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Nonreciprocal single-photon scattering in giant-spin-ensemble–waveguide magnonics
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We study nonreciprocal single-photon scattering in a giant-spin-ensemble (GSE)–waveguide magnonics
system where the GSE constructed by a yttrium iron garnet sphere interacts twice with the waveguide via
two separated coupling points. It is shown that the generation of nonreciprocity arises from the synergy of the
breaking of time-reversal symmetry induced by the chiral coupling and the intrinsic dissipation of the magnon
mode in the case of a single waveguide. The accumulated phase caused by the photon propagating between
coupling points can be a powerful tool to control nonreciprocity due to quantum interference effects. Compared
to the Markovian regime, single-photon transmission exhibits peculiarly nonreciprocal properties in the non-
Markovian regime. Multiple narrow nonreciprocal transmission windows are observed. Non-Markovianity can
break the decoupling phenomenon of the Markovian regime and non-Markovianity-induced nonreciprocity is
demonstrated. We extend the study of nonreciprocity to the GSE coupled to a double-waveguide structure to
explore the design of quantum devices. A high-efficiency and tunable multifrequency single-photon targeted
router and circulator with narrow operational bandwidth are achieved. Our results provide an effective avenue
for single-photon manipulation and have potential applications in designing magnon-based quantum devices and
constructing an integrated quantum network.
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I. INTRODUCTION

The waveguide quantum electrodynamics (QED) system
provides an excellent platform to study quantum light-matter
interactions and flexible manipulations of photons, which play
important roles in quantum information processing and quan-
tum networks [1]. Much theoretical and experimental progress
has been dedicated to implement the waveguide-QED system,
such as quantum dots or atoms coupled to photonic crystal
waveguides or optical fibers [2,3] and superconducting qubits
coupled to microwave transmission lines or resonator waveg-
uides [4–6]. With the further development of waveguide QED,
a new structure of the waveguide-emitter system was pro-
posed, where the quantum emitter cannot be seen as a single
point due to its size being comparable to or even greater than
the wavelength of the waveguide modes. The dipole approxi-
mation is violated in such a situation. The atom is designed
to interact with the waveguide mode via multiple points,
which is the so-called giant atom, and has been experimentally
demonstrated by coupling artificial superconducting qubits
to bosonic modes (acoustic waves [7] or microwaves [8,9])
propagating in the waveguide. It has also been put forward that
the giant atom can be created in higher dimensions by using
ultracold atoms in dynamical state-dependent optical lattices
[10] and be constructed in a synthetic frequency dimension
[11]. Compared to a small atom system, the property of mul-
tiple coupling points of the giant atom can result in additional
quantum interference effects and non-Markovian dynamics,
which brings about a series of novel phenomena including
frequency-dependent relaxation rates and Lamb shifts [12],
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nonexponential decay [7,13,14], decoherence-free interaction
[15–17], single-photon manipulation [18–21], bound states
[22–24], collective radiance [25], and entanglement or disen-
tanglement [26–28].

Recently, magnons, quanta of collective spin excitations,
have attracted substantial attention and become an indispens-
able block for interdisciplinary studies because of their unique
advantages of low dissipation, long lifetime, and excellent
compatibility [29,30]. The coupling between magnons and
microwave cavity photons can reach the strong and even
ultrastrong regime through magnetic dipole interaction due
to the large spin density in the yttrium iron garnet (YIG)
sphere [31–33]. It has been demonstrated that magnons also
couple to other degrees of freedom, such as optical pho-
tons [34–36], superconducting qubits [37–39], and phonons
[40–43]. The delivery of coherent quantum information re-
quires the waveguide to provide a quantum channel for carrier
transport to realize remote control and integration. In the
microwave frequency regime, traveling photons in the mi-
crowave waveguide can strongly couple to the magnon mode
and the magnon mode can directly transfer energy or informa-
tion to the waveguide by emitting a traveling photon [44–47].
Magnon-qubit dissipative coupling or magnon-cavity pho-
tons have been implemented and mediated via traveling
photons of the waveguide [48,49], providing a way for non-
Hermitian quantum dynamics of a hybrid magnon system.
In the optical frequency regime, magnon-optical photon cou-
pling and magnon-induced Brillouin scattering of light are
observed based on an optical fiber waveguide-ferromagnet
sphere system in which the YIG sphere supports two optical
whispering gallery modes (WGMs) and the magnon mode,
which is typically referred to as optomagnonics [34–36].
These achievements of waveguide magnonics promote the
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study in the fields of the coherent conversion of optical
and microwave photons [50–52], frequency combs [53–55],
the remote magnon Schrödinger cat state [56], and remote
magnon-magnon coupling or entanglement [57,58]. In addi-
tion, in analogy to the giant atom structure, the giant spin
ensemble (GSE) has been demonstrated in experiment [59].
The GSE is constructed by a YIG sphere that supports the
magnon mode and couples to traveling photons in a mi-
crowave waveguide at two well-separated coupling points.
The periodic coupling and decoupling between the GSE and
the waveguide can be realized. The collective behavior of
two GSEs in the nested configuration is observed and their
interaction can be modulated from purely coherent coupling
to dissipative coupling. Thereby, the waveguide magnonics
system is studied within the giant atom physics community.
In comparison to the previous scheme of the giant atom con-
structed through superconducting qubits [7–9], the experiment
of the GSE waveguide can be carried out at room temperature
rather than cryogenic temperature and the GSE is an easily
tunable system since the frequency of the magnon mode in a
YIG sphere has wide-range adjustability via the external mag-
netic field [59], which offers an ideal platform for quantum
information manipulation.

Chiral quantum optics provided a new route to control
on-chip single-photon transport, especially nonreciprocity.
Here the coupling strength between emitters and photons
depends on the propagation direction and the time-reversal
symmetry (TRS) of the system is broken. The chiral cou-
pling could emerge naturally in the waveguide QED when the
spin momentum locked light interacts with quantum emitters
with polarization-dependent dipole transitions [60]. This has
been used to control the directionality of the photon emis-
sion and realize quantum devices [61–67], e.g., single-photon
diodes, targeted routers, and circulators. Recently, chirality
has been introduced in giant atom physics [68–73] and chiral
bound states [74] have been proposed. Meanwhile, the hybrid
magnon-photon system has become a promising candidate for
exploring chiral quantum interactions. On the one hand, in
optomagnonics, the magnon mode unidirectionally couples
to the two optical modes, which is underpinned by differ-
ent selection rules for the two circulations of optical WGM
photons, and finally nonreciprocal or chiral optomagnonic
coupling is accomplished [34–36]. On the other hand, the chi-
ral magnon-microwave photon interaction can be completed
and modulated by tuning the positions of the magnetic (YIG)
spheres inside the cavity [75,76] or waveguide [46,47,77].
These works contribute to achieve the one-way control of
diverse physical phenomena and the development of magnon-
based quantum devices [78–85].

In this work, we propose a scheme to realize nonrecip-
rocal single-photon scattering in the GSE-waveguide system
where the magnon mode in the GSE can couple to the
waveguide with two separated coupling points. In the sce-
nario of a single waveguide, the generation of nonreciprocity
of single-photon transmission in two input directions re-
quires not only the breaking of TRS induced by the chiral
magnon-photon interaction but also the participation of the
non-Hermitian potential, i.e., the intrinsic dissipation of the
magnon mode. The dissipation-induced nonreciprocity [86]
is realized in our work, which is similar to the system of
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FIG. 1. (a) Schematic diagram of the GSE waveguide. A YIG
sphere, which is viewed as a GSE, is coupled to the waveguide
via two points with x1 and x2 set as x1 = 0 and x2 = x0. Here the
chiral magnon-photon coupling at two coupling points is consid-
ered. For simplicity, the two ports of the waveguide are labeled
1 and 2, respectively. (b) Uniform magnon excitation in the GSE
(YIG sphere).

emitters asymmetrically coupled to photonic lattice [87]. In
the Markovian regime, we obtain strong nonreciprocity in a
window which is characterized by the Lamb shift and the
effective decay rate. For the case that the GSE decouples to the
waveguide in the Markovian regime, the single-photon trans-
mission is always reciprocal. In the non-Markovian regime,
non-Markovianity can break the decoupling phenomenon and
produces strong nonreciprocity of multiple frequency points.
Thus, non-Markovianity-induced nonreciprocity is observed
[68,73]. For other cases, non-Markovianity can extend a
nonreciprocal window to multiple strongly nonreciprocal win-
dows; thus non-Markovianity can enhance nonreciprocity. In
the case of two waveguides, a multifrequency single-photon
targeted router and circulator with properties including high
efficiency, strong tunability, and narrow operational band-
width are implemented. Compared to the previous scheme
of the GSE waveguide [59], we extend it to chiral coupling,
the non-Markovian regime, and the GSE–double-waveguide
structure. We prove that it is completely possible to achieve
nonreciprocity, non-Markovian properties, and magnon-based
quantum devices in the GSE-waveguide system. Our results
may provide inspiration for integrating magnons in quantum
information.

II. NONRECIPROCAL SINGLE-PHOTON
TRANSMISSION BASED ON THE CHIRAL

GIANT-SPIN-ENSEMBLE–WAVEGUIDE SYSTEM

As intuitively displayed in Fig. 1, we consider a GSE-
waveguide system which has been experimentally realized
based on the YIG sphere interacting with the meandering
microwave microstrip waveguide [59]. The YIG sphere is
viewed as the GSE because it can be coupled to the waveguide
by two points with x1 = 0 and x2 = x0. We explore nonre-
ciprocity by applying chiral magnon-photon coupling at two
coupling points. The total Hamiltonian of the system can be
expressed as H = Hwg + Hm + Hint, in which Hwg, Hm, and
Hint are the Hamiltonian of the waveguide, the magnon mode
in the GSE, and the GSE-waveguide interaction, respectively.
They can be given by (h̄ = 1) [59,88,89]

Hwg = − ivg

∫
dx

(
C†

r (x)
∂

∂x
Cr (x) − C†

l (x)
∂

∂x
Cl (x)

)
, (1)
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Hm = (ωm − iγm)m†m, (2)

Hint =
∫

dx{δ(x)[grC
†
r (x)m + glC

†
l (x)m]

+ δ(x − x0)[grC
†
r (x)m + glC

†
l (x)m] + H.c.}. (3)

Here C†
r (x) [C†

l (x)] is creation operator of the right (left) prop-
agation photon in the waveguide, vg denotes group velocity
of the photon, m† is creation operator of the magnon mode,
and ωm and γm are the magnonic frequency and intrinsic
dissipation rate, respectively [59,90,91]. The magnon mode is
coupled to the right- or left-moving photon in the waveguide
with the coupling strength gr or gl . The Dirac functions δ(x)
and δ(x − x0) imply that the magnon-waveguide interactions
occur at x = 0 and x = x0, respectively. The eigenstate of the
system in single-excitation subspace can be written as

|�〉 =
∫

dx[�r (x)C†
r (x) + �l (x)C†

l (x)]|∅〉 + umm†|∅〉,
(4)

where |∅〉 is the vacuum, �r (x) [�l (x)] represents the wave
function of photon moving in the right (left) direction, and um

is the excitation amplitude of the magnon mode.
By solving the steady-state Schrödinger equation H |�〉 =

ω|�〉 based on Eqs. (1)–(4), we can obtain the equations

− ivg
∂

∂x
�r (x) + grum[δ(x) + δ(x − x0)] = ω�r (x), (5)

ivg
∂

∂x
�l (x) + glum[δ(x) + δ(x − x0)] = ω�l (x), (6)

(ωm − iγm)um + gr[�r (0) + �r (x0)]

+ gl [�l (0) + �l (x0)] = ωum, (7)

where ω is the frequency of a single photon and satisfies
the linear dispersion relation ω = kvg. When a single
photon with wave vector k is input from port 1 (P1) of the
waveguide, a single-photon wave function in the right or left
direction [88,89] �r (x) = eikx[�(−x) + A�(x)�(x0 −
x) + t1→2�(x − x0)] or �l (x) = e−ikx[t1→1�(−x) +
B�(x)�(x0 − x)], respectively, can be constructed. For
the case of single-photon input from port 2 (P2), they take the
forms �r (x) = eikx[t2→2�(x − x0) + Ã�(x)�(x0 − x)] and
�l (x) = e−ikx[�(x − x0) + B̃�(x)�(x0 − x) + t2→1�(−x)],
where �(x) is the Heaviside step function, with �(0) = 1

2 ,
�(x > 0) = 1, and �(x < 0) = 0; A and t1→2 denote the
transmission amplitudes in the regions 0 < x < x0 and
x > x0, respectively, for the case of photon input from P1;
and t1→1 and B are reflection amplitudes in the regions x < 0
and 0 < x < x0, respectively. For the case of a photon input
from P2, Ã and B̃ are defined as reflection and transmission
amplitudes, respectively, in the region of 0 < x < x0. In
addition, t2→1 and t2→2 are transmission and reflection
amplitudes in the regions of x < 0 and x > x0, respectively.
Substituting the above expressions of �r (x) and �l (x) into
Eqs. (5)–(7), the corresponding transmission amplitudes can
be obtained

t1→2 = 	̃ + i[
l (1 + eiθ ) − 
r (1 + e−iθ )]

	̃ + i(
l + 
r )(1 + eiθ )
, (8)

t2→1 = 	̃ + i[−
l (1 + e−iθ ) + 
r (1 + eiθ )]

	̃ + i(
l + 
r )(1 + eiθ )
. (9)

Here 	̃ = 	 + iγm with the detuning 	 = ω − ωm between
the magnon mode and incident photon, 
l/r = g2

l/r/vg is the
radiative damping rate of the magnon mode emitted into the
waveguide in the left or right direction, and θ = kx0 represents
the accumulated phase of the photon moving between two
coupling points. Through the expressions 	 = ω − ωm and
ω = kvg, the phase θ can be rewritten as θ = θ0 + τ	 with the
corresponding propagating time τ = x0/vg and the constant
part θ0 = ωmx0/vg. It is worth pointing out that the frequency
ωm of the magnon mode is linearly proportional to the external
magnetic field H , i.e., ωm = γ H , with γ /2π = 28 GHz/T
the gyromagnetic ratio [59]. Therefore, the phase θ0 can be
modulated flexibly by the external magnetic field. Further-
more, the experiment with the GSE waveguide can be carried
out at room temperature since the interaction of the magnon
mode in the GSE and the microwave photon mode in the
waveguide will not be affected by the thermal excitations even
at room temperature [59]. These demonstrate the superiority
of the GSE system. The distance of two coupling points x0

is also a mean to adjust the phase θ and it brings about the
variation of propagating time τ . When τ is small enough to
be safely ignored, the system is in the Markovian regime.
For the case of a large enough coupling distance x0 in which
time τ cannot be ignored, the system enters the so-called
non-Markovian regime. In the following, we will discuss non-
reciprocal single-photon transmission properties of the GSE-
waveguide system in both the Markovian and non-Markovian
regimes.

A. Markovian regime

In the Markovian regime, the propagating time τ satisfies
τ
l/r � 1 [7,13,14,59]; thus the term τ	 in the expression
of the phase θ can be safely neglected. Under this condi-
tion, the phase θ can be replaced by θ0. In order to study
the property of single-photon transmission, the transmission
probabilities of different input directions T1→2 = |t1→2|2 and
T2→1 = |t2→1|2 are introduced. Meanwhile, we define the iso-
lation depth I = |T1→2 − T2→1| to characterize nonreciprocity
of single-photon transmission. We consider the chiral GSE-
waveguide system where the magnon mode can be coupled
to a propagating photon with different strength for different
propagating directions, whose realization may be inspired by
previous chiral magnon-photon schemes [46,47,75–77,90,92]
and our proposed effective scheme of the chiral GSE waveg-
uide in Appendix B. The chiral coupling of the magnon
photon gl �= gr , i.e., 
l �= 
r , is considered and it further
causes the breaking of the TRS of the system, which will
bring about the generation of nonreciprocity. In our work,
we achieve the nonreciprocal single-photon scattering through
this chiral mechanism.

Figure 2 shows the nonreciprocal property of single-photon
transmission. We plot T1→2, T2→1, and I varying with 	 and
θ0 in Figs. 2(a)–2(c), respectively. Obviously, for different
input directions, single-photon transmission properties can be
different and have a strong dependence on the phase θ0, which
exhibits that the nonreciprocity is realized and it has strong
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FIG. 2. (a) Transmission probability T1→2 from port 1 to port 2, (b) transmission probability T2→1 from port 2 to port 1, and (c) isolation
depth I varying with 	 and θ0. (d)–(i) Plots of T1→2, T2→1, and I versus 	 for different values of θ0. The other parameters are 
l = 10
r and
γm = 11
r .

tunability. We find that the strength of nonreciprocity, i.e.,
isolation depth I , can reach a maximum for θ0 = ( 1

2 + ξ )π
(ξ is integer) and a minimum (I = 0) for θ0 = (2ξ + 1)π .
This is because the constructive interference between emis-
sions from two coupling points occurs when θ0 = ( 1

2 + ξ )π .
However, for θ0 = (2ξ + 1)π , the magnon mode is obscured
and decoupled to the waveguide due to the destructive in-
terference, which is consistent with the recent experiment
for the GSE waveguide [59]. In this situation T1→2 = 1 and
T2→1 = 1, so the transmission is always reciprocal. The peri-
odic interference could cause the GSE to couple and decouple
with the waveguide. Thus, the nonreciprocity of single-photon
transmission can be modulated periodically. In addition, the
phase θ0 can be used to regulate the frequency position of
the optimal nonreciprocity and the operational bandwidth of
the nonreciprocity, as shown in Figs. 2(d)–2(i). The phase-
dependent effective detuning 	eff = 	 − 	L and decay rate

eff = γm + (
l + 
r )(1 + cos θ0) can be obtained based on
Eq. (8) or (9). Here 	L = (
l + 
r ) sin θ0 is the Lamb shift
induced by the GSE. In addition, T1→2 and T2→1 reach a
minimum value at the effective resonance point 	 = 	L (i.e.,
	eff = 0), which brings about the maximum value of I and the
phase-modulated frequency position of optimal nonreciproc-
ity. The full width at half maximum is described by 
eff .
Thus, one can choose the appropriate value of θ0 to obtain the
desired operational bandwidth of the high level of isolation
depth single-photon transmission.

Furthermore, the physical mechanism of nonreciprocal
transmission can also be understood by the magnon excita-
tion for different input directions. The amplitudes of magnon
excitations um1→2 and um2→1 are obtained through solving
Eqs. (5)–(7), which corresponds to the situation of the photon

input from P1 and P2, respectively. They are represented as

um1→2 = gr (1 + eiθ )

	̃ + i(
l + 
r )(1 + eiθ )
, (10)

um2→1 = gle−iθ (1 + eiθ )

	̃ + i(
l + 
r )(1 + eiθ )
. (11)

The magnon excitation spectrum can be defined as
[89] M1→2 = |um1→2|2/vg and M2→1 = |um2→1|2/vg. From
Figs. 3(a) and 3(b) we can observe that M1→2 is markedly
suppressed and M2→1 is greatly enhanced under the con-
dition of chiral coupling compared to nonchiral coupling.
This indicates the occurrence of nonreciprocal photon ab-
sorbtion based on chiral coupling. Therefore, single-photon
transmission spectra display the nonreciprocal characteristic
in two different input directions. Meanwhile, we define the
difference 	M = |M1→2 − M2→1| of the magnon excitation

0

0.01

-50 -25 0 25 50
0

0.15

0.3

-50 -25 0 25 50
0

0.2
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0.6

FIG. 3. Magnon excitation spectra M1→2 and M2→1 for different
input directions versus 	 when θ0 = π/2 for (a) nonchiral coupling

l = 
r and (b) chiral coupling 
l = 10
r . (c) Asymmetric magnon
responses 	M versus 	 for the different values of phase θ0. The other
parameters are the same as in Fig. 2.
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FIG. 4. (a) Isolation depth I varying with 	 and γm when
θ0 = π/2. (b) Maximum value Imax of the isolation depth versus θ0

with γm = (
l + 
r )(1 + cosθ0 ). The other parameters are the same
as in Fig. 2.

probabilities of two directions to describe the degree of asym-
metric magnon responses and it is plotted as a function of 	

for different values of θ0 in Fig. 3(c). The optimal frequency
position and linewidth of asymmetric magnon responses 	M

can be changed via the phase θ0, which allows us to regulate
the nonreciprocity of the system through θ0.

The intrinsic dissipation of the magnon mode plays an
important role in generating nonreciprocity in our scheme.
The isolation depth I varying with the detuning 	 and
the dissipation γm is exhibited in Fig. 4(a). For γm = 0,
I = 0. Thus, in the absence of dissipation, single-photon
transmission is reciprocal even in the chiral condition cor-
responding to TSR breaking. When the dissipation is taken
into account (γm �= 0), the nonreciprocity can be completed.
We can understand this phenomenon through comparing
Eqs. (8) and (9). The transmission probabilities T1→2 and
T2→1 have the same denominator and their numerators can be
rewritten as [	 − sin θ0(
r + 
l )]2 + [γm + (
l − 
r )(1 +
cos θ0)]2 and [	 − sin θ0(
r + 
l )]2 + [γm + (
r − 
l )(1 +
cos θ0)]2, respectively. This clearly shows that the nonre-
ciprocity arises from the dissipation γm and the chiral coupling

l �= 
r . From another perspective, the GSE can be viewed
as a scattering center in our work [93]. When the non-
Hermitian potential is introduced (γm �= 0), the dissipation
into the environment endows the system with an intrinsic
direction-dependent asymmetry. As a result, the synergy of
the non-Hermitian property and TSR breaking results in non-
reciprocity of scattering. This is similar to dissipation-induced
nonreciprocity [86,87]. In addition, one can observe from
Fig. 4(a) that the maximum value of I can be more than
0.8 when γm = 11
r . This is because the strongest nonre-
ciprocity can be realized at 	 = 	L and γm = (
l + 
r )(1 +
cos θ0). In addition, Imax = |(
2

l − 
2
r )/(
l + 
r )2| if θ0 �=

(2ξ + 1)π . In this case, Imax in the whole frequency range can
be a fixed value independent of θ0 except for θ0 = (2ξ + 1)π ,
as shown in Fig. 4(b).

Through the above analysis, the maximum value of I
cannot be improved by θ0 and γm; however, it significantly
depends on 
l and 
r . Here we define the chiral rate η =

l/
r to study the influence of chirality on nonreciprocity.
The isolation depth I for a special frequency photon ω = ωm

and Imax versus η are plotted in Fig. 5(a). The nonreciprocity
can be turn on or off by the chiral rate η because the magnon
responses in the two input directions are symmetric or asym-
metric. In particular, for the case of η = 1, which corresponds
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FIG. 5. (a) Shown on top is the isolation depth I versus chiral rate
η, for 	 = 0 and θ0 = π/2, and the maximum value Imax of the isola-
tion depth versus η. The bottom plot shows the asymmetric magnon
responses 	M versus chiral rate η. (b) Plot of I varying with 	 and θ0

for 
l = 0. The insets show T1→2, T2→1, and I versus 	 for θ0 = π/2
(right) and θ0 = 5π (left). Here γm = (
l + 
r )(1 + cos θ0).

to the nonchiral coupling, 	M = 0 due to same magnon re-
sponses M1→2 = M2→1. Thus, nonreciprocal single-photon
transmission is turned off. When η = 0, which corresponds
to the perfect chiral coupling, i.e., 
l = 0 and 
r �= 0. In this
case, T2→1 ≡ 1 since the incident single photon decouples to
the GSE; however, T1→2 can be reach 0 for optimal system
parameters and the perfect nonreciprocity Imax = 1 is realized
[see Fig. 5(b)]. The single-photon diode behavior is actually
accomplished based on the GSE system. Meanwhile, the non-
reciprocity still be shut down for θ0 = (2ξ + 1)π . Thus, the
phase θ0 can be used as a switch of the single-photon diode.

B. Non-Markovian regime

In this section we study the nonreciprocity of single-photon
transmission in the non-Markovian regime, where the prop-
agating time τ cannot be negligible, so the phase shift θ =
θ0 + τ	 depends on the detuning 	. Similar to the giant
atom system [7,13,14], the non-Markovian effect should be
considered when the separation x0 between the two coupling
points of the GSE-waveguide interaction is large enough.

We plot the transmission spectra of different input di-
rections as a function of 	 in Fig. 6(a) for the case of
nonchiral coupling. When the Markovian approximation is
broken, single-photon transmission displays a more complex
structure. For any input direction, the phenomenon of mul-
tiple absorbtion dips or transmission peaks appears in the
output spectra. Therefore, we extend the experimental sys-
tem in Ref. [59] to the non-Markovian regime and predict
that the non-Markovian characteristic can be realized in the
GSE-waveguide system. This is similar to the time-delayed
quantum coherent feedback [94,95] in which the quantum
coherent output is fed back into the system after the time delay
and each feedback is regraded as the input interacts with the
system again; the interference effect causes output spectra to
have the multiple transparency windows. In present work, the
bidirectional propagating waves in the scatting interval (the
region between two coupling points) interact with the GSE
multiple times, which can be confirmed based on the magnon
excitation spectra, as shown in Fig. 6(b). This further induces
high-order scattering processes. The interference of the bidi-
rectional propagating waves gives rise to the formation of
multiple transparency windows in the GSE system. However,
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FIG. 6. (a) Transmission probability T1→2 from port 1 to port
2 and transmission probability T2→1 from port 2 to port 1 and
(b) magnon excitation spectra M1→2 and M2→1 versus 	 for nonchi-
ral coupling when θ0 = 100π . (c) Plot of T1→2 and T2→1 versus 	

for chiral coupling for θ0 = 100π . (d) Isolation depth I varying with
	 and θ0. (e) Plot of T1→2, T2→1, and I versus 	 for θ0 = 105π .
(f) Plot of M1→2, M2→1, and 	M versus 	 for θ0 = 105π . In (c)–(f)

l = 10
r . In addition, τ
r = 1 and the other parameters are the
same as in Fig. 2.

the single-photon transmission remains reciprocal due to the
TRS under the nonchiral condition.

For the chiral coupling situation, the transmission spec-
tra of two different input directions are plotted in Fig. 6(c).
They have the same oscillation tendency, but transmission
probability is enhanced in one direction and restrained in the
opposite, which suggests that strong nonreciprocity can still
be achieved in the non-Markovian regime and extended to
multiple frequency points. In addition, from Fig. 6(d) one
can find that various frequency point values satisfying a high
level of isolation depth I are achieved by regulating the phase
θ0. In particular, in the non-Markovian regime, the GSE is
no longer decoupled to the waveguide and the asymmetric
magnon responses occur even in the condition of θ0 = (2ξ +
1)π [see Fig. 6(f)]. This further results in nonreciprocity
rather than reciprocity when θ0 = (2ξ + 1)π [see Fig. 6(e)].
Such a phenomenon does not exist in the Markovian regime
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FIG. 7. (a) Isolation depth I varying with 	 and θ0 for τ
r = 5.
(b) Transmission probability T1→2 from port 1 to port 2, transmission
probability T2→1 from port 2 to port 1, and isolation depth I versus 	.
(c) Isolation depth I varying with 	 and τ . (d) Asymmetric magnon
response 	M versus 	 for different values of τ
r . In (b)–(d) θ0 =
105π . In addition, 
l = 0 and γm = 
r .

[see Fig. 2(h)] and so it is called non-Markovianity-
induced nonreciprocity [68,73]. For θ0 �= (2ξ + 1)π , non-
Markovianity can extend a nonreciprocal window to multiple
strongly nonreciprocal windows, which is referred to as non-
Markovianity enhanced nonreciprocity. When the system is
under the condition of perfect chiral coupling [Fig. 7(a)], we
can obtain perfect single-photon nonreciprocal transmission
at multiple frequency points. In addition, when θ0 = (2ξ +
1)π , non-Markovianity-induced nonreciprocity can be per-
fect. This is because the single-photon input from P2 cannot be
coupled to the GSE and is output directly from P1. However,
single-photon input from P1 can interact with the GSE for
θ0 = (2ξ + 1)π and the value of T1→2 can be suppressed
gradually to 0 with more frequency points with the increase
of τ [see Fig. 7(b)]. Thus, by increasing the delay time τ , the
isolation depth I can be enhanced. The peaks of perfect non-
reciprocity (I = 1) get closer to 	 = 0 and get sharper with
the enhancement of τ , which indicates that the nonreciprocal
transmission spectrum oscillates faster and the perfect nonre-
ciprocity can work well at more frequency points, as shown
in Fig. 7(c). This phenomenon occurs because the interaction
between the GSE and waveguide presents a time dependence.
The non-Markovian-induced asymmetric magnon response is
produced for θ0 = (2ξ + 1)π and it gets stronger and oscil-
lates faster when τ is enhanced, as shown in Fig. 7(d). Thus,
we can get a more refined spectrum of perfect nonreciprocity
and realize a multifrequency narrow-bandwidth single-photon
diode.

III. SINGLE-PHOTON TARGETED ROUTER
AND CIRCULATOR

In this section we explore the possibility of realizing a
quantum device including a single-photon targeted router
and circulator [61–63] based on the GSE, which may be-
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FIG. 8. Schematic diagram of the GSE coupled to two mi-
crowave waveguides labeled a and b. The GSE is coupled to each
waveguide with two coupling points at x1 and x2 and at x3 and x4,
respectively. The four ports are labeled 1, 2, 3, and 4, respectively.

come the key elements for quantum information processing in
scalable integrated magnon-based quantum network [29,30].
We consider a GSE–double-waveguide system in which the
GSE couples to each waveguide with two coupling points.
We set the same distance between the two coupling points
of each waveguide, i.e., the coupling positions are located
at x1 = x4 = 0 and x2 = x3 = x0. For the sake of discussion,
the four ports of double waveguides are labeled 1, 2, 3, and
4, as described in Fig. 8. The Hamiltonian of system can be
written as

Hwg = − ivg

∫
dx

(
C†

ra(x)
∂

∂x
Cra(x) − C†

la(x)
∂

∂x
Cla(x)

)

− ivg

∫
dx

(
C†

rb(x)
∂

∂x
Crb(x) − C†

lb(x)
∂

∂x
Clb(x)

)
,

(12)

Hm = (ωm − iγm)m†m, (13)

Hint =
∫

dx{δ(x)[graC
†
ra(x)m + glaC

†
la(x)m

+ grbC
†
rb(x)m + glbC

†
lb(x)m]

+ δ(x − x0)[graC
†
ra(x)m + glaC

†
la(x)m

+ grbC
†
rb(x)m + glbC

†
lb(x)m] + H.c.}, (14)

where C†
αβ (x) (α = r, l and β = a, b) is the corresponding cre-

ation operator of the photon of the βth waveguide and gαβ is
the coupling strength between the GSE and the corresponding
waveguide in different directions. The eigenstate of such a
model is expanded as

|�〉 =
∫

dx[�ra(x)C†
ra(x) + �la(x)C†

la(x) + �rb(x)C†
rb(x)

+ �lb(x)C†
lb(x)]|∅〉 + umm†|∅〉. (15)

By applying the same method as before (see Appendix A
for details), we can obtain the transmission amplitudes of
different directions

t1→3 = t4→2 = − e−iθ (1 + eiθ )2
√


ra
√


rb

(1 + eiθ )(
la + 
lb + 
ra + 
rb) − i	̃
,

(16)

t3→4 = 1 − e−iθ (1 + eiθ )2
lb

(1 + eiθ )(
la + 
lb + 
ra + 
rb) − i	̃
, (17)

t2→1 = 1 − e−iθ (1 + eiθ )2
la

(1 + eiθ )(
la + 
lb + 
ra + 
rb) − i	̃
, (18)

t1→2 = 1 − e−iθ (1 + eiθ )2
ra

(1 + eiθ )(
la + 
lb + 
ra + 
rb) − i	̃
, (19)

t2→4 = t3→1 = − e−iθ (1 + eiθ )2
√


la
√


lb

(1 + eiθ )(
la + 
lb + 
ra + 
rb) − i	̃
,

(20)

t4→3 = 1 − e−iθ (1 + eiθ )2
rb

(1 + eiθ )(
la + 
lb + 
ra + 
rb) − i	̃
, (21)

where 
αβ = g2
αβ/vg and θ = θ0 + τ	.

We first focus on the perfect chiral case of 
la = 
lb =

l = 0 and 
ra = 
rb = 
r in the Markovian regime. From
Eqs. (18) and (19) we can obtain T2→1 ≡ 1 and the value of
T1→2 can be modulated by the system parameters in the above
perfect chiral condition, which also is observed in Figs. 9(a)
and 9(b). The perfect nonreciprocity occurs when 	 is equal
to the Lamb shift 	L = 2
r sin θ0 under the current system
parameters. Thereby, the single-photon diode behavior is ex-
tended to the double-waveguide system. Here the production
of nonreciprocity no longer requires the participation of in-
trinsic dissipation of the magnon mode, i.e., γm = 0 since
the existence of the waveguide b allows it to act as a chan-
nel to collect photons emitted by the GSE compared to the
case of a single waveguide, which can be understood via the
transmission spectrum T1→3. It is seen that T1→3 can reach
1 for 	 = 	L due to the fact that the chiral magnon-photon
coupling induces an imbalance between the photons emitted
in the right and left directions of the waveguide b and blocks
T1→4 to 0. Thereby, the photon input from port 1 of the waveg-
uide a is completely routed to port 3 of another waveguide
b rather than transmitted to port 2. Thus, T1→2 can be sup-
pressed to 0 and the perfectly nonreciprocal transmission is
achieved in the waveguide a. Meanwhile, one of the key com-
ponents for constructing quantum networks, the single-photon
targeted router, also can be actually realized in our work. The
above interesting results support the design of a single-photon
circulator.

Based on Eqs. (16)–(21), we show the transmission prop-
erties of a single photon in different directions. It can be found
from Fig. 9(a) that T3→4 = T2→1 ≡ 1 in the whole frequency
range and T1→3 = T4→2 = 1 at the effective resonance point
	 = 	L. This means that the photon input from port 2 or 3
decouples to the GSE and is directly output from port 1 or 4
due to the chiral magnon-photon interaction. Meanwhile, the
photon input from port 1 or 4 can be routed to port 3 or 2 of
another waveguide, which forms two single-photon targeted
routers in different directions. By the above analysis, for a
frequency ω = ωm + 	L, the directional single-photon trans-
port in the forward-circulation direction 1 → 3 → 4 → 2 →
1 is accomplished. However, the routing directions T3→1 =
T2→4 = 0 at 	 = 	L, which implies the achievement of two
nonreciprocal single-photon routers due to T1→3 = T4→2 = 1
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FIG. 9. Transmission probability T1→3 from port 1 to port 3, transmission probability T3→4 from port 3 to port 4, transmission probability
T4→2 from port 4 to port 2, and transmission probability T2→1 from port 2 to port 1 versus 	 for (a) θ0 = π/2 in the Markovian regime, (e)
θ0 = π in the Markovian regime, and (i) θ0 = 105π in the non-Markovian regime. Also shown is the transmission probability T1→2 from port 1
to port 2, the transmission probability T2→4 from port 2 to port 4, the transmission probability T4→3 from port 4 to port 3, and the transmission
probability T3→1 from port 3 to port 1 versus 	 for (b) θ0 = π/2 in the Markovian regime, (f) θ0 = π in the Markovian regime, and (j)
θ0 = 105π in the non-Markovian regime. Here T1→3 = T4→2 varies with 	 and θ0 in (c) the Markovian regime and (g) the non-Markovian
regime and T1→2 = T4→3 varies with 	 and θ0 in (d) the Markovian regime and (h) the non-Markovian regime. In (g)–(j) τ
r = 5. In addition,
γm = 0, 
la = 
lb = 
l = 0, and 
ra = 
rb = 
r .

with the same frequency of the input photon. Also T1→2 =
T4→3 = 0 is realized. Finally, the backward-circulation trans-
port direction 1 → 2 → 4 → 3 → 1 can be perfectly blocked
[see Fig. 9(b)]. We obtain a high-performance directional
magnon-based single-photon circulator. More importantly, it
has a high tunability. The desired working frequency point
of the single-photon circulator is obtained by appropriately
adjusting the phase θ0, which also is used to modulate pe-
riodically the operation frequency bandwidth due to 
eff =
γm + 2
r (1 + cos θ0), which can be clearly seen in Figs. 9(c)
and 9(d). It is worth mentioning that the magnon mode in the
GSE is obscured due to the destructive quantum interference
for θ0 = (2ξ + 1)π , which gives rise to two single-photon
targeted routers which are turned off, i.e., T1→3 = T4→2 = 0,
and further causes the directional circulator to be shut down
[see Figs. 9(e) and 9(f)]. Thus, θ0 can be regarded as the
controller of the work efficiency and the bandwidth of the
single-photon circulator.

In the following, we turn our attention to the non-
Markovian regime. Two single-photon targeted routers are
strongly non-Markovian. From Fig. 9(g) it can be seen that
the output spectra T1→3 = T4→2 exhibit multiple-peak charac-
teristics and they can simultaneously reach optimal routing
probability 1 with multiple frequency points. Therefore,
two multifrequency single-photon targeted routers are ob-
tained. Meanwhile, T3→4 = T2→1 ≡ 1 still is achieved in the
non-Markovian regime. The single-photon circulator along
1 → 3 → 4 → 2 → 1 can work well at multiple frequency
points with a narrow frequency band. The single-photon
transport along 1 → 2 → 4 → 3 → 1 simultaneously is pro-
hibited since T2→4 = T3→1 ≡ 0 and T1→2 = T4→3 = 0 at the
same multiple frequency points, as shown in Fig. 9(h).
We also obtain a phase-modulated multiple-work-frequency
single-photon circulator. In particular, in Figs. 9(i) and 9(j),
non-Markovianity-induced nonreciprocity keeps the circula-
tor working instead of closing for θ0 = (2ξ + 1)π , which

makes up for the deficiency of an unrealizable circulator
under the same condition in the Markovian regime [see
Figs. 9(e) and 9(f)]. With the chiral condition 
la = 
lb = 
l

and 
ra = 
rb = 
r = 0 (Fig. 10), we can obtain that the
single-photon circulator in the direction 1 → 2 → 4 → 3 →
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FIG. 10. Transmission probability T1→3 from port 1 to port 3,
transmission probability T3→4 from port 3 to port 4, transmission
probability T4→2 from port 4 to port 2, and transmission probability
T2→1 from port 2 to port 1 versus 	 for (a) θ0 = π/2 in the Marko-
vian regime and (c) θ0 = 105π in the non-Markovian regime. Also
shown is the transmission probability T1→2 from port 1 to port 2, the
transmission probability T2→4 from port 2 to port 4, the transmission
probability T4→3 from port 4 to port 3, and the transmission proba-
bility T3→1 from port 3 to port 1 versus 	 for (b) θ0 = π/2 in the
Markovian regime and (d) θ0 = 105π in the non-Markovian regime.
Here 
r = 0, 
l �= 0, and the other parameters are the same as
in Fig. 9.

063715-8



NONRECIPROCAL SINGLE-PHOTON SCATTERING IN … PHYSICAL REVIEW A 108, 063715 (2023)

1 is completed. However, the opposite direction 1 → 3 →
4 → 2 → 1 is prohibited. Therefore, single-photon circula-
tors of different circulating directions can be regulated based
on different chiral conditions. The non-Markovian character-
istics of the single-photon circulator can still be achieved in
such a circulating direction. Our results provide a possibility
for realizing tunable multifrequency and narrow-operational-
bandwidth quantum magnon devices.

IV. CONCLUSION

The nonreciprocal single-photon scattering behavior has
been explored through the chiral interaction between the
magnon mode in the GSE and the photon propagating in
waveguides. We found that the synergy of the chiral magnon-
photon coupling and intrinsic dissipation of magnon mode
induces nonreciprocal transmission since they provide the
conditions required for the implementation of nonreciprocity,
i.e., the TRS breaking and non-Hermitian potential in the
case of a single waveguide. The strength of nonreciproc-
ity can be modulated flexibly by the accumulated phase
of the propagating photon based on constructive and destruc-
tive interferences. In addition, we showed simultaneously
the controlled single-photon transmission behavior in both
the Markovian and non-Markovian regimes, which depends
on whether the time-delay effect of a single photon propa-
gating between two coupling points can be ignored. In the
Markovian regime, the optimal nonreciprocity can be ob-
tained for a single specific frequency point that is closely
related to the Lamb shift and the bandwidth of realizing
nonreciprocity is characterized by the effective decay rate.
The interesting thing is that the property of multiple nar-
row, strongly nonreciprocal transmission windows occurs in
the non-Markovian regime since the accumulated phase be-
comes detuning dependent. The multifrequency single-photon
diode behavior is realized. In particular, when the GSE com-
pletely decouples to the waveguide due to the destructive
interference in the Markovian regime, the transmissions in
two input directions are always reciprocal. Non-Markovianity
can make the GSE no longer decoupled from the waveg-
uide and produce multiple-frequency strong nonreciprocity.
Non-Markovianity-induced nonreciprocity is implemented.
Moreover, the study of nonreciprocity was extended to the
GSE-double waveguides system. This enabled the occurrence
of nonreciprocity without the participation of intrinsic dissipa-
tion of the magnon mode since the second waveguide can act
as a dissipation channel to collect the photon emitted by the
GSE. The high-performance, narrow-operational-bandwidth,
and multifrequency single-photon targeted router and circu-
lator were designed based on this physical mechanism. The
single-photon quantum devices have a high tunability; in par-
ticular, the circulating direction of the single-photon circulator
can be regulated by adjusting the chiral coupling condition. In
addition, our proposal may be easier to implement in practice
since the realization and modulation of the GSE-waveguide
setup have been shown to carry out at room temperature in
experiment [59]. Our results provide powerful tools for con-
trolling single-photon transport in the waveguide magnonics,
which may promote further developments in the emerging
quantum magnonics community and giant atom physics and

have potential applications in chiral quantum engineering and
quantum information science [29,30,60].
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APPENDIX A: DERIVATIONS OF THE TRANSMISSION
PROBABILITY AMPLITUDES OF DIFFERENT

DIRECTIONS IN THE GSE–DOUBLE-WAVEGUIDE
SYSTEM

Submitting Eqs. (12)–(15) into H |�〉 = ω|�〉 leads to the
expressions

−ivg
∂

∂x
�rβ (x) + grβum[δ(x) + δ(x − x0)] = ω�rβ (x),

(A1)

ivg
∂

∂x
�lβ (x) + glβum[δ(x) + δ(x − x0)] = ω�lβ (x), (A2)

(ωm − iγm)um +
∑
α,β

gαβ [�αβ (0) + �αβ (x0)] = ωum, (A3)

where α = r, l and β = a, b. We assume that double waveg-
uides have the same dispersion relation ω = kvg.

For different input directions, the wave functions of a sin-
gle photon are expressed in the following forms [64,67,68,73].
For the case of single-photon input from port 1, they can be
expressed as

�ra(x) = eikx[�(−x) + Aa�(x)�(x0 − x)

+ t1→2�(x − x0)],

�la(x) = e−ikx[t1→1�(−x) + Ba�(x)�(x0 − x)],

�rb(x) = eikx[Ab�(x)�(x0 − x) + t1→3�(x − x0)],

�lb(x) = e−ikx[t1→4�(−x) + Bb�(x)�(x0 − x)]. (A4)

For input from port 2, they can be described by

�ra(x) = eikx[t2→2�(x − x0) + Ãa�(x)�(x0 − x)],

�la(x) = e−ikx[�(x − x0) + B̃a�(x)�(x0 − x)

+ t2→1�(−x)], (A5)

�rb(x) = eikx[t2→3�(x − x0) + Ãb�(x)�(x0 − x)],

�lb(x) = e−ikx[B̃b�(x)�(x0 − x) + t2→4�(−x)].

For input port 3, they have the forms

�ra(x) = eikx[t3→2�(x − x0) + Ã′
a�(x)�(x0 − x)],

�la(x) = e−ikx[B̃′
a�(x)�(x0 − x) + t3→1�(−x)],

�rb(x) = eikx[t3→3�(x − x0) + Ã′
b�(x)�(x0 − x)],

�lb(x) = e−ikx[�(x − x0) + B̃′
b�(x)�(x0 − x)

+ t3→4�(−x)]. (A6)
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FIG. 11. Transmission probability T1→3 from port 1 to port 3
versus 	 for different γm/
r . The other parameters are the same as
in Fig. 9(a).

When the input direction is port 4, they read

�ra(x) = eikx[A′
a�(x)�(x0 − x) + t4→2�(x − x0)],

�la(x) = e−ikx[t4→1�(−x) + B′
a�(x)�(x0 − x)],

�rb(x) = eikx[�(−x) + A′
b�(x)�(x0 − x)

+ t4→3�(x − x0)],

�lb(x) = e−ikx[t4→4�(−x) + B′
b�(x)�(x0 − x)]. (A7)

Here Aβ (A = A, Ã, Ã′, and A′) and Bβ (B = B, B̃, B̃′, and B′)
are the transport probability amplitudes of right-moving and
left-moving photons in the βth waveguide with the region 0 <

x < x0 for the photon input from different ports, respectively,
and tμ→ς (μ, ς = 1, 2, 3, 4) denotes the amplitude of photon
transmission from port μ to port ς . Submitting Eqs. (A4)–
(A7) into (A1)–(A3), the transmission probability amplitudes
can be obtained in Eqs. (16)–(21).

APPENDIX B: EXPERIMENTAL IMPLEMENTATION

In this Appendix we discuss possible experimental imple-
mentation of our scheme. In the recent experiment of the
GSE-waveguide system [59], the damping rate of the magnon
mode emitted into the waveguide is 
 ∼ 0.8 MHz and the
intrinsic dissipation rate of the magnon mode is γm/2π ∼
1.4 MHz. Thus, γm = 11
r of our theoretical model is con-
sistent with the parameters of the experiment. Furthermore,
the damping rate of the magnon mode emitted into the
waveguide can also be comparable to the intrinsic dissipa-
tion rate of the magnon mode in recent experiments [90,91]
i.e., 
r ∼ γm is set in our work. The strong magnon-photon
coupling has also been realized experimentally based on
the waveguide magnonics system [45,57]. In particular, in
the YIG sphere–coplanar waveguide coupling system [57],
the magnon-photon coupling strength g/2π = 130 MHz and
the intrinsic dissipation rate of the magnon mode γm/2π =
1 MHz are achieved. In this case, we can evaluate γm/
 ∼
0.001 on the basis of 
 = g2/vg. These parameters of
magnon-photon coupling also make it possible to achieve
optimal nonreciprocity at different frequency points because
the strongest nonreciprocity can be realized at 	 = 	L =
(
l + 
r ) sin θ0 and γm = (
l + 
r )(1 + cos θ0). Taking the
direction T1→3 of the targeted router as an example, we display
the influence of γm/
r on the property of single-photon rout-
ing in Fig. 11. It is found that γm/
r only affects the routing
efficiency and has a tiny effect in the strong magnon-photon

regime. Even though γm/
r = 0.01, the routing efficiency
can still reach 0.99. The routing efficiency is almost perfect
based on the recent experimental parameter γm/
r ∼ 0.001
[57]. Our scheme is close to the actual system and may be
completed experimentally.

For the chirality of the GSE-waveguide system, there is
no experimental demonstration of the chiral coupling in our
scheme. However, this may be inspired based on previous chi-
ral magnon-photon coupling schemes [46,47,75–77,90,92].
Here we also propose an efficient scheme to implement the
chiral GSE. Similar to recent schemes in theory [69–71] and
experiment [72] for the realization of chiral giant atoms, we
introduce the coupling phase φ of the magnon-photon scheme
to the GSE-waveguide system, which may be achieved by
applying a synthetic magnetic flux [96–100]. The Hamiltonian
of the GSE-single waveguide system with the magnon-photon
coupling phase φ can be given by

Hwg = − ivg

∫
dx

(
C†

r (x)
∂

∂x
Cr (x) − C†

l (x)
∂

∂x
Cl (x)

)
, (B1)

Hm = (ωm − iγm)m†m, (B2)

Hint =
∫

dx{δ(x)[geiφC†
r (x)m + geiφC†

l (x)m]

+ δ(x − x0)[gC†
r (x)m + gC†

l (x)m] + H.c.}. (B3)

Here the magnon-photon coupling phase φ is introduced at the
coupling point x1 = 0 and we set x2 = x0.

By applying the same method as above, we can obtain

t1→2 = 1 − 
[1 + cos(φ + θ )]


(1 + eiθ cos φ) − i	̃/2
, (B4)

t2→1 = 1 − 
[1 + cos(φ − θ )]


(1 + eiθ cos φ) − i	̃/2
, (B5)

where 
 = g2/vg. We can define the emission rates of the GSE
in two input directions as [72] 
1→2/
 = 1 + cos(φ + θ ) and

2→1/
 = 1 + cos(φ − θ ). In the Markovian regime, we set
φ = θ0 = π/2 and 
1→2/
2→1 = 0 is obtained, which shows
the property of perfect chirality of magnon-photon coupling
and is equivalent to the case of 
r = 0 in the main text. Thus,
T1→2 ≡ 1 and T2→1 is suppressed to 0 for the resonance pho-
ton [Fig. 12(a)]. The perfect nonreciprocity of single-photon
transmission is realized. When the phases are tuned to φ =
3π/2 and θ0 = π/2, 
2→1/
1→2 = 0, which corresponds to
the case of 
l = 0; T2→1 ≡ 1 and T1→2 = 0 for 	 = 0. We
can also obtain the required strength of chirality by choosing
appropriate values of the phases, which can be observed in
Fig. 12(b), which shows that the chiral rate ηd = 
1→2/
2→1

varies with phase φ. Thereby, the phase φ can further tune
the nonreciprocal behavior of the single photon [Fig. 12(c)].
Furthermore, the coordinated modulation of two phases φ and
θ0 plays an important role in the regulation of the frequency
point of achieving perfect nonreciprocity because the opti-
mal nonreciprocity occurs at 	 = 2
 sin θ0 cos φ, as shown
in Figs. 12(d) and 12(e).

The above phenomena can be better understood from the
perspective of magnon excitation. The amplitudes of magnon
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FIG. 12. (a), (d), and (e) Transmission probability T1→2 from port
1 to port 2 and transmission probability T2→1 from port 2 to port 1
versus 	 for different the values of the phases φ and θ0. (b) Chiral
rate ηd versus φ for θ0 = π/2. (c) Isolation ratio I varying with 	

and φ for θ0 = π/2. (f) Contrast ratio Cm of magnon excitation of
two input directions versus φ for different values of θ0. In addition,
(a) and (c) γm = 2
 and (d) and (e) γm = 
.

excitations of different input directions can be given by

um1→2 = − ig[1 + ei(φ+θ )]


[eiθ + 2eiφ + ei(θ+2φ)] − i	̃eiφ
, (B6)

um2→1 = − ig[1 + ei(φ−θ )]


[eiθ + 2eiφ + ei(θ+2φ)] − i	̃eiφ
. (B7)

The contrast ratio Cm of magnon excitations of
two input directions is defined as Cm = (|um1→2|2 −
|um2→1|2)/(|um1→2|2 + |um2→1|2). From Fig. 12(f) it can
be seen that Cm = 0 when φ = ξπ , which implies that the
photon input from two directions can cause the same magnon
excitation, which corresponds to the case of nonchirality.
Thus, single-photon transmission is reciprocal. When
φ + θ0 = (2ξ + 1)π , Cm = −1 is realized. This indicates
that the magnon mode m only interacts with the photon
input from port 2 and decouples with the photon input
from port 1. For the case of φ − θ0 = (2ξ + 1)π , Cm = 1
suggests that only photon input from port 1 interacts with the
magnon mode m. Here Cm = ±1 is equivalent to a perfectly
chiral magnon-photon coupling effect in the waveguide
magnonics system [46,47,92]. For the case of 0 < |Cm| < 1
which can be implemented by tuning the phases φ and θ0,
the magnon-photon coupling is imperfect chirality. The
coordinated modulation of two phases can complete the
different strength of chirality of the system. The above

discussion demonstrates that the phases can be responsible
for the modulation of chirality of the GSE-waveguide system
and further control nonreciprocity.

For the GSE–double-waveguide system, we can introduce
simultaneously the phase φ at the coupling point x = 0 (x1 =
x4 = 0) of each waveguide and the GSE. We set x2 = x3 = x0.
The Hamiltonian of such a system is expressed as

Hwg = − ivg

∫
dx

(
C†

ra(x)
∂

∂x
Cra(x) − C†

la(x)
∂

∂x
Cla(x)

)

− ivg

∫
dx

(
C†

rb(x)
∂

∂x
Crb(x) − C†

lb(x)
∂

∂x
Clb(x)

)
,

(B8)

Hm = (ωm − iγm)m†m, (B9)

Hint =
∫

dx{δ(x)[gaeiφC†
ra(x)m + gaeiφC†

la(x)m

+ gbeiφC†
rb(x)m + gbeiφC†

lb(x)m]

+ δ(x − x0)[gaC
†
ra(x)m + gaC

†
la(x)m

+ gbC
†
rb(x)m + gbC

†
lb(x)m] + H.c.}. (B10)

By using the same method as above, the corresponding
transmission amplitudes can be obtained as

t1→3 = t4→2 = − e−iθ [1 + ei(θ+φ)]2
√


a
b

[eiθ + 2eiφ + ei(θ+2φ)](
a + 
b) − i	̃eiφ
,

(B11)

t3→4 = 1 − [1 + ei(φ−θ )](eiθ + eiφ )
b

[eiθ + 2eiφ + ei(θ+2φ)](
a + 
b) − i	̃eiφ
,

(B12)

t2→1 = 1 − [1 + ei(φ−θ )](eiθ + eiφ )
a

[eiθ + 2eiφ + ei(θ+2φ)](
a + 
b) − i	̃eiφ
,

(B13)

t1→2 = 1 − [1 + ei(φ+θ )](e−iθ + eiφ )
a

[eiθ + 2eiφ + ei(θ+2φ)](
a + 
b) − i	̃eiφ
,

(B14)

t2→4 = t3→1 = − [1 + ei(φ−θ )](eiθ + eiφ )
√


a
b

[eiθ + 2eiφ + ei(θ+2φ)](
a + 
b) − i	̃eiφ
,

(B15)

t4→3 = 1 − [1 + ei(φ+θ )](e−iθ + eiφ )
b

[eiθ + 2eiφ + ei(θ+2φ)](
a + 
b) − i	̃eiφ
.

(B16)

Here 
a = g2
a/vg and 
b = g2

b/vg. We set 
a = 
b = 
 in the
following. The transmission spectra of different directions,
based on the above equations, are exhibited in Figs. 13(a) and
13(b). Obviously, the high-efficiency single-photon targeted
router and circulator are implemented. In addition, the coor-
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FIG. 13. (a) Transmission probability T1→3 from port 1 to port
3, transmission probability T3→4 from port 3 to port 4, transmission
probability T4→2 from port 4 to port 2, and transmission probability
T2→1 from port 2 to port 1 versus 	 for different the values of the
phases φ and θ0. (b) Also shown is the transmission probability T1→2

from port 1 to port 2, the transmission probability T2→4 from port 2
to port 4, the transmission probability T4→3 from port 4 to port 3, and
the transmission probability T3→1 from port 3 to port 1 versus 	 for
different values of the phases φ and θ0. Here γm = 0.001
.

dinated modulations of two phases can control the operating
frequency point of the targeted router and circulator and the
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FIG. 14. (a) Isolation depth I varying with 	 and θ0 for φ = π/2
and τ
 = 5. (b) Transmission probability T1→3 from port 1 to port
3, transmission probability T3→4 from port 3 to port 4, transmission
probability T4→2 from port 4 to port 2, and transmission probability
T2→1 from port 2 to port 1 versus 	 when φ = 3π/2, θ0 = 105π , and
τ
 = 5. The other parameters in (a) are the same as in Fig. 12(a) and
the other parameters in (b) are the same as Fig. 13(a).

routing and circulating directions. We can obtain the spectra
that are consistent with Figs. 9 and 10 by adjusting the phases
in the Markovian regime. In the non-Markovian regime, from
Fig. 14 we can find that there are non-Markovian charac-
teristics similar to those in the main text. Multiple narrow
nonreciprocal transmission windows are also observed in the
case of a single waveguide. The high-efficiency and tunable
multifrequency single-photon targeted router and circulator
with narrow operational bandwidth are also achieved. In con-
clusion, the strongly chiral GSE-waveguide system may be
realized experimentally by introducing the magnon-photon
coupling phase.
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