈r〉. This may not be caused by a transition to a
regular regime and may instead be an artifact of the process
of folding the quasienergies to the principal Floquet zone
[−ωd/2, ωd/2]. We discuss why we suspect this might be the

FIG. 3. (a) and (b) Average boson number Nav(t ) and (c) and
(d) von Neumann entanglement entropy S(t ) as a function of the
stroboscopic time tn = nT for the periodically driven anisotropic
Dicke model for (a) and (c) low-energy initial states, so that 〈Ein〉 =
3.48, and (b) and (d) high-energy initial states, so that 〈Ein〉 = 76.8.
The parameters g1 = 1.25 and g2 = 1.0 guarantee chaos in the ab-
sence of a drive. The driving frequencies are indicated; the gray
line represents the evolution under the effective time-independent
Hamiltonian in Eq. (5) and the black dashed indicates the results
for the infinite-temperature state. For all plots the driving amplitude
� = 1.0, N = 10, nmax = 199, and ω = ω0 = 1. The time t is in
units of ω−1

0 .

case, but a final answer requires the analysis of the system in
the classical limit. As noticed in [16] and clearly explained
in [79], at intermediate frequencies, some of the quasiener-
gies lie outside the principal Floquet zone and need to be
folded back. In this process, the folded quasienergies may
not repel the energies originally inside the zone, resulting in a
reduced value of 〈r〉. This contrasts with the case of a driving
frequency larger than the many-body bandwidth (ωd � ),
where the reconstruction of the spectrum of quasienergies is
not required and the picture is analogous to that of a time-
independent GOE Hamiltonian. It also contrasts with the case
of low frequency, where the majority of the quasienergies
need to be folded back and one reaches the scenario of COE
statistics. It indicates, however, that instead of a small dip
suggesting a mixed scenario with some levels still repelling
each other, as seen in [16,79], our results for 〈r〉 reach Poisson
values and the dip does not diminish as nmax increases. We
attribute this result to the strong asymmetric shape of the
density of states. It may be that at intermediate frequencies,
the folded levels affect the states at high excitation energies,
for which the GOE statistics used to hold, while the states
at lower energies, which are not chaotic, do not get affected.
Our speculation finds support in the quantum dynamics de-
scribed in the next section, where despite the Poisson values
associated with 〈r〉, the quantum evolution suggests spreading
of the initial state at least comparable to what happens to the
chaotic undriven Hamiltonian. However, we direct attention
to the puzzling results in Figs. 3(b) and 7.

C. Dynamics and dependence on the initial state

To study the dynamics, we consider the average boson
number, defined as

Nav(t ) = 〈�(t )|a†a|�(t )〉, (7)
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and the von Neumann entanglement entropy between the spins
and bosons

S(t ) = −Tr{ρspins(t ) ln[ρspins(t )]}, (8)

where ρspins(t ) = Trbosons[ρ(t )] is the reduced density matrix
of the spins obtained by tracing over the bosonic degrees
of freedom. One expects generic driven systems to heat up
and reach an infinite-temperature-like state with ρ∞ = I/N ,
where I is the identity matrix and N is the Hilbert-space di-
mension. The infinite-temperature value of the average boson
number for the Dicke model corresponds to

N∞
av = Tr

(
ρ∞

bosonsa
†a

) = nmax/2,

where ρ∞
bosons = Trspins(ρ∞), and the entanglement entropy

saturates to the Page value [80], given by

SPage = ln(N + 1) − N + 1

2(nmax + 1)
.

The Page value is derived for bounded systems, while the
Hilbert space of the bosonic subspace of the Dicke model is
unbounded. However, the truncation to nmax still provides a
meaningful result for the converged states. In what follows,
we set the atom number to N = 10 and the bosonic mode cut-
off at nmax = 199, which gives N∞

av ≈ 100 and SPage ≈ 2.37.
Our initial states are eigenstates of the decoupled Hamiltonian
[g̃(t ) = 0]. We average the data over 50 initial states.

In Fig. 3 we select coupling parameters corresponding to
the chaotic undriven model and analyze the evolution of Nav(t )
[Figs. 3(a) and 3(b)] and S(t ) [Figs. 3(c) and 3(d)] for initial
states with low [Figs. 3(a) and 3(c)] and high [Figs. 3(b)
and 3(d)] energies and for various choices of the driving
frequency. The results are compared with the dynamics for the
time-independent effective Hamiltonian in Eq. (5) (indicated
as ωd = ∞ in the figure) and with the result for the infinite-
temperature state (black dashed line).

In Figs. 3(a) and 3(c), where the initial states have low
energy, as the driving frequency decreases and level statistics
move from GOE to COE, the saturation values for Nav(t ) and
S(t ) increase monotonically, going from agreement with the
result for the chaotic effective Hamiltonian to agreement with
the infinite-temperature state. Nothing in the figure suggests
any special feature for intermediate frequencies that would
justify associating the dip for 〈r〉 seen in Fig. 2 with an en-
hancement of regular behavior. Below, after some additional
discussion about the low-energy initial states, we investigate
what happens when the initial states have high energies. In
this case, a nonmonotonic behavior with ωd emerges, but only
for the saturation values for Nav(t ) and in a very narrow range
of intermediate values of the driving frequency.

For high and intermediate driving frequencies, where Heff

approximately describes the system, the saturation values for
Nav(t ) and S(t ) found in Figs. 3(a) and 3(c) decrease if we
decrease the value of g2 (see Fig. 6 in Appendix B). This is
expected, because decreasing g2 brings the effective Hamil-
tonian closer to the regular regime. The limited spread in the
Hilbert space of the low-energy states seen in Figs. 3(a) and
3(c), despite the drive and the chaoticity of Heff, evokes the
discussion in Ref. [81], where long-lived prethermal plateaus
were observed for driven many-body spin chains under peri-
odic drives at intermediate frequencies. It is possible that the

spectrum of our model at low energies presents some special
feature, such as a commensurate structure, that the periodic
drive with intermediate frequencies cannot overcome. This is
a point that deserves further investigation.

Under the periodic drive, one can increase the saturation
values of the average boson number and the entanglement
entropy by increasing the energies of the initial states, as seen
in Figs. 3(b) and 3(d). Notice that the scale in the y axis of
these panels is not the same as in Figs. 3(a) and 3(c). For
high-energy initial states, as seen in Fig. 3(d), the saturation
values of S(t ) become close to the infinite-temperature
state not only for low frequencies, but also for a range of
intermediate frequencies. The results for the average boson
number are however intriguing. Contrary to what we see
for the entropy, the saturation value of Nav(t ) does not
increase monotonically to the infinite-temperature result
as we decrease ωd. Instead, for ωd � 20, we observe that
N sat

av > N∞
av (see results for N sat

av vs ωd and for Ssat vs ωd

for different values of the initial state energy in Fig. 7 of
Appendix B). The overshooting suggests lack of equipartition
and predominant contributions from states with large average
boson number. This means that for all driving frequencies
ωd � 5, even when N sat

av crosses N∞
av , there is no ergodicity, as

supported by the saturating values of the entropy, which for
this range of driving frequencies give Ssat < S∞.

The results in Figs. 3 and 6 are in stark contrast to what
we observe for the quasiperiodic drive, where after a transient
time, heating does take place. As we show in the next section,
even for intermediate to high frequencies and small g2, the
quasiperiodic drive is capable of bringing the system to the
infinite-temperature state after prethermalization. In Fig. 3,
no matter how far in time we go, we never see Nav(t ) and
S(t ) getting away from their plateaus towards the infinite-
temperature results. The periodically driven Dicke model with
intermediate to high frequencies is thus well protected against
heating, especially when it is prepared in a low-energy state.

IV. QUASIPERIODIC DRIVE

We now consider the case where the time-dependent drive
is quasiperiodic, consisting of either Thue-Morse or Fibonacci
sequences. The Thue-Morse sequence [65–70] is constructed
with unitary operators U± = exp(−iH±T ), so it starts with
U1 = U−U+ and is followed by Ũ1 = U+U−. Next, U2 =
Ũ1U1 is followed by Ũ2 = U1Ũ1 and so on successively. One
can recursively construct the driving unit cells of time length
2nT as Un+1 = ŨnUn. The Fibonacci sequence [71–73] is
constructed using the recursive relation Un = Un−2Un−1

for n � 2, where the initial unitary operators are U0 =
exp(−iH+T ) and U1 = exp(−iH−T ). We discuss the case of
the Thue-Morse drive in this section and present the analysis
of the Fibonacci drive in Appendix C. The results for both
cases are similar, but the dependence of the heating time on
the driving frequency is different.

In Fig. 4 we consider low-energy initial states and the
Thue-Morse driving sequence. We show the dynamics of the
average boson number [Figs. 4(a) and 4(b)] and the entan-
glement entropy [Figs. 4(c) and 4(d)] for a fixed intermediate
value of the driving frequency ωd and various values of the
coupling parameter g2 [Figs. 4(a) and 4(c)] and for a fixed g2
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FIG. 4. (a) and (b) Average boson number Nav(t ) and (c) and
(d) von Neumann entanglement entropy S(t ) as a function of time
tn = 2nT for the anisotropic Dicke model under the Thue-Morse
quasiperiodic drive. The initial states have low energies, so 〈Ein〉 =
3.48. (a) and (c) Intermediate driving frequency ωd = 100, g1 =
1.25, and various values of g2. (b) and (d) Parameters g1 = 0.7 and
g2 = 0.5 (which are parameters that ensure chaos for the undriven
system) and various values of ωd . The inset in (d) shows the scaling
of the heating time τ ∗ with ωd; numerical data are in blue and
the best fitting, given by log τ ∗ = 1.4

√
ωd − 4.24, is in red. In all

panels, the driving amplitude is � = 1.0, N = 10, nmax = 199, and
ω = ω0 = 1. The time t is in units of ω−1

0 . The dashed line represents
the Page value, the black solid line is for the prethermal value, and the
dash-dotted line represents the value when the entanglement entropy
reaches the halfway mark between its prethermal plateau and the
Page value.

associated with the chaotic undriven model and various values
of ωd [Figs. 4(b) and 4(d)]. All panels exhibit a prethermal
plateau followed by a saturation to the infinite-temperature
state, which contrasts with the results in Figs. 3(a) and 3(c).
The quasiperiodic drive breaks regularity and induces ergodic-
ity. It causes all cases considered with intermediate frequency
and coupling parameters from the regular to the chaotic
regime to heat up to an infinite temperature.

The prethermal plateau gets longer in time if one increases
the driving frequency or brings the coupling parameters closer
to the regular regime. To quantify the dependence of the
prethermal plateau on the driving frequency, we study the
heating time τ ∗, which is defined as the time when the en-
tanglement entropy reaches the halfway mark between its
prethermal plateau and the Page value [21] S(τ ∗) ≡ Sp +
(SPage − Sp)/2. The inset in Fig. 4(d) shows that for the Thue-
Morse drive protocol, the heating time τ ∗ grows as a stretched
exponential with ωd, the best-fitting curve corresponding to
log τ ∗ = 1.55

√
ωd − 0.695. In Appendix C we show that for

the Fibonacci drive protocol, the heating time grows exponen-
tially with the driving frequency as log τ ∗ = 0.125ωd − 0.39.

In Fig. 5 we extend the analysis done in Fig. 4 and investi-
gate how our results are affected by the rise of the energies of
the initial states. In Figs. 5(a) and 5(b) we plot the evolution of
the entanglement entropy for two sets of initial states with dif-
ferent energies given by 〈Ein〉 = 3.48 and 22.2, respectively.
As the energy increases, the prethermal plateau happens at
higher values and the heating time decreases. To check the
energy dependence on the heating time, we plot τ ∗ as a func-

FIG. 5. Entanglement entropy as a function of the sequential
time tn = 2nT for the anisotropic Dicke model under the Thue-Morse
quasiperiodic drive for g1 = 0.7 and g2 = 0.5. Results are averaged
over 50 initial states with (a) low energy 〈Ein〉 = 3.48 and (b) high
energy 〈Ein〉 = 22.2. (c) Heating time as a function of 〈Ein〉 for a
fixed driving frequency ωd = 200; the time scales as τ ∗ = (1.99 ×
108)E−2.29

in . The driving amplitude is � = 1.0, N = 10, nmax = 199,
and ω = ω0 = 1. The time t is in units of ω−1

0 .

tion of 〈Ein〉 in Fig. 5(c). We verify that for the Thue-Morse
drive protocol, τ ∗ decays as E−2.29

in . In Appendix C we show
that for the Fibonacci drive protocol, τ ∗ decays as E−4.03

in .
In Appendix D we present additional figures to demon-

strate that our results for the Thue-Morse drive protocol are
general. In Fig. 10 we show that the results obtained here for
ω = ω0 are similar to the results obtained when ω = ω0. In
Fig. 11 we provide results for the dynamics of the von Neu-
mann entanglement entropy for different values of N and show
that they are analogous to those seen Fig. 4(d) for N = 10.

V. CONCLUSION AND DISCUSSION

We studied the effects that a periodic drive and a quasiperi-
odic drive have on the anisotropic Dicke model. While we
have verified that some of the results are similar to those
for the driven isotropic Dicke model (not shown), this work
focused on the more general anisotropic Dicke model. We list
below our four main findings.

(i) Using a periodic drive and the high-frequency Mag-
nus expansion, we provided a modified condition for the
normal-to-superradiant QPT. By properly choosing the driv-
ing frequency, one can extend the normal phase.

(ii) We argued that the results for level statistics suggesting
regularity for the periodically driven system under interme-
diate frequencies may be an artifact caused by the folding
procedure of the quasienergies back to the principal Floquet
zone and the highly asymmetric shape of the density of states.

(iii) Under the periodic drive, the system saturates to a
steady-state value that is not followed by heating to the
infinite-temperature state. The saturation values depend on the
energy of the initial state, the frequency of the drive, and the
parameters of the undriven Hamiltonian. To reach saturation
values that indicate near ergodicity, small driving frequencies

063716-6



PERIODICALLY AND QUASIPERIODICALLY DRIVEN … PHYSICAL REVIEW A 108, 063716 (2023)

are required. Therefore, the nonmonotonic behavior of the
saturation values of the average boson number observed for
intermediate driving frequencies imply that these frequencies
are still not small enough to ensure equipartition.

(iv) For the quasiperiodic drives, prethermalization is fol-
lowed by heating, ensuring full ergodicity. The heating time
τ ∗ for the Fibonacci protocol grows exponentially with the
driving frequency (τ ∗ ∝ eωd ), while for the Thue-Morse pro-
tocol the growth follows a stretched exponential (τ ∗ ∝ e

√
ωd ).

In both cases, the heating time decreases as the energy of the
initial state increases.

Overall, our work shows that the (anisotropic) Dicke model
exhibits properties of genuinely many-body quantum systems
that could be experimentally explored. The absence of heating
for the periodic drive and the long prethermal plateaus for
the quasiperiodic drives, for example, provide scenarios under
which nonequilibrium phases of matter could be hosted.

An interesting question opened up by our results is how
a finite prethermal plateau followed by heating emerges as
the drive goes from periodic to quasiperiodic. To answer this
question, one would need to design a driving protocol that in-
terpolates between the two kinds of drives. A continuous drive
of the form f (t ) = β cos(ωdt ) + (1 − β ) cos(αωdt ) with ir-
rational α could help to address this question. It would then
also be interesting to see how the heating time depends on the
parameter β. We look forward to exploring this question.
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APPENDIX A: PERIODIC DRIVE

We derive in Appendix A 1 the analytical expression of the
effective Hamiltonian for the periodically driven anisotropic
Dicke model using the high-frequency Floquet-Magnus ex-
pansion. In Appendix A 2 we derive the modified equation for
the critical line of the QPT due to the periodic drive.

1. Derivation of the effective Hamiltonian

We first recall the system Hamiltonian in Eq. (1). The pro-
tocol of the square wave periodic drive applied to the system is

g̃i(t ) = gi + �, 0 < t � T

2
,

g̃i(t ) = gi − �,
T

2
< t � T .

This means that the system is periodically driven by a
repeated two-step sequence that alternates between the

time-independent Hamiltonians H + V and H − V (discussed
in the main text). The duration of each step is T/2, where
T = 2π/ωd is the period of the driving sequence. The
evolution operator at time t = nT is

U (t = nT ) = (
e−iT (H−V )/2e−iT (H+V )/2

)n
. (A1)

Using the Magnus expansion and small T , we search
for a time-independent effective Hamiltonian Heff that
approximately describes the evolution as

U (t = nT ) ≈ e−inT Heff . (A2)

Since the driving protocol involves time-independent
Hamiltonians, the Magnus expansion coincides with the
Baker-Campbell-Hausdorff expansion, where the product of
two exponentials can be simplified to

eX eY = e{X+Y +(1/2)[X,Y ]+(1/12)[X−Y,[X,Y ]]+··· }. (A3)

If we let

X = 1
2 (H − V ), Y = 1

2 (H + V ), (A4)

then

X + Y = H, X − Y = −V, (A5)

[X,Y ] = 1
4 [H − V, H + V ] = 1

2 [H,V ], (A6)

and

Heff = H + T

2i
[X,Y ] − T 2

12
[[X,Y ],V ] + · · · . (A7)

After some calculation, we have

[X,Y ] = ω�√
N

(a† − a)Jx + ω0�√
N

(a† + a)iJy

+ (g1 − g2)�√
N

[2iJxJy − (a† − a)(a† + a)Jz] (A8)

and

[X − Y, [X,Y ]] = [[X,Y ],V ]

= −4ω�2

N
J2

x + 2ω0�
2

N
(a† + a)(a† + a)Jz

+ (g1 − g2)�2

N
√

N
[8(a† + a)JxJz

+ (a† − a)(a† + a
2
)(J+ − J−)]. (A9)

The first-order term T
2i [X,Y ] = −i T

4 [H,V ] is imaginary,
which breaks the time-reversal symmetry [82]. Hence we
discard the first-order term and consider the second-order
correction shown above, which leads to

Heff = ωa†a + ω0Jz + g1√
N

(a†J− + aJ+) + g2√
N

(a†J+ + aJ−)

− T 2

12

(
−4ω�2

N
J2

x + 2ω0�
2

N
(a† + a)

× (a† + a)Jz + (g1 − g2)�2

N
√

N
[8(a† + a)JxJz

+ (a† − a)(a† + a)2(J+ − J−)]

)
. (A10)
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2. Critical line of the quantum phase transition
of the driven system

To find the critical line, we first apply the Holstein-
Primakoff transformation [33] to the effective Hamiltonian in
Eq. (A10),

J+ = b†
√

2 j − b†b, J− =
√

2 j − b†bb, Jz = b†b − j.

(A11)

In the thermodynamic limit (when the atom number N → ∞),
we have

Heff = ωa†a + ω0b†b + g1(a†b + ab†) + g2(a†b† + ab)

+ T 2ω�2

12
[(b†)2 + b2] + T 2ω�2

6
b†b

+ T 2ω0�
2

6N

N

2
[(a†)2 + a2 + 2a†a + 1]

− T 2ω0�
2

6N
[(a†)2 + a2](b†b) − T 2ω0A2

6N
2(a†a)(b†b)

− T 2ω0�
2

6N
b†b + T 2g�2

3N

N

2
(a + a†)(b + b†)

− T 2g�2

3N
(a + a†)(b + b†)b†b. (A12)

We now consider only up to second-order terms in the bosonic
operators, which means that we neglect the last term of the
Hamiltonian in Eq. (A10). Introducing the position and mo-
mentum operators for the two bosonic modes as

x = 1√
2ω

(a† + a), px = i

√
ω

2
(a† − a),

y = 1√
2ω0

(b† + b), py = i

√
ω0

2
(b† − b), (A13)

we have

Heff =
(

1 + T 2�2ω0

6ω

)
1

2

(
ω2x2 + p2

x − ω
)

+
(

1 + T 2�2ω

6ω0
+ T 2�2

6N

)
1

2

(
ω2

0y2 + p2
y − ω0

)

+ g1

(√
ωω0xy + px py√

ωω0

)
+ g2

(√
ωω0xy − px py√

ωω0

)

+ T 2�2ω

12

(
ω0y2 − p2

y

ω0

)

+ T 2�2ω0

12

(
ωx2 − p2

x

ω

)
+ T 2�2ω0

12N

(
ωx2 − p2

x

ω

)

+ T 2�2ω0

12N

(
ωx2 + p2

x

ω
+ ω0y2 + p2

y

ω0

)

+ T 2�2g

3

√
ωω0xy + T 2�2g

3N

√
ωω0xy. (A14)

To find the critical line for the QPT, we just need to resort to
the position part of the equation, which is given by

Hx̃,ỹ
eff = 1

2

(
x̃2 + ỹ2 + 2γ

αβ
√

ωω0
x̃ỹ

)
, (A15)

where x̃ = ωαx, ỹ = ω0βy,

α2 =
(

1 + T 2�2ω0

3ω
+ T 2�2ω0

3Nω

)
,

β2 =
(

1 + T 2�2ω

3ω0

)
,

γ =
(

g1 + g2 + T 2�2g

3
+ T 2�2g

3N

)
.

Introducing normal coordinates

q+ = x̃ + ỹ√
2

, q− = x̃ − ỹ√
2

, (A16)

we have

Hq+,q−
eff = 1

2

(
(q2

+ + q2
−) + γ

αβ
√

ωω0
(q2

+ − q2
−)

)

= 1

2

[(
1 + γ

αβ
√

ωω0

)
q2

+ +
(

1 − γ

αβ
√

ωω0

)
q2

−

]
.

(A17)

From the equation of motion for q−, which is q̈− = −(1 −
γ

αβ
√

ωω0
)q−, one gets the equation of the critical line for the

QPT in the g1-g2 plane,

1 − γ

αβ
√

ωω0
= 0. (A18)

Introducing the notation δ = T 2�2

3 , we have

g1 + g2 =
(

1 + δω

2ω0
+ δω0

2ω
+ δω0

2Nω

)√
ωω0

− δg − δg

N
, (A19)

where g = g1 − g2 and we have not considered the other
higher-order terms as δ � 1. In the thermodynamic limit
(N → ∞), we finally obtain

g1 + g2 =
(

1 + δω

2ω0
+ δω0

2ω

)√
ωω0 − δg (A20)

or

(1 + δ)g1 + (1 − δ)g2 =
[

1 + δ

2

(
ω

ω0
+ ω0

ω

)]√
ωω0

(A21)

and hence

g2 =
(

1 + δ̃

1 − δ

)√
ωω0 −

(
1 + δ

1 − δ

)
g1, (A22)

where δ̃ = δ
2 ( ω

ω0
+ ω0

ω
). Thus we can write

g2 = χ̃
√

ωω0 − χg1, (A23)

where χ = ( 1+δ
1−δ

) and χ̃ = ( 1+δ̃
1−δ

).
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FIG. 6. (a) Average boson number Nav(t ) and (b) von Neumann
entanglement entropy S(t ) as a function of the stroboscopic time tn =
nT for the periodically driven anisotropic Dicke model. The initial
states have low energies, so 〈Ein〉 = 3.48, as in Figs. 3(a) and 3(b).
The driving frequency is fixed at an intermediate value ωd = 50 and
various values of g2 are considered, as indicated. The black dashed
line indicates the results for the infinite-temperature state. For both
panels, g1 = 1.25, the driving amplitude is � = 1.0, N = 10, nmax =
199, and ω = ω0 = 1. The time t is in units of ω−1

0 .

APPENDIX B: PERIODIC DRIVE

This Appendix extends the results presented in Fig. 3 of the
main text.

1. Dependence on the coupling parameters

To complement Figs. 3(a) and 3(c) of the main text and
support the discussion made there about the dependence of the
saturation values of Nav(t ) and S(t ) on the coupling parame-
ters, we show in Fig. 6 the evolution of the average boson
number [Fig. 6(a)] and the entanglement entropy [Fig. 6(b)]

FIG. 7. Saturation value of (a)–(c) the average boson number and
(d)–(f) the von Neumann entanglement entropy between spins and
bosons as a function of the driving frequency. The black dashed line
indicates the infinite-temperature result. We set g1 = 1.25, g2 = 1.0,
� = 1, atom number N = 10, bosonic cutoff nmax = 199, and ω =
ω0 = 1.

FIG. 8. (a) and (b) Average boson number Nav(t ) and (c) and
(d) von Neumann entanglement entropy S(t ) as a function of time
tn = tn−1 + tn−2 for the anisotropic Dicke model under the Fibonacci
quasiperiodic drive. The initial states have low energies, so 〈Ein〉 =
3.48. (a) and (c) Intermediate driving frequency ωd = 100, g1 =
1.25, and various values of g2. (b) and (d) Parameters g1 = 0.7
and g2 = 0.5 for a chaotic undriven system and various values ωd.
The inset in (d) shows the scaling of the heating time τ ∗ with ωd;
numerical data are in blue and the best fitting, given by log τ ∗ =
0.125ωd − 0.39, is in red. In all panels, the driving amplitude is
� = 1, N = 10, nmax = 199, and ω = ω0 = 1. The time t is in units
of ω−1

0 . In this figure the dashed line represents the Page value,
the black solid line is for the prethermal value, and the dash-dotted
line represents the value when the entanglement entropy reaches the
halfway mark between its prethermal plateau and the Page value.

for low-energy initial states and a fixed intermediate value
of the driving frequency ωd. Various values of the coupling
parameter g2 are considered, so the undriven Hamiltonian
goes from the regular to the chaotic regime.

As explained in the main text, for an intermediate fre-
quency and low-energy initial states, the periodic drive is

FIG. 9. Entanglement entropy as a function of sequential time
tn = tn−2 + tn−1 for the anisotropic Dicke model under the Fibonacci
quasiperiodic drive for g1 = 0.7 and g2 = 0.5. Results are aver-
aged over 50 initial states with (a) low energy 〈Ein〉 = 3.48 and
(b) high energy 〈Ein〉 = 22.2. (c) Heating energy as a function
of 〈Ein〉 for a fixed driving frequency ωd = 200, scaling as τ ∗ =
(1.8034 × 1013)Ein

−4.03. The driving amplitude is � = 1.0, N = 10,
nmax = 199, and ω = ω0 = 1. The time t is in units of ω−1

0 .
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FIG. 10. Off-resonance case for (a)–(d) ω0 = 1 and ω = ω0
4 and (e)–(h) ω0 = 1 and ω = 4ω0. (a), (b), (e), and (f) Average boson number

Nav(t ) and (c), (d), (g), and (h) von Neumann entanglement entropy S(t ) as a function of time tn = 2nT for the anisotropic Dicke model under
the Thue-Morse quasiperiodic drive, for N = 10 and nmax = 199. The initial states in all panels have low energies, so 〈Ein〉 = 3.48, and the
driving amplitude is � = 1.0. The values of ωd, g1, and g2 are indicated in the panels. (a), (c), (e), and (g) have intermediate driving frequencies
and (b), (d), (f), and (h) have parameters that ensure chaos for the undriven system. The insets in (d) and (h) show the scaling of the heating
time τ ∗ with ωd; numerical data are in blue and the best fitting, given by log τ ∗ = 0.86

√
ωd − 3.97, with log τ ∗ = 0.61

√
ωd − 1.83, is in red.

The time t is in units of ω−1
0 .

unable to bring Nav(t ) and S(t ) close to the results of the
infinite-temperature state, at least not for the very long times
that we studied. The saturation values of the two quantities are
always below N∞ and SPage and, as shown in Figs. 6(a) and
6(c), they further decrease as we decrease g2 and the undriven
model is brought closer to the regular regime.

2. Dependence on the initial-state energy

Figure 7 shows the saturation values of average boson num-
ber [Figs. 7(a)–7(c)] and of the von Neumann entanglement
entropy [Figs. 7(d)–7(f)] as a function of the driving frequency
for different values of the initial-state energy. While Ssat grows
monotonically towards the infinite-temperature result as ωd

decreases, the same does not happen for N sat
av when the energy

of the initial state is high. There is a very narrow range of
driving frequencies where N sat

av > N∞
av . This implies that the

value of the driving frequency is still not small enough to
ensure equipartition. As ωd decreases from ∞, the fact that
N sat

av crosses N∞
av , before becoming larger than it, is not caused

by ergodicity but by the significant number of states contribut-
ing to the dynamics, which have average boson number in the
vicinity of N∞

av .

APPENDIX C: FIBONACCI SEQUENCE

The results shown here for the Fibonacci quasiperiodic
drive are similar to those shown in Sec. IV for the Thue-
Morse quasiperiodic drive, with the difference that there τ ∗ ∝
exp(

√
ωd), while here τ ∗ ∝ exp(ωd). Figure 8 is equivalent to

Fig. 4, and Fig. 9 is equivalent to Fig. 5.
In Fig. 8 we consider low-energy initial states and the

Fibonacci driving sequence. We show the dynamics of the
average boson number [Figs. 8(a) and 8(b)] and the entan-
glement entropy [Figs. 8(c) and 8(d)] for a fixed intermediate

value of the driving frequency ωd and various values of cou-
pling parameter g2 [Figs. 8(a) and 8(c)] and for a fixed g2

associated with the chaotic undriven model and various values
of ωd [Figs. 8(b) and 8(d)]. All panels exhibit a prethermal
plateau followed by the saturation to the infinite-temperature
state. The prethermal plateau gets longer in time as we in-
crease the driving frequency or bring the coupling parameters
closer to the regular regime. The anisotropic Dicke model
under this quasiperiodic drive heats up exponentially slowly,
as shown in the inset of Fig. 4(d), where the heating time
grows with ωd as log τ ∗ = 0.125ωd − 0.39.

FIG. 11. The von Neumann entanglement entropy S(t ) as a func-
tion of time tn = 2nT for the anisotropic Dicke model under the
Thue-Morse quasiperiodic drive for the resonant case: ω0 = ω = 1
for a fixed bosonic cutoff nmax = 399 and a varying atom number
N ∈ [6, 20]. The time t is in units of ω−1

0 . The initial states have low
energies, so 〈Ein〉 = 3.48, and the driving amplitude is � = 1.0. The
other parameters are ωd = 100, g1 = 0.7, and g2 = 0.5.
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In Figs. 9(a) and 9(b) we compare the evolution of the
entanglement entropy for two different initial states energies
〈Ein〉 = 3.48 and 22.2, respectively. As the energy increases,
the prethermal plateau happens at higher values and the heat-
ing time decreases. To check the energy dependence on the
heating time, we plot τ ∗ as a function of 〈Ein〉 in Fig. 9(c) and
we verify that τ ∗ decays as E−4.03

in .

APPENDIX D: OFF-RESONANCE CASE (ω �= ω0)
AND FINITE-SIZE ANALYSIS

To complement the results presented in the main text for
ω = ω0 in Fig. 4 and to show that they are general, we
consider here the off-resonance case ω = ω0. We see that
our additional numerical results for the Thue-Morse sequence

using ω = ω0/4 in Figs. 10(a)–10(d) and using ω = 4ω0 in
Figs. 10(e)–10(h) are similar to the results for the resonant
case in Fig. 4. For all three cases, we observe a prethermal
plateau that gets longer in time as the driving frequency
increases and that is followed by saturation to the infinite-
temperature state.

In this Appendix we also show results for different values
of the atom number N . In the main text, we set N = 10 and
varied the bosonic cutoff nmax. Taking a larger value of the
atom number requires a larger bosonic cutoff nmax to ensure
convergence. In Fig. 11 we set nmax = 399 and increase N to
show the dynamics of the von Neumann entanglement entropy
under the Thue-Morse sequence. The behavior is analogous
to that shown in Fig. 4(d), now for different Hilbert-space
sizes.
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