
PHYSICAL REVIEW A 108, 063713 (2023)

Source-field approach to phase-matched cascade correlated emission

P. R. Berman and A. Kuzmich
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA

(Received 8 August 2023; accepted 20 November 2023; published 21 December 2023)

A theory of phase-matched cascade correlated emission is developed based on a source field approach. An
ensemble of three-level atoms is prepared in a phased state for which the probability to have two excitations
is negligibly small. The field intensity radiated on each of the transitions is calculated. The radiation on the
upper transition is isotropic and unpolarized, but the phase-matched component on the lower transition can be
directional and polarized. Moreover, for sufficiently high optical densities, the emission on the lower transition
can be superradiant. In addition to the field intensities, the joint probability for emission on both transitions is
calculated, exhibiting correlations in both the directions of emission and polarization of the fields.
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I. INTRODUCTION

Cascade emission from a single atom or from an en-
semble of atoms is a fundamental process encountered in
atomic physics. For a “three-level” atom prepared in its
highest excited state, the vacuum radiation field induces a
cascade emission to its lower levels. Kimble, Mezzacappa,
and Milonni (KMM) [1] review the literature related to
single-atom cascade emission and point out its importance in
experiments used to test Bell’s inequalities. They also note
that the central idea behind some calculations of correlated
emission on the two transitions involves the assumption that
the observation of a photon emitted on the upper transition
projects the system into a state from which the subsequent
emission occurs. One goal of their paper was to show that
the same conclusions could be reached more formally using
source-field theory. Subsequently, quantum state trajectory
methods [2] were used to analyze this problem. In their
paper, KMM focused on the time evolution of the radiated
signals and did not allow for magnetic state degeneracy of
the levels involved in the transitions. In contrast, theories of
polarization correlation in cascade emission such as those
used to analyze experiments that test Bell’s inequalities [3],
must properly account for the magnetic state structure of the
levels.

Over the past two decades, cascade systems have taken
on increased importance owing to their relevance in quan-
tum information protocols. In a typical scenario [4], radiation
fields are used to create a two-photon coherence between
levels 1 and 3 in the three-level scheme depicted in Fig. 1.
One can then apply a readout field on the 3-2 transition to
produce collectively enhanced phase-matched emission on the
2-1 transition. The same level scheme can be used without
a readout pulse to produce phase-matched, correlated photon
pairs [5]. Attractive features of this approach include high rate
generation of narrow-bandwidth photonic entanglement of
near-infrared (∼780 nm or ∼850 nm) and telecom (∼1.35 μm
and ∼1.35 μm) fields. The former are suitable for mapping
into quantum memories while the latter may be used for
long-distance transmission over optical fibers. Thus, photon

pair generation using the cascade level scheme is naturally
suited for applications in scalable quantum networks. In a
state trajectory theory of such correlated emission [6] it is cus-
tomary to assert that observation of the first photon projects
the ensemble into a collective state. This collective state, in
turn, emits superradiant, phase-matched emission on the 1-2
transition, provided the optical density of the atomic ensem-
ble is much greater than unity. Other theoretical approaches
involve the use of stochastic differential equations [7] and
biphoton probability distributions [8].

In this paper, we extend the source-field theory of KMM
to the case of phase-matched emission from an ensemble
of three-level atoms that have been prepared in a spatially
correlated superposition of levels 1 and 3 with a negligibly
small probability to have two excitations in the ensemble.
Such an initial state can be approximated by using weak
excitation fields. Alternatively a mechanism such as the dipole
blockade [9] can be used to excite a single collective Ry-
dberg excitation in the ensemble, followed by a transfer of
this state to a single collective excitation of level 3. Levels
1 and 3 have total angular momentum J = 0, while level 2
has total angular momentum J = 1. As such we take into
account effects arising from the magnetic state degeneracy
of level 2. Subsequent emission from the initial state con-
sists of two components. First, there is “normal” spontaneous
decay that depends only on the level-3 populations of the
atoms created by the excitation fields. The polarizations of
the emitted photons are correlated, but there is no enhanced
phased-matched emission for this component. Second, and
of relevance to the present discussion, there can be phased-
matched, correlated two-photon emission that depends on the
1-3 coherence created by the excitation fields. The emission of
the radiation on the lower transition is strongly correlated with
the emission on the upper transition when phase matching
is achieved. Moreover, the emission on the lower transition
can be collectively enhanced for large optical densities. The
polarization and spatial distribution of the radiation emitted
on the lower transition can depend critically on whether the
initial state is prepared by co- or counterpropagating laser
fields.
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In general this problem poses considerable theoretical chal-
lenges. The central problem that must be addressed is how
excitation is transferred from a sublevel of level 2 in a given
atom to a sublevel of level 2 in all the other atoms. In the
simplest approach to this problem, all interactions between the
atoms are neglected, as are propagation effects. This low den-
sity limit is the one normally considered in optical coherent
transients [10]. One can arrive at expressions for correlated
phase-matched emission, but the theory is problematic for
two, connected reasons. The low density assumption rules
out any superradiant emission on the 2-1 transition. Moreover
the calculation in this optical coherent transient limit leads
to a total energy radiated by the sample that is greater than
the energy originally stored in the atomic ensemble [11]. To
include superradiant effects for higher density samples, the
next simplest approach is that taken by Rehler and Eberly
(RE) [12]. They assume that each atom in the ensemble decays
at the same rate, and use that assumption plus energy conser-
vation to calculate the decay rate. This produces qualitatively
correct results, but results that, nevertheless, cannot be totally
correct since the calculation neglects propagation effects. In
other words, as the phase-matched emission leaves the sample
it is clear that atoms at different points in the sample cannot
decay at the same rate. The RE model actually corresponds to
the second type of superradiance discussed by Dicke [13] in
his seminal paper, that resulting from phase-matched emission
from a sample that is prepared with spatial phase coherence.
This is distinct from the first type of superradiance discussed
by Dicke in which the atoms are initially in a totally inverted
state.

A fully rigorous treatment of this problem would account
for all dipole-dipole interactions between an atom in a sub-
level of level 2 with other atoms in their ground states. For
two, two-level atoms, the role of excitation exchange of this
nature has been studied by numerous authors, starting with
the papers of Stephen [14] and Hutchinson and Hameka
[15]. A complete description of the radiation pattern of the
two atoms was given by Lehmberg [16], although he did
not include any effects related to magnetic state degeneracy.
Attempts to generalize the two-atom result for a single exci-
tation in an ensemble of N two-level atoms were developed
by Svindinsky et al. [17] and by Friedberg and Manassah
[18]. These theories were based on numerical solutions of the
coupled differential equations for an ensemble of N atoms (for
which the numerical calculations become increasingly time
intensive with increasing N) and on the use of a continuum
approximation for the atomic density. The role of magnetic
degeneracy on phase-matched emission from an atomic array
was considered by Miroshnychenko et al. [19], but the upper
transition was driven by a classical laser field in the problem
they considered. We are not aware of other studies of the
role of excitation exchange in cascade systems that include
effects arising from magnetic state degeneracy, aside from
state trajectory models that, in effect, employ an approxima-
tion of the RE type [6]. The combination of the source-field
approach with the RE approximation that we adopt in this
paper leads to relatively simple analytic results for the quan-
tities of physical interest, even if the RE model has its
limitations.

FIG. 1. Atomic energy level diagram of each atom in the ensem-
ble. Levels 1 and 3 have total angular momentum J = 0, while level
2 has total angular momentum J = 1. Pulsed laser fields create a
coherence between levels 1 and 3. The fields can be co- or counter-
propagating. In the case of counterpropagating fields, it is assumed
that kL1 ≈ kL2 ≈ k21 ≈ k32 = ω32/c.

II. GENERAL CONSIDERATIONS

The level scheme of each atom is shown in Fig. 1. To sim-
plify the calculation without sacrificing the relevant physics,
we assume that levels 1 and 3 have total angular momentum
J = 0, while level 2 has total angular momentum J = 1. It is
fairly straightforward to generalize the calculation to arbitrary
angular momenta. The frequency separation between levels 2
and 1 is denoted by ω21 and that between levels 3 and 2 by
ω32. There are two detectors located at positions DA and DB,
both of which are in the radiation zone of the fields emitted by
the atoms.

Each atom is assumed to have been prepared in a su-
perposition of levels 1 and 3. We consider two initial state
vectors for the ensemble. The first is a factorized state of the
atoms that is prepared using two weak, coherent state fields
having frequencies ωL1 = kL1c and ωL2 = kL2c, giving rise to
an initial state vector

|ψ (0)〉 =
N∏

j=1

(α|1〉 j + βeiκ·R j |3〉 j )

≈ |111 . . . 111〉 + β

N∑
j=−1

eiκ·R j |111 . . . 3 j . . . 111〉,

(1)

where κ = kL1 + kL2, R j is the position of atom j,
|111 . . . 3 j . . . 111〉 is the state in which atom j is in state 3 and
all the other atoms are in their ground state, α and β are state
amplitudes, and it has been assumed that N |β|2 � 1, where
N is the number of atoms in the ensemble. The second initial
state we consider is the single-phased-excitation state

|ψ (0)〉 = 1√
N

N∑
j=−1

eiκ·R j |111 . . . 3 j . . . 111〉. (2)
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The nonvanishing initial state density matrix elements are

ρ
( j)
11 (0) = |α|2 ≈ 1, ρ

( j)
33 (0) = |β|2,

ρ
( j)
31 (0) = [

ρ
( j)
13 (0)

]∗ = βeiκ·R j (3)

for the factorized state and

ρ
( j)
33 (0) = 1/N , ρ

( j)
31 (0) = [

ρ
( j)
13 (0)

]∗ = (1/
√

N )eiκ·R j (4)

for the single phased excitation state.
To calculate the intensity recorded at the detectors we need

to obtain an expression for the source field operator associated
with emission from the ensemble of atoms. A general expres-
sion for the positive frequency component of the source field
operator is given in Appendix A. For the level scheme of Fig. 1
this expression reduces to

E+
s (R, t ) =

(
ω2

21〈2‖μ‖3〉
4πε0c2R

)
ei(k21R−ω21t )

×
1∑

m=−1

N∑
j=1

Q1me−ik21·R j σ
( j)
1m (tr )

+
(

ω2
32〈1‖μ‖2〉
4πε0c2R

)
ei(k32R−ω32t )

×
1∑

m=−1

N∑
j=1

e−ik32·R j Qm3σ
( j)
m3 (tr ), (5)

where

Q1m(θ, φ) = 1√
6

⎧⎪⎪⎨
⎪⎪⎩

δm,1(−iûφ + cos θ ûθ )e−iφ

+δm,−1(−iûφ − cos θ ûθ )eiφ

+√
2δm,0 sin θ ûθ

⎫⎪⎪⎬
⎪⎪⎭, (6)

Qm3(θ, φ) = 1√
6

⎧⎪⎪⎨
⎪⎪⎩

δm,−1(−iûφ + cos θ ûθ )e−iφ

+δm,1(−iûφ − cos θ ûθ )eiφ

−√
2δm,0 sin θ ûθ

⎫⎪⎪⎬
⎪⎪⎭, (7)

〈G‖μ‖H〉 is a reduced matrix element of the dipole operator
between levels G and H , tr = t − R/c is a retarded time,

k32 = (ω32/c)(R/R), k21 = (ω21/c)(R/R), (8)

ûθ and ûφ are unit vectors, θ and φ are polar coordinates, and
σ

( j)
1m is a lowering operator between state |2m〉 and state |1〉

in atom j, while σ
( j)
m3 is a lowering operator between state |3〉

and state |2m〉 in atom j. All atomic and field operators are
written in an interaction representation. It has been assumed
that γ L/c � 1, where γ is a characteristic decay rate and L
a characteristic dimension of the sample. In effect, retardation
is neglected within the sample.

We can use the equation for the field operator to obtain
formal expressions for quantities of physical interest. Let us
assume that detector A records only emission on the 3-2
transition and detector B only emission on the 2-1 transition.
Moreover, let us further assume that DA = DB = D, implying
that the probability to obtain a photocount at detector A at time
tand a photocount at detector B at time t + τ is nonvanishing
only for τ > 0. We denote the spherical coordinates of detec-
tor q by (Dq, θq, φq) (q = A, B). Then the intensity of the λ

(q)
α

polarization component (α = θ, φ) of the field per unit solid
angle at detector Dq at time t is given by

Iα (�q; t ) = 2ε0cD2
〈
E−

s

(
Dq, t ; λ(q)

α

)
E+

s

(
Dq, t ; λ(q)

α

)〉
, (9)

where E+
s (Dq, t ; λ(q)

1 ) is the ûθ component of E+
s (Dq, t ),

E+
s (Dq, t ; λ(q)

2 ) is the ûφ component of E+
s (Dq, t ) and E−

s =
(E+

s )†, and �q = (θq, φq ) denotes the spherical angles of de-
tector q. We shall also need to find the joint probability to
detect a photon having polarization λ(A)

α at time t at detector A
and a photon having polarization λ

(B)
α′ at time t + τ at detector

B, which is proportional to the function

gα,α′ (�A,�B; t, τ )

= (2ε0cD2)2

〈
E−

s

(
DA, t ; λ(A)

α

)
E−

s

(
DB, t + τ ; λ(B)

α′
)

E+
s

(
DB, t + τ ; λ(B)

α′
)
E+

s

(
DA, t ; λ(A)

α

)
〉
.

(10)

The field operators in Eqs. (9) and (10) are related by
Eq. (5) and its adjoint to the atomic lowering and raising
operators of the individual atoms. In general, Eqs. (9) and (10)
are very difficult to evaluate using Eq. (5) because the evolu-
tion operators for the atomic lowering operators appearing in
Eq. (5) form a set of at least N coupled differential equations,
owing to the vacuum-field-induced coupling between pairs of
atoms.

To further simplify matters, we shall assume that the exci-
tation fields are either co- or counterpropagating along the z
axis,

κ = kL1 + kL2 = (kL1 ± kL2)ẑ, (11)

and that the fields are in two-photon resonance with the 1-3
transition,

ωL1 + ωL2 = ω32 + ω21 = ω31. (12)

The fields excite an atomic density N (R) which is taken to be
given by

N (R) = N

πa2L
e−ρ2/a2

H (L) = N e−ρ2/a2
H (L), (13)

where

H (L) =
{

1 −L/2 < z < L/2
0 otherwise . (14)

N = N/(πa2L), and ρ is the cylindrical coordinate. The ex-
citation scheme and atomic density distribution are meant to
mirror that of typical experimental setups.

III. INTENSITIES AT BOTH DETECTORS

To treat the vacuum-induced coupling between the atoms,
we adopt the simplified model that was used by Rehler and
Eberly (RE) [12]. In effect we assume that each atom has the
same decay dynamics. The emission on the upper transition
occurs at the isolated atom decay rate,

γ3 = ω3
32|〈2‖μ‖3〉|2

3πε0h̄c3
; (15)

there can be no collective decay on this transition since there
is at most one excitation in the sample. That is, a given atom
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in level 3 cannot exchange its excitation with another atom in
level 2 since we have ruled out the possibility of two excita-
tions in the ensemble. On the other hand radiation from level
2 can be exchanged with other ground state atoms, leading to
superradiant emission. In the RE model this is accounted for
by assuming that decay from level 2 occurs at a rate �2 that
differs from the isolated atom decay rate

γ2 = ω3
21|〈1‖μ‖2〉|2

9πε0h̄c3
. (16)

The rate �2 is chosen to guarantee energy conservation. Al-
though interactions are not included explicitly in the RE
model, they are included implicity owing to the fact that
�2 �= γ2. While the RE model may not properly account for
some propagation effects and can lead to some unphysical
predictions, it can provide a semiquantitative approximation
to the actual decay dynamics and the resulting radiation pat-
tern.

In Appendix B, it is shown that the intensity per unit solid
angle at detector A having polarization θ̂A or φ̂Ais given by

Iθ̂A,φ̂A
(�A; t ) = N

h̄ω32γ3

8π
ρ33(0), (17)

where ρ33(0) is the j-independent initial upper state popula-
tion of atom j. As could have been anticipated, this radiation
is unpolarized and isotropic since the transition originates on
a level having J = 0 that is (obviously) unpolarized. The total
energy radiated on this transition is

WA =
∫ ∞

0
dt
∫

d�A[Iθ (�A; t ) + Iφ (�A; t )] = Nh̄ω32ρ33(0).

(18)

This result is independent of whether the fields are co- or
counterpropagating.

A. Copropagating excitation fields

For emission on the lower transition, the calculation is
somewhat more involved (see Appendix B). If the fields are
copropagating, then

κ = (kL1 + kL2)ẑ = (ω31/c)ẑ = (k32 + k21)ẑ. (19)

The intensity can be written as the sum of two terms, a
non-phase-matched “spontaneous” component and a phase-
matched component,

Iθ̂B,φ̂B
(�B; t ) = N

h̄ω21γ2γ3

8π

e−�2tr − e−γ3tr

γ3 − �2
ρ33(0)�(tr )

× [
1 + Gθ̂B,φ̂B

(θB)
]
, (20)

where

θ̂B = cos θB cos φBx̂ + cos θB sin φBŷ − sin θBẑ, (21)

φ̂B = − sin φBx̂ + cos φBŷ (22)

are unit polarization vectors, Gθ̂B,φ̂B
(θB) represent the phase-

matched contribution, given approximately by

Gθ̂B
(θB) ≈ r(θB)Gφ̂B

(θB), (23a)

where

Gφ̂B
(θB) ≈ 3(N − 1)

4(k32a)2

sin2 [M(θB)]

[M(θB)]2 , (23b)

M(θB) =
k32L

[
1 −

√
1 − ( k21

k32
sin θB

)2]+ k21L(1 − cos θB)

2
,

(24)

and

r(θB) =
⎡
⎣cos θB

√
1 −

(
k21

k32
sin θB

)2

− k21

k32
sin2 θB

⎤
⎦

2

. (25)

Equations (23) provide a very good approximation to the exact
results provided k32L > 10 and F32 � 2, where the Fresnel
number F32 is defined here as

F32 = 2πa2

λ32L
= k32a2

L
= (k32a)2

k32L
, (26)

with λ32 = 2π/k32.
Equation (20) hides the fact that the spontaneous and

phase-matched components actually depend on different
properties of the initial state vector. The spontaneous com-
ponent is proportional to the initial atomic state popula-
tion 〈σ ( j)

33 (0)〉 = ρ33(0), while the phase-matched component

is proportional to the 1 − 3 coherence 〈σ ( j)
31 (0)σ ( j′ )

13 (0)〉 =
ρ33(0)eiκ·R j j′ between atoms j and j′. For our initial state
vector, both quantities are proportional to ρ33(0), which is
why the off-diagonal density matrix element ρ13(0) does not
appear explicitly in Eq. (20).

The maximum contribution from the phase-matched com-
ponent occurs for θB = 0 [20],

Gθ̂B,φ̂B
(0) ∼ 3(N − 1)

4(k32a)2 = 3Nλ2
32L

16π
. (27)

For phase-matched emission, we would normally expect that
Gθ̂B,φ̂B

(0, φB) is of order N. Here we see that the contribution

is reduced by 1/(k32a)2 This reduction can be given a simple
physical explanation. For phase-matched emission to occur,
the first photon to be emitted must be in the forward direction.
Out of all possible emission directions, the probability of
emission into a solid angle that will allow for phase-matched
emission is 1/(k32a)2. As a consequence, the phase-matched
emission on the lower transition is reduced by this factor.

As we move away from the phase-matched direction θB =
0, the signal is no longer unpolarized, Gθ̂B

(θB) �= Gφ̂B
(θB).

The ratio of the θ̂B to the φ̂B phase-matched component is
r(θB). In Fig. 2 we plot Gθ̂B

(θB)/(N − 1) and Gφ̂B
(θB)/(N −

1) for k32a = 20, k21a = 15, k32L = 40, k21L = 30, κL =
70, F32 = 10. The exact results given by Eq. (B48) of
Appendix B are represented by the solid curves and the ap-
proximate solutions given by Eqs. (23) by the dashed ones,
with Gθ̂B

(θB)/(N − 1) lying below Gφ̂B
(θB)/(N − 1).

We can integrate the intensity over time and over solid
angle �B to get the total energy WB radiated by the atoms on
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FIG. 2. Phase-matched contributions Gθ̂B
(θB )/(N − 1) and

Gφ̂B
(θB )/(N − 1) for k32a = 20, k21a = 15, k32L = 40, k21L = 30,

κL = 70. The exact results are represented by the solid curves and
the approximate solutions by the dashed ones. The curve for with
Gθ̂B

(θB )/(N − 1) lies below that for Gφ̂B
(θB )/(N − 1).

the lower transition,

WB =
∫ ∞

0
dtr

∫
d�B

[
Iθ̂B

(�B; tr ) + Iφ̂B
(�B; tr )

]
= N

h̄ω21γ2

�2
ρ33(0)(1 + C1), (28)

where

C1 = 1

8π

∫
d�B

[
Gθ̂B

(θB) + Gφ̂B
(θB)

]
. (29)

Within the RE model, to conserve energy we must have

�2 = γ2(1 + C1). (30)

For k32L, k21L  4π , the Gφ̂B
(θB) integral in Eq. (29) can

be approximated as

1

8π

∫
d�BGφ̂B

(θB) ≈ 3(N − 1)

4(k32a)2

1

4

∫ ∞

0
θBdθB

× sin2
[
k21L(1 + k21/k32)θ2

B/4
]

[
k21L(1 + k21/k32)θ2

B/4
]2

= 3π (N − 1)

16(k32a)2k21L(1 + k21/k32)
. (31)

The integral involving Gθ̂B
(θB) in Eq. (29) cannot be done ana-

lytically owing to the factor r(θB) appearing in Eq. (23a). This
factor reduces the Gθ̂B

(θB) contribution to the energy from that
of the Gφ̂B

(θB) component. A very rough approximation for
the reduction can be obtained by expanding

r(θB) ∼ 1 −
(

k2
21

k2
32

+ 2
k21

k32
+ 1

)
θ2

B (32)

and then replacing θ2
B by its average value from θB = 0 to

θmax
B = √

4π/k21L(1 + k21/k32), with θmax
B chosen as the first

zero of the angular distribution. In this manner we obtain

C1 ≈ 3π (N − 1)

16(k32a)2k21L(1 + k21/k32)

×
[

2 − 4π

3k21L(1 + k21/k32)

(
k2

21

k2
32

+ 2
k21

k32
+ 1

)]
.

(33)

FIG. 3. Cooperativity parameter C1/(N − 1) [multiplied by
(k32a)2] for copropagating excitation as a function of kL for ka = 20
with k21/k32 = 0.75. The solid, red curve is the exact solution, and
the blue, dashed curve the approximate solution given by Eq. (33).

In Fig. 3 we plot C1/(N − 1) as a function of k21L for k32a =
20 with k21/k32 = 0.75. The result obtained from Eq. (29)
integrated over solid angle is represented by the solid curve
and the approximate solution obtained using Eq. (33) by the
dashed curve. As can be seen, the agreement becomes good
for k21L > 30 [21].

We see that C1 is of order N/[(k32a)2(k21L)]. As a con-
sequence, C1 � 1 if the atoms are separated, on average, by
more than a wavelength, as is assumed. Even though C1 � 1
and modifies the decay rate only slightly (and leads to a
phase-matched contribution to the signal that is much less
than the spontaneous component), the fact that C1 is of order
N/[(k32a)2(k21L)] is somewhat surprising. One might think
that C1 would be of order N/(k21k32a2)2 with a factor of
1/(k23a)2 coming from the integral over �A and another factor
of 1/(k21a)2 coming from the integral over �B, corresponding
to the small solid angle for phase-matched emission. However,
this underestimates the energy. As is discussed in more detail
in Appendix B, for certain transverse directions of phase-
matched emission, there is a phase cancellation that results in
an angular distribution for Gθ̂B,φ̂B

(θB) that is governed solely

by the sin2[M(θB)]/[M(θB)]2 factor in Eqs. (23). The angular
integration over �B then leads to a factor of order 1/k21L.

B. Counterpropagating excitation fields

We now examine the corresponding result for counterprop-
agating field excitation with nearly equal magnitude propaga-
tion vectors, k21 ≈ k32, |k21 − k32|L � 1, | k21 − k32|a � 1,
but |ω32 − ω21|  (γ2 + γ3). In this limit, it is possible to
have phase matching, regardless of the direction of emission
of the first photon. We might expect the result to be somewhat
independent of θB; however, this is not necessarily true in the
RE model since the solid angle for phase-matched emission
varies with θB (or θA).

The intensity is

Icp

θ̂B
(�B; t ) = Icp

φ̂B
(�B; t )

= N
h̄ω21γ2γ3

8π

e−�2tr − e−γ3tr

γ3 − �2
ρ33(0)�(tr )

× [1 + Gcp(θB)], (34)
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FIG. 4. Ratio Gcp(π/2)/Gcp(0) as a function of kL for ka = 20.
The red, solid curve is the exact result, and the dashed, blue curve is
the approximate result obtained using Eq. (37).

where the phase-matched component Gcp(θB) is given approx-
imately by (see Appendix B)

Gcp(θB) ≈ 3(N − 1)

4ka
√

2π

∫ ∞

−∞
dεe−k2a2(ε cos θB−ε2 sin θB/2)2

/2

× sin2 [kLε sin (θB)/2]

(kLε sin (θB)/2)2 . (35)

For counterpropagating excitation, the phase-matched com-
ponent is unpolarized, in contrast to that for copropagating
excitation. Equation (35) provides an excellent approximation
to the exact result, provided ka > 10, kL > 10, and F32 � 1.
In the forward direction (θB = 0) the result is unchanged from
the copropagating case.

Gcp

θ̂B,φ̂B
(0) ≈ 3(N − 1)

4(ka)2 . (36)

A characteristic departure from this value occurs for θB =
π/2, where

Gcp(π/2) ≈ 3(N − 1)

4ka
√

2π

∫ ∞

−∞
dεe−k2a2ε4/8 sin2 [kLε/2]

(kLε/2)2 . (37)

The ratio Gcp(π/2)/Gcp(0) decreases with increasing kL for
fixed ka. In Fig. 4 we plot Gcp(π/2)/Gcp(0) as a function of
kL for ka = 20. The exact result obtained from Eqs. (B47)
of Appendix B (with k21a ≈ k32a ≡ ka and κL = 0) is rep-
resented by the solid curve and the approximate solution
obtained using Eq. (37) by the dashed curve. As can be seen,
the approximate solution agrees with the exact solution for
kL > 10 [21]. In Fig. 5 we plot Gcp(θB)/(N − 1) as a function
of θB for ka = 20 and kL = 20 (upper curve), 40 (mid-
dle curve), and 60 (lower curve). The exact result obtained
from Eq. (B47) and the approximate solution obtained using
Eq. (35) give virtually identical results for these parameters.

The total energy radiated by the atoms is still given by
Eq. (28) with

W cp
B = N

h̄ω21γ2

�2
ρ33(0)

(
1 + Ccp

1

)
, (38)

FIG. 5. Phase-matched component Gcp(θB )/(N − 1) as a func-
tion of θb for ka = 20 and kL = 20 (red, upper curve), 40 (blue,
middle curve), and 60 (green, lower curve).

where

Ccp
1 = 1

4π

∫
d�BGφ̂B

(θB)

= 3(N − 1)

8ka
√

2π

∫ π

0
sin θB dθB

×
∫ ∞

−∞
dεe−k2a2(ε cos θB−ε2 sin θB/2)2

/2

× sin2 [kLε sin (θB)/2]

(kLε sin (θB)/2)2 . (39)

Within the RE model, to conserve energy we must have

�
cp
2 = γ2

(
1 + Ccp

1

)
. (40)

A very rough approximation for Ccp
1 can be obtained

by replacing the sin2[kLε sin(θB)/2]/(kLε sin(θB)/2)2 by√
2πζ exp[−k2a2(sin2 θB)/8], as if we had chosen a Gaussian

distribution for the longitudinal component of the density.
The factor ζ is an adjustable parameter of order unity. In this
manner, the integral can be approximated as

Ccp
1 ≈ 3(N − 1)

√
2πζ

8ka

∫ π

0
sin θB dθB

×
√

1

k2a2 cos2 θB + k2L2 sin2 θB/4

= 3(N − 1)
√

2πζ

4ka

sinh−1
(

2
kL

√
k2a2 − k2L2/4

)
√

k2a2 − k2L2/4
. (41)

In Fig. 6 we plot Ccp
1 /(N − 1) as a function of kL for ka = 20

with ζ = 0.88. The result obtained from Eq. (41) integrated
over solid angle is represented by the solid curve and the
approximate solution obtained using Eq. (41) by the dashed
curve. Similar agreement is found for other values of ka.

IV. JOINT PROBABILITY DISTRIBUTION

We next turn our attention to the joint probability distribu-
tion, proportional to the function gα,α′ (�A,�B; tr, τ ) given in
Eq. (10). Using Eqs. (10) and (5), we find that the function
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FIG. 6. Cooperativity parameter Ccp
1 /(N − 1) for counterpropa-

gating excitation as a function of kL for ka = 20 with ζ = 0.88. The
solid, red curve is the exact solution, and the blue, dashed curve the
approximate solution given by Eq. (41).

gα,α′ (�A,�B; tr, τ ) depends on factors of the type

N∑
j, j′=1

1∑
m=−1

〈
σ

( j)
3m (tr )σ ( j′ )

m′1 (tr + τ )σ ( j′′ )
1q (tr + τ )σ ( j′′′ )

q′3 (tr )
〉
. (42)

It is shown in Appendix B that the only nonvanishing con-
tributions are those for which j = j′ = j′′ = j′′′ and for
which ( j = j′, j′′ = j′′′, j �= j′′). The quantum regression

theorem [22] is then used to obtain the needed expecta-
tion values. Explicitly, we find the joint probability density
PαA,αB (�A,�B; tr, τ ) for a photon having polarization αA to
be detected at detector A at time tr and a photon having
polarization αB to be detected at detector B at time tr + τ is
given by

PαA,αB (�A,�B; tr, τ )

= 3

(8π )2 Nγ2γ3e−γ3tr e−�2τ P̃αA,αB (�A,�B), (43)

where

P̃αA,αB (�A,�B) = �αA,αB (�A,�B)[1 + G(�A,�B)], (44)

with

�θ̂A,θ̂B
(�A,�B) = [cos θA cos θB cos (φA − φB)

+ sin θA sin θB]2, (45a)

�θ̂A,φ̂B
(�A,�B) = cos2 θA sin2 (φA − φB), (45b)

�φ̂A,θ̂B
(�A,�B) = cos2 θB sin2 (φA − φB), (45c)

�φ̂A,φ̂B
(�A,�B) = cos2 (φA − φB), (45d)

and

G(�A,�B) = (N − 1)
sin2 [(κ − k32 cos θA − k21 cos θB)L/2]

[(κ − k32 cos θA − k21 cos θB)L/2]2 exp

{
−
[

k2
32a2 sin2 θA/2 + k2

21a2 sin2 θB/2

+k32k21a2 sin θA sin θB cos (φA − φB)

]}
. (46)

The polarizations �α,α′ (�A,�B) are those associated with
cascade emission from a single isolated atom. The phase-
matched contribution to the joint probability density modifies
the single-atom result.

The decay rate �2 is chosen so as to conserve probability,

�2 = γ2(1 + C1) (47)

with

C1 = 3

(8π )2 N
∫

d�A

∫
d�B

×
∑
αA,αB

�αA,αB (�A,�B)G(�A,�B), (48)

which is identical to that given in Eq. (29).
The decay rate has been chosen in a manner consistent with

the RE approach. The probability to find a photon emitted on
the second transition is given by

PαB (�B, tr ) =
∫ tr

0
dt ′
∫

d�APαA,αB (�A,�B; t ′, tr − t ′),

(49)

which reproduces Eq. (20). So far so good. However, using
the RE approach for this cascade emission, we run into some
problems for emission on the upper transition, given by

PαA (�A, tr ) =
∫ ∞

0
dτ

∫
d�BPαA,αB (�A,�B; tr, τ ). (50)

Since G(�A,�B) is unchanged on the exchanges �A ↔ �B

and k21 ↔ k32, the field emitted on the upper transition is
polarized in a manner similar to that on the second transition,
whereas PαA (�A, tr ) must be isotropic and unpolarized [see
Eq. (17)]. In other words, the assumption of a single decay rate
for all sublevels of state 2 leads to an unphysical prediction for
the polarization of the field radiated on the upper transition. A
proper treatment, in which an atom in state 2 can exchange its
energy with other ground-state atoms, would not lead to such
inconsistencies.

A. Copropagating excitation fields

If the fields are copropagating, then κ = (k32 + k21) and
the maximum phase-matched probability occurs for θA =
θB = 0, for which

P̃θ̂A,θ̂B
(θA = θB = 0, φA, φB) = P̃φ̂A,φ̂B

(θA = θB = 0, φA, φB)

= cos2 (φA − φB)[1 + (N − 1)], (51a)

Pθ̂A,φ̂B
(θA = θB = 0, φA, φB) = Pφ̂A,θ̂B

(θA = θB = 0, φA, φB)

= sin2 (φA − φB)[1 + (N − 1)]. (51b)

The fields are unpolarized in the forward direction [note that
θ̂ = x̂ and θ̂ = ŷ in the forward direction and the cos2(φA −
φB) and sin2(φA − φ) factors simply represent projections
onto these axes]. The phase-matched component is (N − 1)

063713-7



P. R. BERMAN AND A. KUZMICH PHYSICAL REVIEW A 108, 063713 (2023)

FIG. 7. Dimensionless joint probability density P̃(�A, �B ) as
a function of θB for θA = 0 (red, solid curve), 0.1 (blue, dashed
curve), π/2 (green, solid line), with k21a = 10, k32a = 15, k21L =
20, k32L = 30, N = 100, φB = φA.

times the spontaneous component. Of course, the measured
signals are calculated by averaging the field intensities over
the detector areas. If the detector areas are matched to the
angular width of the signals, Eqs. (51) remain valid for the
measured joint probabilities. Once θA becomes larger 1/k32a,
the phase-matched contribution to the signal becomes neg-
ligibly small, leaving only the spontaneous contribution. To
illustrate this dependence, in Fig. 7 we plot P̃(�A,�B) as a
function of θB for θA = 0 (red, solid curve), 0.1 (blue, dashed
curve), π/2 (green, solid line), with k21a = 10, k32a = 15,
k21L = 20, k32L = 30, N = 100, φB = φA. From Eq. (46),
one can deduce that there can phase matching only if θA �√

2/k32a.

B. Counterpropagating excitation fields

We now set k32 = k21 and κ = 0. The maximum phase-
matched probability occurs for θB = π − θA and φB = φA ±
π . In that limit,

P̃cp

θ̂A,θ̂B
(θB = π − θA, φB = φA ± π )

= P̃cp

φ̂A,φ̂B
(θB = π − θA, φB = φA ± π )

= [1 + (N − 1)], (52a)

P̃θ̂A,φ̂B
(θB = π − θA, φB = φA ± π )

= P̃φ̂A,θ̂B
(θB = π − θA, φB = φA ± π ) = 0. (52b)

The fields are unpolarized in the phase-matched direction,
but the polarizations are correlated. In contrast to the coprop-
agating case, phase matching now occurs for any θA, provided
field B is counterpropagating relative to field A. In Fig. 8 we
plot P̃cp(�A,�B) as a function of θB for θA = 0.5 (red, solid
curve), π/2 (blue, dashed curve), and 2.5 (black, dotted curve)
with k21a = 10, k32a = 15, k21L = 20, k32L = 30, N = 100,
φB = φA + π . As can be seen, there can now be phase match-
ing for any θA.

V. DISCUSSION

We have use a source-field approach to calculate the inten-
sity and polarizations of radiation emitted from an ensemble

FIG. 8. Dimensionless probability density P̃cp(�A, �B ) as a
function of θB for θA = 0.5 (red, solid curve), π/2 (blue, dashed
curve), and 2.5 (black, dotted curve) with k21a = 10, k32a = 15,
k21L = 20, k32L = 30, N = 100, φB = φA + π .

of atoms having a cascade level scheme. The atoms were
prepared either in a factorized state for which the prob-
ability of having more than one excitation was negligible
or in a spatially phased single excitation state. The upper-
most level of each atom had angular momentum J = 0,
the intermediate state J = 1, and the ground state J = 0.
For this system, the field intensity on the upper transition
is isotropic and unpolarized. The radiation emitted on the
lower transition has two components, a “spontaneous” com-
ponent which is unpolarized and a phase-matched component
which can be polarized. Phase matching can occur if the
atoms are excited using copropagating fields provided the
radiation emitted on both transitions is confined to a small
angular region about the direction of excitation. If coun-
terpropagating fields are used to excite the atoms, phase
matching can be achieved provided the radiation on the
two transitions is emitted in opposite directions (and pro-
vided the transition frequencies are nearly equal). The joint
probability distribution for both excitation schemes was also
calculated.

To allow for collective emission on the lower transition,
the Rehler-Eberly (RE) model was adopted, in which it is
assumed that each atom decays in an identical fashion. In a
source-field approach, the RE model correctly leads to the
prediction that the radiation emitted on the upper transition
is isotropic and unpolarized. It also gives a good semiquan-
titative picture of the collective enhancement of the radiation
emitted on the lower transition. However, if the RE model is
used to calculate the joint probability density and if that joint
probability density is used to calculate the radiation emitted
on the upper transition by tracing over the radiation emitted
on the lower transition, the RE model leads to the incorrect
prediction that the radiation emitted on the upper transition is
polarized and anisotropic.

Instead of using a source-field approach, one can develop a
theory based on state amplitudes. That is, as long as there is at
most one excitation in the system, one can calculate the proba-
bility as t ∼ ∞ that all the atoms are in their ground states and
photons having propagation vectors k32 and k21 are emitted
with polarizations αA and αB. The advantage of using this
approach is that atom-atom interactions can be included ex-
actly for fixed positions of the atoms. In such a model, energy
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is always conserved and and the field emitted on the upper
transition is unpolarized and isotropic. Collective effects are
included naturally in such a model, although one is faced with
solving 3N coupled differential equations. If N = 2, one can
obtain an analytic expression for the joint probability density
PαA,αB (�A,�B) that has both spontaneous and phase-matched
components. In contrast to the RE model, the integral over �B

now leads to unpolarized and isotropic emission on the upper
transition. Moreover, it turns out that, for counterpropagating
excitation and k21 = k32, the radiation emitted on the lower
transition is also unpolarized and isotropic, in contrast to the
RE model prediction.

The amplitude approach is closely related to a state-
trajectory approach that has been used to analyze phase-
matched cascade emission [6]. In such an approach, the clock
is started when a photocount is recorded on the upper transi-
tion, projecting the atoms into a spatially phased superposition
of their ground and intermediate states. In effect, one creates
a new initial state that can be used to calculate the emission
on the lower transition.

If the single excitation requirement is relaxed, new physics
can emerge. Suppose, for example, that all the atoms are ex-
cited initially. Then it is possible for the ensemble to undergo
superradiant emission of the type considered by Dicke [13]
for completely inverted systems. At the other extreme of a
single excitation considered in this paper, we encounter the
type of superradiance associated with spatial phase matching.
For arbitrary initial conditions, there may be a competition
between the two mechanisms.
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APPENDIX A: SOURCE-FIELD EQUATIONS

A general expression for the source field in the radiation
zone resulting associated with dipole transitions from a state
having angular momentum H and z component of angular
momentum mH to a lower energy state having angular mo-
mentum G and z component of angular momentum mG is

given by [23]

E+
s (R, t ) =

(
1

4πε0c2R

) ∑
mG,mH

3∑
α,β=1

N∑
j=1

ω2
HG〈GmG|μβ |HmH 〉

× [ fαβ − gαβ (θ, φ)]ûασ
( j)
− (GmG, HmH ; t

− |R − R j |/c), (A1)

where

fαβ = (2/3)δαβ, (A2a)

g11(θ, φ) = −3 cos2 θ − 1

6
+ sin2 θ cos (2φ)

2
, (A2b)

g22(θ, φ) = −3 cos2 θ − 1

6
− sin2 θ cos (2φ)

2
, (A2c)

g33(θ, φ) = 3 cos2 θ − 1

3
, (A2d)

g12(θ, φ) = g21 = sin2 θ sin (2φ)/2, (A2e)

g13(θ, φ) = g31 = sin θ cos θ cos φ, (A2f)

g23(θ, φ) = g32 = sin θ cos θ sin φ, (A2g)

û1 = ûx = sin θ cos φûr + cos θ cos φûθ − sin φûφ,

(A3a)

û2 = ûy = sin θ sin φûr + cos θ sin φûθ + sin φûφ,

(A3b)

û3 = ûz = cos θ ûr − sin θ ûθ , (A3c)

μ1 = μx, μ2 = μy, μ3 = μz. (A4)

μ is the dipole moment operator, ωHG is a transition frequency,
σ

( j)
− (GmG, HmH ; t − |R − R j |/c) is a lowering operator, and

θ and φ are the polar angles of R. It is assumed that the
radiated field consists of components whose frequencies are
close to those of the atomic transitions.

Carrying out the summation, it is possible to show that

E+
s (R, t ) =

(
1

4πε0c2R

) ∑
GmG,HmH

N∑
j=1

ω2
HGQ(GmG, HmH )

× σ
( j)
− (GmG, HmH ; t − |R − R j |/c). (A5)

where

Q(GJGmG, HJH mH ) = 〈G‖μ‖H〉√
2(1 + 2G)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
JH 1 JG

mH −1 mG

]
(−iûφ + cos θ ûθ )e−iφ

+
[

JH 1 JG

mH 1 mG

]
(−iûφ − cos θ ûθ )eiφ

−√
2

[
JH 1 JG

mH 0 mG

]
sin θ ûθ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, (A6)

〈G‖μ‖H〉 is a reduced matrix element, and the square brackets are Clebsch-Gordan coefficients.
In the radiation zone we can write the lowering operators in an interaction representation as

σ
( j)
− (GJGmG, HJH mH ; t − |R − R j |/c) = σ

( j)I
− (GJGmG, HJH mH ; t − |R − R j |/c)ei(kHGR−ωHGt )e−ikHG ·R j , (A7)
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where kHG = ωHGR/(cR). Thus

E+
s (R, t ) =

(
1

4πε0c2R

) ∑
GmG,HmH

N∑
j=1

ω2
HGQ(GJGmG, HJH mH )ei(kHGR−ωHGt )e−ikHG ·R j σ

( j)I
− (GJGmG, HJH mH ; t − |R − R j |/c).

(A8)

For our specific level scheme of Fig. 1 and with the neglect of retardation across the atomic ensemble, the field operator is given
by Eq. (5) with Qm3 ≡ Q(21m, 300), Q1m ≡ Q(100, 21m), σ

( j)
1m (t ) ≡ σ

( j)I
− (100, 21m; t ), and σ

( j)
m3 (t ) ≡ σ

( j)I
− (21m, 300; t ).

APPENDIX B: CALCULATION DETAILS

In an interaction representation, the Hamiltonian for the atom-vacuum field interaction for our J = 0 − 1 − 0 three-level
system is

H (t ) = −i

(
h̄ω32

2ε0V

)1/2 ∑
k,λ

N∑
j=1

1∑
m=−1

μ3m · ε
(λ)
k σ

( j)
3m (t )akλ

(t )eik·R j e−i(ωk−ω32 )t − i

(
h̄ω21

2ε0V

)1/2 ∑
k,λ

N∑
j=1

1∑
m=−1

μm1 · ε
(λ)
k σ

( j)
m1 (t )akλ

(t )

× eik·R j e−i(ωk−ω21 )t + adjoint, (B1)

where

ε
(θ )
k = cos θk cos φkx̂ + cos θk sin φkŷ − sin θkẑ, (B2)

ε
(φ)
k = − sin φkx̂ + cos φkŷ, (B3)

k̂ = sin θk cos φk x̂ + sin θk sin φk ŷ + cos θk ẑ, (B4)

and we have evaluated the radiated field frequencies at the
atomic transition frequencies. Starting from this Hamilto-
nian, and using the evolution equations for any Heisenberg
operator O(t ),

Ȯ(t ) = 1

ih̄
[O(t ), H (t )], (B5)

we can obtain the evolution equations for the various expecta-
tion values that are needed in the calculation.

Within the RE model, the evolution equations for the ex-
pectation values of the atomic operators are

〈
σ̇

( j)
m3 (t )

〉 = −�2 + γ3

2

〈
σ

( j)
m3 (t )

〉
, (B6a)〈

σ̇
( j)
33 (t )

〉 = −γ3
〈
σ

( j)
33 (t )

〉
, (B6b)

〈
σ̇

( j)
1m (t )

〉 = −�2

2

〈
σ

( j)
1m (t )

〉
, (B6c)

〈
σ̇

( j)
13 (t )

〉 = −γ3

2
e−γ3t/2

〈
σ

( j)
13 (t )

〉
, (B6d)〈

σ̇
( j)
mm′ (t )

〉 = −�2
〈
σ

( j)
mm′ (t )

〉+ γ3
〈
σ

( j)
33 (t )

〉
. (B6e)

The quantities σ
( j)
33 (t ) and σ

( j)
mm(t ) are atomic population opera-

tors, while σ
( j)
mm′ (t ) for m �= m′ is an atomic Zeeman coherence

operator. It has been assumed that the frequency difference
|ω32 − ω21|  (γ2 + γ3), allowing us to ignore any transfer of
electronic state coherence produced by spontaneous emission.

At time t = 0, the atomic state operators are

σ
( j)
m3 (0) = |2, m〉( j)〈3, 0|( j), (B7a)

σ
( j)
33 (0) = |3, 0〉( j)〈3, 0|( j), (B7b)

σ
( j)
1m (0) = |1, 0〉( j)〈2, m|( j), (B7c)

σ
( j)
13 (0) = |1, 0〉( j)〈3, 0|( j), (B7d)

σ
( j)
mm′ (0) = |2, m〉( j)

〈
2, m′∣∣( j)

. (B7e)

It is now a relatively simple task to calculate the field
intensities using Eqs. (5), (B5), (3), and (4). In doing
so, one encounters factors of the type 〈σ ( j)

3m (tr )σ ( j′ )
m′3 (tr )〉 or

〈σ ( j)
m1 (tr )σ ( j′ )

1m′ (tr )〉.

1. Field intensities

a. Upper transition. Using Eqs. (5) and (9), we find that
at detector A, the intensity per unit solid angle IθA,φA (�A; t )
having polarization θ̂A or φ̂A is given by

Iθ̂A,φ̂A
(�A; t ) = 3h̄ω32γ3

8π

N∑
j, j′=1

1∑
m.m′=−1

[Qm3(θA, φA)]∗
θ̂A,φ̂A

× [Qm′3(θA, φA)]θ̂A,φ̂A

〈
σ

( j)
3m (tr )σ ( j′ )

m′3 (tr )
〉

× e−ik32·R j j′ , (B8)

where

k32 = (ω32/c)(DA/DA)

= (sin θA cos φAx̂ + sin θA sin φAŷ + cos θAẑ) (B9)

and

R j j′ = R j − R j′ . (B10)
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First, we calculate

d

dt

〈[
σ

( j)
3m (t )σ ( j′ )

m′3 (t )
]〉 = 〈[

σ
( j)
3m (t )σ̇ ( j′ )

m′3 (t )
]〉

+ adjoint(m ⇐⇒ m′). (B11)

If j = j′, we can use the identity

σ
( j)
pp′ (t )σ ( j)

qq′ (t ) = σ
( j)
pq′ (t )δp′,q, (B12)

to obtain〈
σ

( j)
3m (tr )σ ( j)

m′3(tr )
〉 = 〈

σ
( j)
33 (tr )

〉
δm,m′ = ρ

( j)
33 (0)e−γ3tr δm,m′ ,

(B13)

where

ρ33(0) =
{

|β|2 factorized state
1
N single excitation state

. (B14)

If j �= j′, one might think that〈
σ

( j)
pp′ (t )σ ( j′ )

qq′ (t )
〉 = 〈

σ
( j)
pp′ (t )

〉〈
σ

( j′ )
qq′ (t )

〉
, (B15)

since the atoms decay independently, but, in general, this is
need not be the case if the atoms are prepared in an entangled
state. On the other hand, when j �= j′,

σ
( j)
pp′ (t )σ ( j′ )

qq′ (t ) = σ
( j′ )
qq′ (t )σ ( j)

pp′ (t ). (B16)

For j �= j′, we use Eq. (B5) to obtain

σ
( j)
3m (t )σ̇ ( j′ )

m′3 (t ) = −1

h̄

∑
k,λ

(
h̄ω32

2ε0V

)1/2 N∑
j′=1

1∑
m′′=−1

μ3m′′ · ε
(λ)
k σ

( j)
3m (t )

[
σ

( j′ )
m′m′′ (t ) − σ

( j′ )
33 (t )δm′,m′′

]
akλ

(t )eik·R j′ e−i(ωk−ω32 )t

− 1

h̄

∑
k,λ

(
h̄ωk

2ε0V

)1/2 N∑
j′=1

[
μm′1 · ε

(λ)
k

]∗
a†

kλ
(t )σ ( j)

3m (t )σ ( j′ )
13 (t )eik·R j′ e−i(ωk−ω21 )t , (B17)

which is written in normal order form. From Eqs. (B1) and (B5), it follows that

ȧkλ
(t ) = 1

h̄

(
h̄ω32

2ε0V

)1/2 N∑
j′′=1

1∑
m′′′=−1

[
μ3m′′′ · ε

(λ)
k

]∗
σ

( j′′ )
m′′′3(t )e−ik·R j′′ ei(ωk−ω32 )t + 1

h̄

(
h̄ω21

2ε0V

)1/2 N∑
j′′=1

1∑
m′′′=−1

[
μm′′′1 · ε

(λ)
k

]∗
σ

( j′′ )
1m′′′ (t )

× e−ik·R j′′ ei(ωk−ω21 )t . (B18)

We now use the standard approach [23] of formally integrating Eq. (B18),

akλ
(t ) = akλ

(0) + 1

h̄

(
h̄ωk

2ε0V

)1/2 N∑
j′′=1

1∑
m′′′=−1

[
μ3m′′′ · ε

(λ)
k

]∗ ∫ t

0
dt ′σ ( j′′ )

m′′′3(t ′)e−ik·R j′′ ei(ωk−ω32 )t ′

+ 1

h̄

(
h̄ωk

2ε0V

)1/2 N∑
j′′=1

1∑
m′′′=−1

[
μm′′′1 · ε

(λ)
k

]∗ ∫ t

0
dt ′σ ( j)

1m′′′ (t )e−ik·R j′′ ei(ωk−ω21 )t ′
, (B19)

and substituting it back into Eq. (B17). Since Eq. (B17) is normal ordered, all terms containing akλ
(0) and a†

kλ
(0) will vanish

when expectation values are taken. When the summation over {k, λ} in Eq. (B17) is carried out, there will be contributions to
σ̇

( j′ )
m′3 (t ) from atoms having j′′ �= j′; however since we are neglecting atom-atom interactions, we keep only those terms with

j′′ = j′. The summation over k is converted to an integral over k, which, in turn, leads to a delta function δ(t − t ′), so the atomic
operators are all evaluated at the same time and we can use Eqs. (B12) and (B16). In this manner,

〈
σ

( j)
3m (t )σ̇ ( j′ )

m′3 (t )
〉 = − (γ3 + �2)

2

〈
σ

( j)
3m (t )σ ( j′ )

m′3 (t )
〉
. (B20)

As a consequence, for arbitrary j and j′, we obtain

d

dt

〈
σ

( j)
3m (t )σ ( j′ )

m′3 (t )
〉 = −γ3

〈
σ

( j)
33 (t )

〉
δm,m′δ j, j′ − (γ3 + �2)

〈
σ

( j)
3m (t )σ ( j′ )

m′3 (t )
〉
(1 − δ j, j′ ), (B21)

having solution 〈
σ

( j)
3m (t )σ ( j′ )

m′3 (t )
〉 = 〈

σ
( j)
33 (0)

〉
e−γ3tδm,m′δ j, j′ + 〈

σ
( j)
3m (0)σ ( j′ )

m′3 (0)
〉
e−(γ3+�2 )t (1 − δ j, j′ ). (B22)

For the initial states given in Eqs. (1) or (2), this reduces to〈
σ

( j)
3m (t )σ ( j′ )

m′3 (t )
〉 = ρ

( j)
33 (0)e−γ3tδm,m′δ j, j′ . (B23)

The Kronecker delta δ j, j′ is present since we have allowed for at most one excitation in our initial state.
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When Eq. (B23) is substituted into Eq. (B8), the expression for the field intensity reduces to

Iθ̂A,φ̂A
(�A; t ) = 3h̄ω32γ3

8π
ρ

( j)
33 (0)e−γ3tr

1∑
m.m′=−1

[Qm3(θA, φA)]∗
θ̂A,φ̂A

[Qm3(θA, φA)]θ̂A,φ̂A
. (B24)

Using the identity

1∑
m=−1

[Qm3(θA, φA)]∗
θ̂A,φ̂A

[Qm3(θA, φA)]θ̂A,φ̂A
=

1∑
m=−1

[Q1m(θB, φB)]∗
θ̂B,φ̂B

[Qm1(θB, φB)]θ̂B,φ̂B
= 1

3
, (B25)

we arrive at Eq. (17). This result is independent of whether or not the excitation fields are co- or counterpropagating. In contrast
the emission on the lower transition is different for co- or counterpropagating excitation fields.

a. Lower transition

For emission on the lower transition, the calculation is somewhat more involved. The intensity at detector B, calculated from
Eqs. (9), (5), and (16), is given by

Iθ̂B,φ̂B
(�B; t ) = 9h̄ω21γ2

8π

N∑
j j′=1

1∑
mm′=−1

[Q1m(θB, φB)]∗
θ̂B,φ̂B

[Qm′1(θB, φB)]θ̂B,φ̂B

〈
σ

( j)
m1 (tr )σ ( j′ )

1m′ (tr )
〉
e−ik21·R j j′ , (B26)

where

k21 = (ω21/c)(DB/DB)(sin θB cos φBx̂ + sin θB sin φBŷ + cos θBẑ). (B27)

The differential equation for 〈σ ( j)
m1 (t )σ ( j′ )

1m′ (t )〉 is

d

dt

〈
σ

( j)
m1 (t )σ ( j′ )

1m′ (t )
〉 = 〈

σ
( j)
m1 (t )σ̇ ( j′ )

1m′ (t )
〉+ adjoint(m ⇐⇒ m′). (B28)

Following the same procedure we find used to find σ
( j)
3m (t )σ̇ ( j′ )

m′3 (t ), we obtain

σ
( j)
m1 (t )σ̇ ( j′ )

1m′ (t ) = −1

h̄

∑
k,λ

(
h̄ωk

2ε0V

)1/2 N∑
j′=1

1∑
m′′=−1

μ3m′′ · ε
(λ)
k σ

( j)
2m (t )

[
σ

( j′ )
m′m′′ (t ) − σ

( j′ )
33 (t )δm′,m′′

]
akλ

(t )eik·R j′ e−i(ωk−ω32 )t

− 1

h̄

∑
k,λ

(
h̄ωk

2ε0V

)1/2 N∑
j′=1

[
μ3m′ · ε

(λ)
k

]∗
a†

kλ
(t )σ ( j)

m1 (t )σ ( j′ )
13 (t )eik·R j′ e−i(ωk−ω21 )t . (B29)

We substitute Eq. (B18) into Eq. (B29) and carry out the integral over k to arrive at

d

dt

〈
σ

( j)
m1 (t )σ ( j′ )

1m′ (t )
〉 = −�2

〈
σ

( j)
m1 (t )σ ( j′ )

1m′ (t )
〉+ γ j j′;mm′

〈
σ

( j)
31 (t )σ ( j′ )

13 (t )
〉
, (B30)

having solution

〈
σ

( j)
m1 (t )σ ( j′ )

1m′ (t )
〉 = 〈

σ
( j)
m1 (0)σ ( j′ )

1m′ (0)
〉
e−�2t + γ j j′;mm′

∫ t

0
dt ′e−�2(t−t ′ )〈σ ( j)

31 (t ′)σ ( j′ )
13 (t ′)

〉
, (B31)

where

γ j j′;mm′ = γ3
9

8π |〈2‖μ‖3〉|2
∑

λ

∫
d�A

[
μ3m′ · ε

(λ)
k32

]∗[
μ3m · ε

(λ)
k32

]
e−ik32·R j j′ , (B32)

and 〈σ ( j)
31 (t )σ ( j′ )

13 (t )〉 satisfies the differential equation

d

dt

〈
σ

( j)
31 (t )σ ( j′ )

13 (t )
〉 = −γ3

〈
σ

( j)
31 (t )σ ( j′ )

13 (t )
〉
. (B33)

The second term in Eq. (B31) reflects the fact that the relative spatial phase of the 1-3 coherence between different atoms that
is created by the excitation fields is transferred to level 2 via spontaneous emission. Note that γ j j;mm′ = γ3δmm′ . The solution of
Eq. (B33) is 〈

σ
( j)
31 (t )σ ( j′ )

13 (t )
〉 = e−γ3t

〈
σ

( j)
31 (0)σ ( j′ )

13 (0)
〉 = e−γ3tρ33(0)eiκ·R j j′ . (B34)

Although 〈σ ( j)
31 (0)σ ( j′ )

13 (0)〉 = ρ33(0)eiκ·R j j′ for our choice of initial conditions, it is important to note that, when j �= j′, the

nonvanishing of 〈σ ( j)
31 (0)σ ( j′ )

13 (0)〉 depends on the correlation between the excited state amplitudes of different atoms. Using
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Eqs. (B31), (B34), (B7), and (1)–(4), we then find

〈
σ

( j)
m1 (t )σ ( j′ )

1m′ (t )
〉 = γ j j′;mm′

e−�2t − e−γ3t

γ3 − �2
ρ33(0)eiκ·R j j′ , (B35)

since 〈σ ( j)
m1 (0)σ ( j′ )

1m′ (0)〉 = 0.

Substituting this solution into Eq. (B26), we find that the intensity emitted on the lower transition is

Iθ̂B,φ̂B
(�B; t ) = N

h̄ω21γ2γ3

8π

e−�2tr − e−γ3tr

γ3 − �2
ρ33(0)�(tr )

[
1 + Gθ̂B,φ̂B

(θB, φB)
]
, (B36)

where

Gθ̂B,φ̂B
(θB, φB) = 27

8π |〈2‖μ‖3〉|2
1

N

N∑
j j′=1
j �= j′

1∑
mm′=−1

[Q1m(θB, φB)]∗
θ̂B,φ̂B

[Qm′1(θB, φB)]θ̂B,φ̂B
eiκ·R j j′ e−ik21·R j j′

×
∑

λ

∫
d�A

[
μ3m′ · ε

(λ)
k32

]∗[
μ3m · ε

(λ)
k32

]
e−ik32·R j j′

= 9

8π

1

N

N∑
j j′=1
j �= j′

1∑
mm′=−1

[Q1m(θB, φB)]∗
θ̂B,φ̂B

[Qm′1(θB, φB)]θ̂B,φ̂B
eiκ·R j j′ e−ik21·R j j′

∑
λ

∫
d�Ae−ik32·R j j′

(
ε

(λ)
k32

)
m

[(
ε

(λ)
k32

)
m′
]∗

(B37)

and (ε (λ)
k32

)m is a spherical component of the polarization vector,(
ε

(θA )
k32

)
±1

= ∓ cos θA/
√

2e±iφA ,
(
ε

(θA )
k32

)
0

= − sin θA, (B38a)(
ε

(φA )
k32

)
±1

= −ie±iφA/
√

2
(
ε

(φA )
k32

)
0

= 0. (B38b)

The sums over j and j′ in Eq. (B37) are converted into spatial integrals using the prescription

N∑
j=1

f
(
R j
) �⇒

∫
dRN (R) f (R), (B39)

where N (R) is the atomic density given in Eq. (13).
a. Copropagating fields. For copropagating fields, with

κ = (kL1 + kL2)ẑ = (ω31/c)ẑ = (k32 + k21)ẑ, (B40)

Eq. (B37) reduces to

Gθ̂B,φ̂B
(θB, φB) = 9(N − 1)

8π

1∑
mm′=−1

[Q1m(θB, φB)]∗
θ̂B,φ̂B

[Qm′1(θB, φB)]θ̂B,φ̂B

∑
λ

∫
d�A

(
ε

(λ)
k32

)
m

[(
ε

(λ)
k32

)
m′
]∗

× e−K2
x a2/2e−K2

y a2/2 sin2 (KzL/2)

(KzL/2)2 , (B41)

where

K = (k32 sin θA cos φA + k21 sin θB cos φB)x̂ + (k32 sin θA sin φA + k21 sin θB sin φB)ŷ + [k32(1 − cos θA) + k21(1 − cos θB)]ẑ.

(B42)

Note that

e−K2
x a2/2e−K2

y a2/2 = e−k2
32a2 sin2 θA/2e−k2

21a2 sin2 θB/2e−k32k21a2 sin θA sin θB cos (φA−φB ). (B43)

The sum in Eq. (B41) can be evaluated as

1∑
mm′=−1

[Q1m(θB, φB)]∗
θ̂B

[Qm′1(θB, φB)]θ̂B

∑
λ

(
ε

(λ)
k32

)
m

[(
ε

(λ)
k32

)
m′
]∗

= 1

3

[
cos2 θB − sin2 θA

2

(
1 − 3 sin2 θB

)]− 1

6
sin2 θA cos2 θB cos [2(φA − φB)] + 1

6
sin (2θA) sin (2θB) cos (φA − φB),
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1∑
mm′=−1

[Q1m(θB, φB)]∗
φ̂B

[Qm′1(θB, φB)]φ̂B,

∑
λ

(
ε

(λ)
k32

)
m

[(
ε

(λ)
k32

)
m′
]∗

= 1

3

(
1 − sin2 θA

2

)
+ 1

6
sin2 θA cos [2(φA − φB)]. (B44)

The integral over φA in Eq. (B41) can be calculated analytically if the e−a cos(φA−φB ) in that equation is expanded as

e−a cos (φA−φB ) = I0(a) + 2
∞∑

m=1

Im(a)(−1)m cos [m(φA − φB)], (B45)

where Im is a Bessel function of the first kind. It then follows that

∫ 2π

0
dφA

1∑
mm′=−1

[Q1m(θB, φB)]∗
θ̂B

[Qm′1(θB, φB)]θ̂B,

∑
λ

(
ε

(λ)
k32

)
m

[(
ε

(λ)
k32

)
m′
]∗

= 2π

3

(
cos2 θB − sin2 θA

2

(
1 − 3 sin2 θB

))
I0(k32k21a2 sin θA sin θB) − π

3
sin2 θA cos2 θBI2(k32k21a2 sin θA sin θB)

− π

3
sin (2θA) sin (2θB)I1(k32k21a2 sin θA sin θB), (B46a)

∫ 2π

0
dφA

1∑
mm′=−1

[Q1m(θB, φB)]∗
φ̂B

[Qm′1(θB, φB)]φ̂B,

∑
λ

(
ε

(λ)
k32

)
m

[(
ε

(λ)
k32

)
m′
]∗

= 2π

3

(
1 − sin2 θA

2

)
I0(k32k21a2 sin θA sin θB) + π

3
sin2 θAI2(k32k21a2 sin θA sin θB), (B46b)

independent of φB.
We then find

Gθ̂B
(θB) = 3(N − 1)

4

∫ π

0
dθA sin θAe−k2

32a2 sin2 θA/2e−k2
21a2 sin2 θB/2 sin2 (KzL/2)

(KzL/2)2

×
{(

cos2 θB − sin2 θA

2

(
1 − 3 sin2 θB

))
I0(k32k21a2 sin θA sin θB) − 1

2
sin2 θA cos2 θBI2(k32k21a2 sin θA sin θB)

− 1

2
sin (2θA) sin (2θB)I1(k32k21a2 sin θA sin θB)

}
, (B47a)

Gφ̂B
(θB) = 3(N − 1)

4

∫ π

0
dθA sin θAe−k2

32a2 sin2 θA/2e−k2
21a2 sin2 θB/2 sin2 (KzL/2)

(KzL/2)2

{(
1 − sin2 θA

2

)
I0(k32k21a2 sin θA sin θB)

+ 1

2
sin2 θAI2

(
k32k21a2 sin θA sin θB

)}
. (B47b)

To get good approximations to these equations, let us assume that k32k21a2 sin θA sin θB  1, allowing us to use the asymptotic
form for the Bessel functions, Iν (z) ∼ ez/

√
2πz. In this limit

Gθ̂B
(θB) ≈ 3(N − 1)

4

∫ π

0
dθA

√
sin θA

e−(k32 sin θA−k21 sin θB )2a2/2√
2πk32k21a2 sin θB

cos2 (θA + θB)
sin2 {[k32(1 − cos θA) + k21(1 − cos θB)]L/2}

{[k32(1 − cos θA) + k21(1 − cos θB)]}2 ,

(B48a)

Gφ̂B
(θB) ≈ 3(N − 1)

4

∫ π

0
dθA

√
sin θAe−(k32 sin θA−k21 sin θB )2a2/2 sin2 {[k32(1 − cos θA) + k21(1 − cos θB)]L/2}

{[k32(1 − cos θA) + k21(1 − cos θB)]L/2}2 . (B48b)

If k32a  1 the integrand is sharply peaked at θA = sin−1(k21 sin θB/k32), provided that k21 sin θB/k32 < 1, and the Fresnel
number, defined in Eq. (26), is greater than one. [There is also a peak near θA = π − sin−1(k21 sin θB/k32), but this is killed
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by the other factors provided k32L  1, as we assume.] In those limits, we can approximate Eqs. (B48) as

Gθ̂B
(θB) ≈ 3(N − 1)

4k32a
√

2π

sin2 [M(θB)]

[M(θB)]2

2
⎛
⎝cos θB

√
1 −

(
k21

k32
sin θB

)2

− k21

k32
sin2 θB

⎞
⎠∫ π

0
dθAe−(k32 sin θA−k21 sin θB )2a2/2, (B49a)

Gφ̂B
(θB) ≈ 3(N − 1)

4k32a
√

2π

sin2 [M(θB)]

[M(θB)]2

∫ π

0
dθAe−(k32 sin θA−k21 sin θB )2a2/2, (B49b)

where

Mθ (θB) =
k32L

[
1 −

√
1 − ( k21

k32
sin θB

)2]+ k21L(1 − cos θB)

2
. (B50)

By setting θA = sin−1(k21 sin θB/k32) − ε in Eqs. (B49) and extending the resulting integral over ε from −∞ to ∞, we obtain a
value of

√
2π/ka for the integral, leading to Eqs. (23).

In the forward direction, θB = 0, we can use Eqs. (B47) to obtain

Gθ̂B,φ̂B
(0) = 3(N − 1)

4

∫ π

0
sin θAdθAe−k2

32a2 sin2 θA/2 sin2[k32L sin2(θA/2)]

[k32L sin2(θA/2)]2

(
1 − sin2 θA

2

)
. (B51)

The signal is unpolarized in the phase-matched direction. If k32a  1 the major contribution to the integral over θA comes
from θA � 1. (There is also a contribution near θA = π , but this is killed by the sin2[k32L sin2(θA/2)]/[k32L sin2(θA/2)]2 factor
provided k32L  1, as we assume) and we can approximate Gθ̂B,φ̂B

(0) by

Gθ̂B,φ̂B
(0) ≈ 3(N − 1)

4

∫ ∞

0
θAe−k2

32a2θ2
A/2 sin2

[
k32Lθ2

A/4
]

[
k32Lθ2

A/4
]2 dθA

= 3(N − 1)

4(k32a)2

{
F32

[
2 tan−1 (1/F32) − F32 ln

(
1 + 1

F 2
32

)]}
. (B52)

This expression is valid if k32L � 10 and k32a � 1. It gives the wrong value as k32L ∼ 0 (F32 ∼ ∞), since the contribution to the
integral near θA = π makes an equal contribution in this limit; that is, as F32 ∼ ∞, the exact result given by Eq. (B51) is twice
that given by Eq. (B52).

b. Counterpropagating fields. We now set k21 ≈ k32, |k21 − k32|L � 1, | k21 − k32|a � 1, but |ω32 − ω21|  (γ2 + γ3). In
this limit, we can take over all the previous results simply by setting k21a ≈ k32a ≡ ka and replacing κL = k21L + k32L ≈ 0 in
Eqs. (B47). As before, we expand the Bessel functions using their asymptotic forms to obtain

Gcp

θ̂B
(θB) ≈ 3(N − 1)

4ka
√

2π

∫ π

0
dθA

√
sin θA

sin θB
e−k2a2(sin θA−sin θB )2/2 cos2 (θA + θB)

sin2 [kL(cos θA + cos θB)/2]

(k(cos θA + cos θB)L/2)2 , (B53a)

Gcp

φ̂B
(θB) ≈ 3(N − 1)

4ka
√

2π

∫ π

0
dθA

√
sin θA

sin θB
e−k2a2(sin θA−sin θB )2/2 sin2 [kL(cos θA + cos θB)/2]

[kL(cos θA + cos θB)/2]2 . (B53b)

It is not difficult to show that Gcp

θ̂B,φ̂B
(0) is still given by Eq. (B52), but the major contribution to the integral occurs for θA ≈ π

instead of θA ≈ 0.

The integrands in Eqs. (35)) are sharply peaked at θA = π − θB, provided tan θB  1/(2kL) and sin θB  1/(ka). In this limit
the most of the factors in the integrands can be evaluated at θA = π − θB Setting θA = π − θB − ε, we can approximate Eqs. (35)
by

Gθ̂B,φ̂B
(θB) ≈ 3(N − 1)

4ka
√

2π

∫ ∞

−∞
dεe−k2a2(ε cos θB−ε2 sin θB/2)2

/2 sin2 [kLε sin (θB)/2]

[kLε sin (θB)/2]2 . (B54)

The phase-matched contribution of the intensity is unpolarized, in contrast to the copropagating case. Equation (B54) provides
an excellent approximation to the exact result, provided ka > 10, kL > 10, and F32 � 1.

2. Joint probability density

The joint probability distribution PαA,αB (�A,�B; tr, τ ) is proportional to the function gα,α′ (�A,�B; tr, τ ) given in Eq. (10).
As long as τ > 0, negligibly small errors are introduced if we neglect the field creation and annihilation operators at time t = 0
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in evaluating gα,α′ (�A,�B; tr, τ ) [1]. In this manner we obtain

PαA,αB (�A,�B; tr, τ ) ∝
1∑

m,m′,q,q′=−1

N∑
j, j′, j′′, j′′′=1

eik32·R j eik21·R j′ e−ik21·R j′′ e−ik32·R j′′′ [Q∗
m3]αA [Q∗

m′1]αB [Q1q]αB [Qq′3]αA

× 〈
σ

( j)
3m (tr )σ ( j′ )

m′1 (tr + τ )σ ( j′′ )
1q (tr + τ )σ ( j′′′ )

q′3 (tr )
〉
. (B55)

Using the quantum regression theorem [22] in connection with Eqs. (B6), we can obtain〈
σ

( j)
3m (tr )σ ( j′ )

m′1 (tr + τ )σ ( j′′ )
1q (tr + τ )σ ( j′′′ )

q′3 (tr )
〉

= 〈
σ

( j)
3m (tr )σ ( j′ )

m′1 (tr )σ ( j′′ )
1q (tr )σ ( j′′′ )

q′3 (tr )
〉
e−�2τ + γ j′ j′′;m′q

e−�2tr − e−γ3tr

γ3 − �2

〈
σ

( j)
3m (tr )σ ( j)

31 (tr )σ ( j′ )
13 (tr )σ ( j′′′ )

q′3 (tr )
〉
. (B56)

For our initial conditions, the second term vanishes and the first contributes only if j = j′ and j′ = j′′′. Explicitly,〈
σ

( j)
3m (tr )σ ( j′ )

m′1 (tr + τ )σ ( j′′ )
1q (tr + τ )σ ( j′′′ )

q′3 (tr )
〉 = ρ33(0)e−γ3t e−�2τ δ( j, j′, j′′, j′′′)δ(m, m′)δ(q, q′)

+ 〈
σ

( j)
31 (0)σ ( j′ )

13 (0)
〉
e−iκ·R j j′ e−γ3t e−�2τ δ( j, j′)δ( j′′, j′′′)δ(m, m′)δ(q, q′), (B57)

where the δ functions are equal to unity when all arguments are equal and vanish otherwise.
Equation (B57) is substituted into Eq. (B55), the summations over m, m′, q, q′ are carried out, and the summations over

j, j′, j′′, j′′′ are converted to integrals using the prescription (B39), then we find that PαA,αB (�A,�B; tr, τ ) is given by Eq. (43).
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