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Interference of cavity light by a single atom acting as a double slit
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Young’s double-slit interference experiment is central to quantum mechanics. While it has been demonstrated
that an array of atoms can produce interference in light, it is a fundamental question to ask whether a single
atom can act as a double slit when prepared in a superposition of two separate positions. Cohen-Tannoudji
et al. [Proceedings of the Tenth International Conference on Laser Spectroscopy, edited by M. Ducloy, E.
Giacobino, and G. Camy (World Scientific, Singapore, 1992), pp. 3–14] showed that the cross section of the
light scattered by a single atom is independent of the spatial separation. In this work, however, we show that
when a single atom tunneling in a double well is coupled to an optical ring cavity, the interference phenomena
arise if the tunneling rate is comparable to the cavity linewidth. Being driven by an external laser in the
dispersive regime, the field emitted by the atom into the cavity exhibits an interference pattern when varying
the double-well spacing. Super-Poissonian bunched light can also be generated near the destructive interference.
Furthermore, we show that the atomic flux of the coherent tunneling motion generates directional cavity emis-
sion, which oscillates for many cycles before the decoherence of the atomic motion and the decay of the cavity
photons. Our work opens ways to manipulate photons with controllable external states of atoms for quantum
information applications and use cavity light as nondestructive measurements for many-body states of atomic
systems.
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I. INTRODUCTION

Light passing through a double slit can exhibit interference
fringes. With advancements in atom trapping technologies,
it has been theoretically studied [1–4] and experimentally
demonstrated that an array of atoms can produce interfer-
ence effects for light [5–12] with potential applications in
quantum information [13–20]. One intriguing question to ask
is whether a single atom, instead of an array of multiple
atoms, can act as a double slit when a single atom is pre-
pared in a linear superposition of two separated positions.
Cohen-Tannoudji et al. [21] gave a negative answer. The cross
section of the light scattered by a single atom is independent
of the atomic spatial coherence. There is no interference fringe
when varying the separation of two superposed atomic wave
packets, because the scattering process involves two orthogo-
nal atomic spatial states.

Braun and Martin [22] studied the spontaneous emission
of a single atom tunneling in a double well. They found that
the emitted light can show interference fringes, but their am-
plitude is very small and on the order of J/ω0, where J is the
tunneling frequency and ω0 is the light frequency. In practice,
J can be many orders smaller than ω0 as J/2π ∼ 300 Hz
[23] and ω0/2π ∼ 1014 Hz. However, they proposed that if
the external state of the atom is postselected in the energy
basis or, alternatively, the light is spectrally filtered with a
frequency resolution better than J , interference fringes with
perfect visibility can arise.

*hzhang@gscaep.ac.cn

In this paper we present an approach to manipulating and
observing clear interference effects of light with a single atom
acting as a double slit. A ring cavity is coupled to the atom,
which is split in a double-well potential with the tunneling
frequency J , as shown in Fig. 1(a). The atom is driven by an
external laser and emits light into the cavity. Interference in
the cavity emission can arise when varying the double-well
spacing if J is larger than the cavity linewidth κ . The role
of the cavity is to store the light emitted by the atom at
the left well for a time approximately equal to 1/κ . If the
cavity storage time is longer than the tunneling time, the atom
quickly tunnels to the right well and emits light again such
that the two light fields can interfere. The reason for using
a ring cavity is that it supports traveling waves, allowing
for the generation of an interference pattern when chang-
ing the double-well spacing. In addition, the atomic motion
significantly influences the photon correlations of the cavity
emission and can yield super-Poissonian bunched light near
the destructive interference. Furthermore, we show that the
coherent tunneling motion of the single atom can be used to
steer the light propagation direction, giving rise to the cavity
directional emissions oscillating with the atomic flux in the
double well. It also provides a nondestructive approach to
monitoring atomic dynamics through cavity emission.

II. MODEL AND SYMMETRY ANALYSIS

Our apparatus is shown in Fig. 1(a). We employ a ring-
shaped optical cavity that supports two counterpropagating
modes, denoted by the field operators âCW and âCCW for
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FIG. 1. (a) A single atom is confined in a double-well potential
with spacing d and tunneling amplitude J . The atom couples to an
optical ring cavity with two counterpropagating modes âCW and âCCW

and is driven by an external light field with the Rabi frequency �.
(b) The driving field is detuned from the atomic resonance by � and
the cavity modes by δ. The external states of the atom are denoted by
|L〉 and |R〉.

the clockwise (CW) and counterclockwise (CCW) directions,
respectively. The atom is driven by an external laser field that
couples two internal states |g〉 and |e〉 with Rabi frequency
� as shown in Fig. 1(b). The detuning between the driving
laser and the atomic resonance is � = ω − ωa and the cav-
ity detuning is δ = ω − ωc. The atomic tunneling amplitude
between the two wells is J . The atom-photon interaction
depends on not only the atom-cavity coupling g but also a
phase factor e±ikz j , where z j refers to the position of the atom
along the cavity axis and k = ωc/c is the wave number of the
cavity modes. We have chosen to use a ring cavity because it
supports two counterpropagating traveling waves with phase
factors e±ikz j allowing for the generation of interference in
the cavity. The phases e±ikz j are not present in Fabry-Pérot
cavities employed in studies of cavity coupling of atomic
motion in double wells [24,25]. The external states of the
atom are denoted by |L〉 and |R〉 centered at zL = −d/2 and
zR = d/2, with d the double-well spacing. The spatial phase
difference is given by φ = 2πd/λ. The system is described by
the Hamiltonian

Ĥ = − δ(â†
CWâCW + â†

CCWâCCW) − �σ̂+σ̂− + �

2
σ̂ x

+ g

⎛
⎝σ̂+ ∑

j=L,R

(eiφ j âCW + e−iφ j âCCW)| j〉〈 j| + H.c.

⎞
⎠

− J (|L〉〈R| + |R〉〈L|), (1)

where σ̂± and σ̂ x are the Pauli operators associated with |g〉
and |e〉, and φL = −φ/2 and φR = φ/2. Including the atomic
spontaneous emission rate γ and the cavity decay rate κ , the
evolution of the total density matrix follows the Lindblad
master equation

ρ̇ = −i[Ĥ, ρ] + γD[σ̂−]ρ + κD[âCW]ρ + κD[âCCW]ρ,

(2)

whereD[L̂]ρ = L̂ρL̂† − 1
2 {L̂†L̂, ρ}.

We notice that the Hamiltonian (1) has a Z2 symmetry,
which can be better understood if we transform the atomic
external state from the localized basis {|L〉, |R〉} to the ex-
tended basis {|+〉 = (|L〉 + |R〉)/

√
2, |−〉 = (|L〉 − |R〉)/

√
2}

and the cavity fields from the âCW and âCCW modes to

FIG. 2. Energy-level diagram revealing the Z2 symmetry after
transforming the external states from the {|L〉, |R〉} to the {|+〉, |−〉}
basis and the cavity fields from {âCW, âCCW} to {âS, âA} modes. The
energy splitting between |+〉 and |−〉 is 2J . The excited state |e〉 is
eliminated in the dispersive regime. The H+ subspace is spanned by
the even-parity states and H− by the odd-parity states. The âS mode
is driven with the coupling strength �eff cos φ

2 (blue arrows) and the
âA mode with �eff sin φ

2 (red arrows). The cavity decays of the âS and
âA modes are indicated by the blue and red wavy lines, respectively,
at the rate κ and do not change the external states |±〉. However,
the decay of the âA-mode photons leads to the population transfer
between the subspaces H+ and H− at the rates + and −, which
are proportional to the populations of |0S1A−〉 and |0S1A+〉 states,
respectively. The purple and green spirals connect the relevant decay
lines from the |1S1A±〉 states for illustration purposes.

âS = (âCW + âCCW)/
√

2 and âA = −i(âCW − âCCW)/
√

2.
The total photon number ntot is conserved in both
representations such that ntot = 〈â†

CWâCW〉 + 〈â†
CCWâCCW〉 =

〈â†
SâS〉 + 〈â†

AâA〉. In this paper we focus on the dispersive
regime where g,� � |�| and the excited state |e〉 is
adiabatically eliminated (see Appendix A). The Hamiltonian
of Eq. (1) is simplified to Heff = HS + HA − Jσ̂ z

ext, with

HS = −δâ†
SâS + �eff

2
cos

φ

2
(â†

S + âS ), (3a)

HA = −δâ†
AâA + �eff

2
sin

φ

2
(â†

A + âA)σ̂ x
ext, (3b)

where σ̂ x
ext = |+〉〈−| + |−〉〈+|, σ̂ z

ext = |+〉〈+| − |−〉〈−|, and
�eff = √

2g�/�. The second term HA is similar to the quan-
tum Rabi model [26,27]. The Z2 symmetry of Heff is revealed
by the parity operator �̂ = exp(iπ â†

AâA)σ̂ z
ext, which satis-

fies [�̂, Heff ] = 0. Therefore, one can decompose the Hilbert
space of Heff into two subspaces according to the parity of the
states, H = H+ ⊕ H−. Figure 2 shows the lowest 12 states
categorized by the parity. For example, |0S, 0A,+〉 ∈ H+ and
|0S, 1A,+〉 ∈ H−. The HS couples the states |nS, nA,±〉 to
|nS ± 1, nA,±〉 with the coupling strength �eff cos φ

2 (the blue
arrows in Fig. 2), while HA couples the states |nS, nA,±〉 to
|nS, nA ± 1,∓〉 with the coupling strength �eff sin φ

2 (the red
arrows in Fig. 2). While Heff conserves the parity, the dissipa-
tion of the âA-mode photon leads to the incoherent population
transfer between H+ and H− with the respective rates + and
− calculated below.
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FIG. 3. Interference of the cavity field when varying the double-
well spacing. The single atom is driven by the external laser on the
cavity resonance (δ = 0). The steady-state cavity photon number
ntot shows a sinusoidal interference pattern as a function of the
double-well spacing defined as φ = 2πd/λ, where ntot is normalized
by the photon number n0 of an atom trapped in a fixed position.
The interference contrast increases with J/κ . The solid lines are the
analytical results according to Eq. (4) and the data points are the
numerical solutions to the master equation (2). The other parame-
ters are (γ , �, g, �)/κ = (10, 200, 0.5, 20), which are also applied
throughout this work.

III. INTERFERENCE OF THE CAVITY LIGHT

Using Heff expressed in the âS and âA basis [Eq. (3)], we
calculate the total cavity photon number ntot of the steady state
(see Appendixes A and B) as

ntot 
 n0

(
cos2 φ

2
+ 1

1 + 4J2/(δ2 + κ2/4)
sin2 φ

2

)
, (4)

where n0 = 2 × |(g�/2�)/(δ + iκ/2)|2 is for an atom in a
fixed position. The first term in Eq. (4) is the photon num-
ber of the âS mode driven by |0S0A±〉 ↔ |1S0A±〉 with the
transition amplitude �eff cos φ

2 . This term is in fact unrelated
to the atomic external state. The second term is the âA mode
driven by |0S0A±〉 ↔ |0S1A∓〉 with the transition amplitude
�eff sin φ

2 and the detuning ±2J . Unlike the âS mode, the pho-
ton number of the âA mode is related to the final population
in the subspaces H+ and H−, which is determined by the
tunneling rate J and the detuning δ. The detailed derivation
also includes the decoherence process, which is discussed in
Appendix B.

Figure 3 shows the sinusoidal modulation of the cavity
photon number ntot as a function of the double-well spacing on
the cavity resonance (δ = 0). The interference contrast of ntot

increases with J . When J = 0, the photon number is indepen-
dent of φ (ntot = n0), which is consistent with Refs. [21,22].
Note that as long as J = 0, regardless of whether the atom
is in a superposition state of |L〉 and |R〉 or a completely
mixed state, the cavity field does not exhibit interference.
However, in the limit J/κ → ∞, the interference with perfect
contrast appears when the second term of Eq. (4) vanishes and
ntot → n0 cos2 φ

2 . This can be understood by the level diagram
of Fig. 2. The transitions generating the âS-mode photons
from |0S, 0A,±〉 to |1S, 0A,±〉 (the blue arrows in Fig. 2) are
always on-resonance since δ = 0, while the transitions gen-
erating the âA-mode photons from |0S, 0A,±〉 to |0S, 1A,∓〉

(the red arrows in Fig. 2) are detuned by ±2J . When J > κ ,
the generation of the âA-mode photons is suppressed, so the
cavity field is dominated by the âS mode, resulting in the
interference pattern which is proportional to cos2 φ

2 . From a
complementary perspective, the light emitted by the atom at
the position |L〉 is stored in the cavity over time approximately
equal to 1/κ . After the tunneling time approximately equal to
1/J , the atom emits light from the position |R〉. The two light
fields can interfere if the tunneling time is shorter than the
cavity decay time (1/J < 1/κ).

IV. CAVITY PHOTON CORRELATIONS

The interference induced by the atomic tunneling has a
strong effect on the cavity photon statistics, which can be char-
acterized by the second-order correlation function g(2)(τ ) =
〈â†â†(τ )â(τ )â〉/〈â†â〉2, with â either âCW or âCCW. The de-
nominator contains the photon number 〈â†â〉 of the steady
state ρss. The numerator is calculated in the Schrödinger pic-
ture [28] as 〈â†â†(τ )â(τ )â〉 = Tr[â†âρ ′(τ )]Tr(â†âρss), where
ρ ′(τ ) evolves from the conditional state by projection ρ ′(0) =
âρssâ†/Tr(â†âρss ) (see Appendix C for details). Finally, we
find that the analytical solution of g(2)(τ ) is the same for the
two modes and reads

g(2)(τ ) = 1 +
[

1 +
(

1 + 16J2

κ2

)
cot2 φ

2

]−2

×
(

16J2

κ2
e−κτ + 8J

κ
e−κτ/2 sin 2Jτ

)
. (5)

The equal-time correlation g(2)(0) of the cavity emission is
plotted in Fig. 4(a) as a function of φ, showing strong photon
bunching near the destructive interference φ = π . The peak
value of g(2)(0) at φ = π increases quadratically with J/κ , as
shown in Fig. 4(b). At the destructive interference, the tran-
sition amplitudes of the âS mode (the blue arrows in Fig. 2)
are canceled out as �eff cos φ

2 = 0, and only the âA-mode
photons are generated as �eff sin φ

2 = �eff . The level diagram
of Fig. 2 is simplified to Fig. 4(c). When J > κ , the one-
photon excitations (|0A〉 → |1A〉) are far-off-resonance and
hence suppressed, while the simultaneous excitations of two
photons (|0A〉 → |1A〉 → |2A〉) are on-resonance, resulting in
the photon-pair generation and huge photon bunching. The
correlation g(2)(τ ) displays a temporal oscillation with the
frequency 2J due to the cavity detuning from the |0A±〉 →
|1A∓〉 transitions as shown in Fig. 4(d).

V. DIRECTIONAL CAVITY EMISSION INDUCED BY
ATOMIC MOTION

Having studied the steady-state cavity interference and the
photon correlations, we next examine the dynamical evolution
of the cavity field before reaching equilibrium. As the atom
tunnels within the double well, directional emissions from
the cavity can be generated, which oscillate at the tunneling
frequency J as depicted in Fig. 5(a). On the other hand, the
backaction of the cavity field gives rise to the decoherence
of the atomic tunneling motion. If the tunneling frequency
J is large compared to the decoherence rate  (which will
be derived later), the instantaneous cavity fields adiabatically
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(a)

(b) (d)

(c)

FIG. 4. Second-order correlation functions of the cavity emis-
sion at δ = 0. (a) Plot of g(2)(0) as a function of φ for different
values of J/κ , indicating transitions from Poissonian near φ = 0
to super-Poissonian near φ = π . (b) Maximum values of g(2)(0)
at φ = π compared with g(2)(0) = 1 + 16J2/κ2 (black solid line).
(c) Level diagram for φ = π . The âS-mode photons in Fig. 2 are not
excited due to the destructive interference and hence are not shown.
The single-photon excitations of the âA mode are detuned by ±2J ,
which leads to the photon-pair generation and the photon bunching
effect. (d) The g(2)(τ ) at φ = π for different values of J/κ shows
stronger oscillation amplitudes for larger tunneling J . The oscillation
frequency is 2J and the damping rate is given by κ . In (a), (b), and
(d) the solid lines represent the analytical solutions of Eq. (5) and the
data points correspond to the numerical simulation results.

follow the external state of the atom described by the reduced
density matrix ρext (t ). To understand the physical picture, we
examine the cavity fields in the mean-field approximation as
αμ = 〈âμ〉, where âμ is either the CW or CCW mode or the
âS or âA mode. In the adiabatic approximation [see Eq. (A15)
in Appendix A]

αS = �eff

2

2

δ + iκ/2
cos

φ

2
, (6a)

αA = �eff

2

(
ρ+−

ext (t )

δ − 2J + iκ/2
+ ρ−+

ext (t )

δ + 2J + iκ/2

)
sin

φ

2
. (6b)

At the early time t � 1/ before the tunneling motion
decoheres, ρext (t ) ≈ 1

2 (|+〉〈+| + |−〉〈−| + e2iJt |+〉〈−| +
e−2iJt |−〉〈+|). Substituting ρext (t ) into Eq. (6), the evolution
of αCW,CCW traces an ellipse in the phase space as shown in
Fig. 5(b). When φ = π/2 and δ = −J , the amplitude |αS|
is comparable to |αA|; therefore |αCW| can be very different
from |αCCW|, resulting in directional emissions. When φ = π ,
however, αS = 0; therefore the two fields have the same
amplitudes but opposite phases, αCW = −αCCW. We define
the cavity light directionality as the photon number difference
between the two cavity modes âCW and âCCW,

�n/n0 = (nCW − nCCW)/n0, (7)

where nCW,CCW = 1
2 〈(âS ± iâA)†(âS ± iâA)〉 = 1

2 [nS +
nA(t )] ± Im[αSα

∗
A(t )] [see Eq. (A16)]. From Eqs. (6) and

(7), �n/n0 ∝ sin φ Imρ+−
ext when κ � |δ ± 2J|. Notice that

(c)

(b)(a)

FIG. 5. Cavity light directionality induced by the atomic motion.
(a) The CW (red arrow) and CCW (blue arrow) modes are shown at
different times of the atomic tunneling motion for φ = π/2. When
the atom is in the superposition states 1√

2
(|L〉 ± i|R〉) with the max-

imum tunneling flux, the cavity fields have different intensities for
the CW and CCW modes. (b) Sketch of the instantaneous cavity
fields in the phase space for φ = π/2 and π , where α = 〈â〉. The
CW (red) and CCW (blue) modes are constructed by the âS (black)
and âA (green) modes according to αCW,CCW = (αS ± iαA)/

√
2. The

âS mode is time independent, while the âA mode rotates at a fre-
quency of 2J . The green dashed ellipses represent the trajectories of
αCW and αCCW. When φ = π/2, the magnitudes of αCW and αCCW

oscillate at a frequency of 2J . When φ = π , αS = 0 and therefore
|αCW| = |αCCW|. The circled numbers correspond to the time steps
in (a). (c) Numerical simulations of the dynamical evolution of
�n/n0 = (nCW − nCCW )/n0 (magenta circles) and the atomic pop-
ulation difference between the left and right wells ρL − ρR (green
triangles). Solid lines represent analytical results. Both the cavity
light directionality �n/n0 and the atomic position ρL − ρR oscillate
at a frequency approximately equal to 2J . Their phase difference
is π/2. When the double-well spacing increases from φ = π/5 to
φ = 4π/5, the decoherence rate  of the atomic tunneling increases
due to the backaction of the cavity light, resulting in the damping of
the directional cavity emissions. The initial state of the atom is |L〉
with −δ = J = 5κ .

Imρ+−
ext = Im〈L|ρext|R〉 indicates the atomic flux of the

tunneling motion from |L〉 to |R〉 in the double well. In
Fig. 5(a), at Jt = 0 and π/2, the atomic flux is zero; hence
both the CW and CCW modes have the same photon numbers.
At Jt = π/4 and 3π/4, the atomic flux reaches the maximum
value resulting in the cavity directional emission. Figure 5(c)
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shows the dynamical evolution of �n/n0 compared with the
population difference in the double well ρL − ρR for different
values of φ.

The backaction of the cavity field gives rise to the deco-
herence and frequency shift for the atomic tunneling motion.
To calculate the decoherence rate , we obtain the master
equation for the atomic external state (see Appendix B)

ρ̇ext ≈ −i
[−Jσ̂ z

ext + J+|+〉〈+| + J−|−〉〈−|, ρext
]

+ +D[σ̂+
ext]ρext + −D[σ̂−

ext]ρext. (8)

The dissipator D[σ̂+
ext] describes the incoherent population

transfer from the subspace H+ to H−, and similarly D[σ̂−
ext]

the transfer from H− to H+, as shown in Fig. 2. The respec-
tive coefficients are given by

J± − i
±
2

= �2
eff

4

1

δ ∓ 2J + iκ/2
sin2 φ

2
. (9)

In Eq. (9) the imaginary parts ± correspond to the cavity
photon generation rate as κnA(t ) = +ρ++

ext (t ) + −ρ−−
ext (t ).

The real parts J± change the original tunneling rate J to
J ′ = J − (J+ − J−)/2, resulting from the ac Stark shift of the
cavity light. With the initial state being ρext (0) = |L〉〈L|, the
reduced density matrix of the external state evolves as ρ−+

ext =
e−t/2ei2J ′t , where  = + + − is modulated by sin2 φ

2 . As
shown in Fig. 5(c), the decoherence is faster for φ ≈ π than
for φ ≈ 0. In the dispersive regime,  is several orders smaller
than κ and J , which allows for many cycles of oscillation
before the decoherence of the atomic motion and the leakage
of the cavity photons.

VI. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have demonstrated that a single atom can
function as a double slit and produce pronounced interference
effects for light. Specifically, when the atomic tunneling J in
the double well is larger than the ring cavity linewidth κ , the
interference in the cavity light with perfect contrast can arise.
Furthermore, the atom’s coherent tunneling motion gives rise
to photon-pair generation and cavity directional emissions. In
practice, the tunneling rate J between the two wells is on
the order of 2π × 300 Hz, while the cavity linewidth κ ∼
2π × 5 kHz can be realized experimentally [29,30]. In order
to satisfy the condition J > κ , we propose to make use of
higher excited external states that are more spatially extended
in the trapping potential. By driving the |L〉 and |R〉 states to
a higher extended state, the coupling J between |L〉 and |R〉
increases with the driving power and can be made larger than
κ . Therefore, our scheme of interfering light using a single
atom as a double slit is practically achievable.

It is worth noting that while we study the interference
effect of light scattered by a single atom, previous studies
have shown that interference can arise when a massive particle
is scattered by a quantum obstacle that can coherently tunnel
between two positions [31] or by another particle with a sim-
ilar mass [32]. In our work and Refs. [31,32], the slit, being
either a single atom in a double well or a quantum obstacle, is
an active quantum object that can move or tunnel to different
positions, as opposed to Young’s double slit, which is station-
ary and only plays a passive role. When a massive particle is

scattered, interference appears when the tunneling J is greater
than the particle’s kinetic energy. In this paper, however, when
a massless cavity photon is scattered by a massive atom, the
condition for interference is J > κ .

This work can be readily extended in various directions.
Both the atomic motional states in the double well and
the directional cavity photons can be utilized to encode
qubits. Their entanglement allows for new gate operation
schemes and our apparatus may serve as quantum nodes in
cavity-based quantum networks. Recent experiments of
controllable directional photon emission and scattering in
waveguide QED systems [33,34] are based on two-qubit in-
terference. Our theory shows the possibility of tuning photon
propagating directions using only one particle. We can also
extend our current minimal model of a single atom in a dou-
ble well to many-atom systems in lattices. Cavity emissions
can provide nondestructive measurements of atomic collec-
tive motion and many-body states, such as Bloch oscillations,
superfluid-Mott insulator transitions, and self-organization.
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APPENDIX A: ANALYTICAL SOLUTIONS
OF THE PHOTON FIELDS IN THE DISPERSIVE REGIME

The original Hamiltonian of the cavity QED system with a
single atom coupled with two propagating cavity modes and
trapped in a double-well potential under the rotating frame is

H = −δ(â†
CWâCW + â†

CCWâCCW) − �|e〉〈e|

+ �

2
σ̂ x − J (|L〉〈R| + |R〉〈L|)

+ g{[(eikCW ·rL âCW + eikCCW ·rL âCCW)|L〉〈L|
+ (eikCW ·rR âCW + eikCCW ·rR âCCW)|R〉〈R|]σ̂+ + H.c.},

(A1)

where the external state |L〉 or |R〉 denotes the atomic position,
which is along the z axis, such that rL,R = (0, 0, zL,R). The
wave vectors of the CW and CCW modes are kCW = (0, 0, k)
and kCCW = (0, 0,−k) near the double well, respectively.
Due to translational symmetry, it is convenient to define kzL =
−φ/2 and kzR = φ/2, and the double-well spacing is defined
as d = (φ/2π )λ, with λ the wavelength of the cavity fields.
The atomic decay and photon loss can be described by the
Lindblad master equation [Eq. (2)]

∂

∂t
ρ = −i[H, ρ] + γD[σ̂−]ρ + κD[âCW]ρ + κD[âCCW]ρ,

(A2)
where D[L̂]ρ = L̂ρL̂† − 1

2 {L̂†L̂, ρ}. Our dynamical simula-
tions are based on the time integration of Eq. (A2) and the
steady state by iteration.

063711-5



ZHOU, LI, LI, AND ZHANG PHYSICAL REVIEW A 108, 063711 (2023)

The dispersive regime is valid when the atomic detuning
is far bigger than the atomic and photonic dissipation rates
and the atom-light interaction strength � � γ , κ, g such that
the atomic internal state can reach equilibrium faster than
other timescales. In this situation, the original Hamiltonian
can be simplified by adiabatic elimination. First of all, it is
convenient to use the superposed photon modes as described
in the main text,

âS = 1√
2

(âCW + âCCW),

âA = −i√
2

(âCW − âCCW), (A3)

which automatically guarantees that D[âCW] +D[âCCW] =
D[âS] +D[âA]. The atomic external states should also be
symmetrized as

|+〉 = 1√
2

(|L〉 + |R〉),

|−〉 = 1√
2

(|L〉 − |R〉). (A4)

Then the tunneling term reads Hext = −Jσ̂ z
ext, with the Pauli

matrices for the external states being σ̂ z
ext = |+〉〈+| − |−〉〈−|

and σ̂ x
ext = |+〉〈−| + |−〉〈+|. Then we rewrite the original

master equation [Eq. (2) or (A2)] as
∂

∂t
ρ = −i[(Hg,nH + He,nH)ρ − ρ(Hg,nH + He,nH)†]

− i[V + V †, ρ] + γ σ̂−ρσ̂+

+ κ âCWρâ†
CW + κ âCCWρâ†

CCW, (A5)

where

Hg,nH = −
(
δ + i

κ

2

)
(â†

SâS + â†
AâA) − Jσ̂ z

ext,

He,nH = −
(
� + i

γ

2

)
|e〉〈e|,

V =
(

gÂ† + �

2

)
σ̂−,

Â = (e−iφ/2âCW + eiφ/2âCCW)|L〉〈L|
+ (eiφ/2âCW + e−iφ/2âCCW)|R〉〈R|

=
√

2

(
cos

φ

2
âS + sin

φ

2
âAσ̂ x

ext

)
.

Finally, the excited state |e〉 can be eliminated, resulting in the
effective Hamiltonian and dissipator [35]

Heff,nH = Hg,nH − V
1

He,nH
V †

= Hg,nH + 1

� + iγ /2

(
g2Â†Â + g�

2
(Â† + Â) + �2

4

)
,

(A6a)

L̂eff = σ̂− 1

He,nH
V † = − gÂ + �

2

� + iγ /2
|g〉〈g|. (A6b)

In the dispersive regime, 〈Â†Â〉 � Re〈Â〉, which allows us to
neglect the Â†Â term in Eq. (A6) and keep the linear terms
only. The decay rate of the dissipator L̂eff is on the order of

γ (g2〈Â†Â〉 + �2)/�2 which, in the dispersive regime is much
smaller than the decay rate of the cavity photon κ , so L̂eff can
be neglected as well as the corresponding imaginary part of
Heff,nH. Therefore, the original master equation [Eq. (2) or
(A2)] can be simplified as

∂

∂t
ρ = −i[Heff , ρ] + κD[âS]ρ + κD[âA]ρ, (A7)

with

Heff = HS + HA − Jσ̂ z
ext,

HS = −δâ†
SâS + �eff

2
cos

φ

2
(â†

S + âS ),

HA = −δâ†
AâA + �eff

2
sin

φ

2
(â†

A + âA)σ̂ x
ext. (A8)

This is the effective Hamiltonian stated in Eq. (3), where the
effective Rabi frequency

�eff =
√

2g��

�2 + γ 2/4
≈

√
2g�

�
. (A9)

Here we note that if one omits the external state, Eqs. (A7)
and (A8) can be used to describe the single atom trapped
in a single well. Considering the Heisenberg equations of
the photon field operators i∂t âS = −(δ + iκ/2)âS + �eff

2 cos φ

2

and i∂t âA = −(δ + iκ/2)âA + �eff
2 sin φ

2 , we can obtain the
photon numbers of the steady state

n0 = |αS|2 + |αA|2 =
∣∣∣∣�eff

2

1

δ + iκ/2

∣∣∣∣
2

, (A10)

with

αS = 〈âS〉 = �eff

2

1

δ + iκ/2
cos

φ

2
,

αA = 〈âA〉 = �eff

2

1

δ + iκ/2
sin

φ

2
. (A11)

However, if the atomic motion is included, the âA-
mode cavity field is different from the ordinary bosonic
field, because creating an A-mode photon flips the external
state. Specifically, the Heisenberg equation of âA becomes
i∂t âA = −(δ + iκ/2)âA + �eff

2 sin φ

2 σ̂ x
ext. Now σ̂ x

ext oscillates
at the frequency approximately equal to 2J , which pre-
cludes the quasistatic condition by letting ∂t âA = 0. To
resolve this problem, we notice that the transitions of
|nA,+〉 → |(n − 1)A,−〉 and |nA,−〉 → |(n − 1)A,+〉 can be
triggered by âAσ̂−

ext and âAσ̂+
ext, respectively. Therefore, we

consider the Heisenberg equations of âS , âAσ̂+
ext, and âAσ̂−

ext,
which read

i
∂

∂t
âS = −

(
δ + i

κ

2

)
âS + �eff

2
cos

φ

2
,

i
∂

∂t
âAσ̂+

ext = −
(
δ + 2J + i

κ

2

)
âAσ̂+

ext

+ �eff

2
sin

φ

2

[
σ̂+

extσ̂
−
ext − (âA + â†

A)âAσ̂ z
ext

]
,

i
∂

∂t
âAσ̂−

ext = −
(
δ − 2J + i

κ

2

)
âAσ̂−

ext

+ �eff

2
sin

φ

2

[
σ̂−

extσ̂
+
ext + (âA + â†

A)âAσ̂ z
ext

]
.

(A12)
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Then we can let the left-hand side equal zero for the qua-
sistatic solutions for the given external state, because the
evolution rate of σ̂ z

ext, as well as σ̂±
extσ̂

∓
ext, is on the order of

 � J (discussed below). In the dispersive regime, the photon
number is small, and we can further neglect the normal-order
terms with multiple âA terms on the right-hand side. There-
fore, the adiabatic elimination can be carried out by taking the
quantum expectation values of Eq. (A12), which yields

〈âS〉 ≈ �eff/2

δ + iκ/2
cos

φ

2
,

〈âAσ̂+
ext〉 ≈ �eff/2

δ + 2J + iκ/2
sin

φ

2
〈σ̂+

extσ̂
−
ext〉,

〈âAσ̂−
ext〉 ≈ �eff/2

δ − 2J + iκ/2
sin

φ

2
〈σ̂−

extσ̂
+
ext〉. (A13)

We introduce the reduced density matrix of the external
state, ρext = Trph(ρ), and ρ++

ext = 〈σ̂−
extσ̂

+
ext〉, ρ−−

ext = 〈σ̂+
extσ̂

−
ext〉,

ρ+−
ext = 〈σ̂+

ext〉, and ρ−+
ext = 〈σ̂−

ext〉. Based on Eq. (A13), we can
use the substitution

âS → �eff/2

δ + iκ/2
cos

φ

2
,

âA → �eff/2

δ + 2J + iκ/2
sin

φ

2
←−̂
σ −

ext

+ �eff/2

δ − 2J + iκ/2
sin

φ

2
←−̂
σ +

ext, (A14)

where the notation ←−σ emphasizes that when substituting
Eq. (A13), the operator âA must be placed on the left side
of σ̂ . With this substitution and using the identity σ̂−

extσ̂
+
ext +

σ̂+
extσ̂

−
ext = I, the complex light fields of the âS and âA modes

are given by [the results of Eq. (6)]

αS = �eff/2

δ + iκ/2
cos

φ

2
,

αA = 〈âA(σ̂−
extσ̂

+
ext + σ̂+

extσ̂
−
ext )〉

= �eff/2

δ + 2J + iκ/2
sin

φ

2
〈σ̂−

ext〉

+ �eff/2

δ − 2J + iκ/2
sin

φ

2
〈σ̂+

ext〉. (A15)

The photon numbers yield

nS =
∣∣∣∣ �eff/2

δ + iκ/2
cos

φ

2

∣∣∣∣
2

,

nA = 〈â†
A(σ̂+

extσ̂
−
ext + σ̂−

extσ̂
+
ext )âA〉

=
∣∣∣∣ �eff/2

δ + 2J + iκ/2
sin

φ

2

∣∣∣∣
2

〈σ̂+
extσ̂

−
ext〉

+
∣∣∣∣ �eff/2

δ − 2J + iκ/2
sin

φ

2

∣∣∣∣
2

〈σ̂−
extσ̂

+
ext〉. (A16)

Therefore, we obtain the photon numbers of the CW and CCW
modes, which read

nCW,CCW = 1

2
〈(âS ± iâA)†(âS ± iâA)〉 = 1

2
[nS + nA ± i(α∗

SαA − α∗
AαS )]

= n0

2

[
cos2 φ

2
+ sin2 φ

2

(∣∣∣∣ δ + iκ/2

δ + 2J + iκ/2

∣∣∣∣
2

ρ−−
ext +

∣∣∣∣ δ + iκ/2

δ − 2J + iκ/2

∣∣∣∣
2

ρ++
ext

)

± Im
4Jδ sin φ

(δ + 2J + iκ/2)(δ − 2J − iκ/2)
ρ−+

ext

]
. (A17)

APPENDIX B: DYNAMICS OF ATOMIC MOTION INFLUENCED BY CAVITY PHOTONS

In order to obtain the effective master equation of the atomic motion, we eliminate the photonic excited states with the
adiabatic approximation. According to Eqs. (3) and (A8), the âS-mode photons are decoupled from the atomic motion and
thereby can be traced out directly. In the dispersive regime, the âA-mode photon number can be truncated at nA � 1, which
results in four states |nA, m〉 ∈ {|0A,+〉, |0A,−〉, |1A,+〉, |1A,−〉}. The non-Hermitian Hamiltonian reads

HnH =

⎛
⎜⎜⎜⎝

−J �eff
2 sin φ

2
J �eff

2 sin φ

2
�eff

2 sin φ

2 −J − δ − i κ
2

�eff
2 sin φ

2 J − δ − i κ
2

⎞
⎟⎟⎟⎠. (B1)

The quantum jump operators include L̂− = |0A,+〉〈1A,−| and L̂+ = |0A,−〉〈1A,+| with rates both equal to κ . To perform
the adiabatic elimination, we introduce the projection operator P = |0A,+〉〈0A,+| + |0A,−〉〈0A,−| and Q = |1A,+〉〈1A,+| +
|1A,−〉〈1A,−|. Noticing that PHnHP is already diagonalized, we define the interaction operators acting on each of the vacuum
states Vl = |l〉〈l|HnHQ, with |l〉 ∈ {|0A,+〉, |0A,−〉} [35]. Then we obtain the effective non-Hermitian Hamiltonian

Hext,nH = PHnHP− V
∑

l

1

QHnHQ− El
V †

l

= −
(

J − �2
eff

4
sin2 φ

2

1

δ − 2J + iκ/2

)
|0A,+〉〈0A,+| = +

(
J + �2

eff

4
sin2 φ

2

1

δ + 2J + iκ/2

)
|0A,−〉〈0A,−| (B2)
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and the dissipation operators

L̂±,eff = |0A,∓〉〈1A,∓|
∑

l

1

QHnHQ− El
V †

l

= −�eff

2
sin

φ

2

1

δ ∓ 2J + iκ/2
|0A,∓〉〈0A,±|. (B3)

Therefore, we obtain the effective master equation of the
atomic motion, which reads

∂

∂t
ρext = −i(Hext,nHρext − ρextH

†
ext,nH)

+ κD[L̂+,eff ]ρext + κD[L̂−,eff ]ρext. (B4)

Then it can be simplified to Eqs. (8) and (9),

∂

∂t
ρext = −i

[ − J ′σ̂ z
ext + J+|+〉〈+| + J−|−〉〈−|, ρext

]
+ +D[σ̂+

ext]ρext + −D[σ̂−
ext]ρext, (B5)

with J± and ± originated from the ac Stark effect, which read

J± − i
±
2

= �2
eff

4

1

δ ∓ 2J + iκ/2
sin2 φ

2
. (B6)

The decoherence rates ± correspond to the incoherent
population transfer from the subspace H± to the other. The
total decoherence rate which also acts on the atomic motion
and cavity field reads

 = + + −

= κ
�2

eff

4
sin2 φ

2

(
sin2 φ

2

(δ − 2J )2 + κ2/4
+ sin2 φ

2

(δ + 2J )2 + κ2/4

)
.

(B7)

The tunneling rate is modified by

J ′ = J − J+ − J−
2

= J + 1

2

(
�eff

2
sin

φ

2

)2

Re

( −4J

(δ + iκ/2)2 − 4J2

)
. (B8)

As shown in Fig. 6, we compare J ′ and J with the same pa-
rameters as used in Fig. 5 and find that the relative correction
of the tunneling rate is on the order of 10−5. Therefore, we can
neglect the correction to the tunneling rate for the steady-state

FIG. 6. Relative correction of the tunneling rate due to the op-
tical potential. The black line is the analytical results according to
Eq. (B5) and the red circles are numerical results obtained from
Fig. 5 with different φ and fitted sinusoidally in the long-time regime
(Jt > 4500).

solutions. However, in the long-term evolution when t � 1,
the optical potential will lead to a non-negligible phase shift
due to the modification of the tunneling frequency.

Then Eq. (B5) produces the semiclassical equation of the
atomic motion

∂

∂t

⎛
⎝〈σ̂ x〉

〈σ̂ y〉
〈σ̂ z〉

⎞
⎠ =

⎛
⎝−/2 −2J ′

2J ′ −/2
−

⎞
⎠

⎛
⎝〈σ̂ x〉

〈σ̂ y〉
〈σ̂ z〉

⎞
⎠

+
⎛
⎝ 0

0
− − +

⎞
⎠. (B9)

Letting the initial state be |L〉, with 〈σ̂ x(0)〉 = 1 and
〈σ̂ y(0)〉 = 〈σ̂ z(0)〉 = 0, the solution reads

〈σ̂ x(t )〉 = e−(/2)t cos 2J ′t,

〈σ̂ y(t )〉 = e−(/2)t sin 2J ′t,

〈σ̂ z(t )〉 = − − +


(1 − e−t ). (B10)

Substituting Eq. (B10) into Eq. (A17), we obtain the analytical
solutions of the instantaneous photon numbers. For the steady
state, 〈σ̂ x(∞)〉 = 〈σ̂ y(∞)〉 = 0 and

〈σ̂ z(∞)〉 = − − +


= −4δJ ′

δ2 + 4J ′2 + κ2/4
,

ntot = n0

(
cos2 φ

2
+ 1

1 + 4J ′2/(δ2 + κ2/4)
sin2 φ

2

)
.

(B11)

With the approximation J ′ ≈ J , we obtain the steady-state
solution of Eq. (4).

In Figs. 7(a) and 7(b) we present a comparison between the
analytical solutions (solid lines) and numerical simulations
(points) of the dynamics. The double-well spacing for the
simulation is φ = π/4 (d = λ/2), the atom is initially in the
|L〉 state, and the cavity is set to vacuum. We evaluate the
saturation dynamics of the atomic tunneling using ρ−−

ext (t )
and compare it with Eq. (B10). Similarly, we compare the
photon numbers ntot (t ) with the adiabatic solution given in
Eq. (A17). The numerical and analytical solutions initially
do not match during the short-time dynamics of the internal
states when κt < 10. However, after κt > 10, the analytical
solutions can accurately describe the numerical simulations.
We observe that for δ < −2J , as J increases, the relaxation of
the atomic motion slows down. Moreover, the photon numbers
experience longer quasistatic plateaus before equilibrium.

In Fig. 7(c) we have fitted ρext (t ) and ntot (t ) with an ex-
ponential function to obtain their relaxation rates compared
to Eq. (B10). We observe that the numerical results agree
well with the analytical solution, and the relaxation rates of
the cavity photons and atomic motion are similar, implying
that the relaxation of the photons keeps pace with the atomic
motion. When δ = ±2J ,  reaches the maximum value of
[(g�/�)2/2κ] sin2 φ

2 due to the resonant coupling between
|0A,±〉 and |1A,∓〉 states. This process leads to rapid relax-
ation, similar to the sideband cooling mechanism observed in
optomechanics and ion traps. If δ �= ±2J , we expect the atom
to tunnel in the double well without significant decoherence
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FIG. 7. Evolution of (a) the atomic population on the |−〉 =
(|L〉 − |R〉)/

√
2 state and (b) the total cavity photon numbers ntot (t ).

The double-well spacing φ = π/4 (d = λ/2) and the initial state is
|0, 0, L, g〉. The scatters are numerical simulations based on the mas-
ter equation for different δ and the solid lines are analytical solutions
according to Eq. (B10) for the atomic external state and Eq. (A17)
for the photon numbers. (c) Total relaxation rate  = + + − in the
long-time regime. The black line is the analytical solution (B7) and
the points are exponential fitting results of the numerical simulations
of atomic motion ρext (t ) (red crosses) and photon numbers ntot (t )
(blue circles).

and the light fields to adiabatically follow the atomic motion
with oscillating directionality.

APPENDIX C: PHOTON CORRELATION
OF THE STEADY STATE

As discussed in the main text, one can separate the Hilbert
space into two subspaces based on their parity. For the steady

state, the density matrix can be written as (under the basis of
|nS, nA, m〉)

ρss = P+|ψ+〉〈ψ+| + P−|ψ−〉〈ψ−|,
|ψ+〉 ≈ c00+|00+〉 + c10+|10+〉 + c01−|01−〉

+ c20+|20+〉 + c11−|11−〉 + c02+|02+〉,
|ψ−〉 ≈ c00−|00−〉 + c10−|10−〉 + c01+|01+〉

+ c20−|20−〉 + c11+|11+〉 + c02−|02−〉. (C1)

In the dispersive regime, the coefficients can be derived per-
turbatively, which read

P± = 1

2

(
1 ∓ 4δJ

δ2 + 4J2 + κ2/4

)
,

c00+ = c00− ≈ 1, c10+ = c10− ≈ �eff

2

cos φ

2

δ + iκ/2
,

c01− ≈ �eff

2

sin φ

2

δ − 2J + iκ/2
, c01+ ≈ �eff

2

sin φ

2

δ + 2J + iκ/2
,

c11− ≈ c10+c01−, c11+ ≈ c10−c01+,

c20+ = c20− ≈
√

2
�eff

2

cos φ

2

2δ + iκ
c10+,

c02+ ≈
√

2
�eff

2

sin φ

2

2δ + iκ
c01−, c02− ≈

√
2
�eff

2

sin φ

2

2δ + iκ
c01+.

The steady-state probabilities P± are derived in Appendix B.
For the photon mode â, specifically, âCW = (âS + iâA)/

√
2

and âCCW = (âS − iâA)/
√

2, the second-order correlation is

g(2)(τ ) = Tr[âU (τ )âρssâ†U †(τ )â†]

Tr(â†âρss)2
. (C2)

The evolution propagator represented in the manifold consists
of vacuum states (H0 = {|00+〉, |00−〉}) and single-photon
states (H1 = {|10+〉, |10−〉, |01+〉, |01−〉}), which reads

U (τ ) ≈
∑

j∈H0∪H1

e−iε j t | j〉〈 j|

−
∑
j∈H1
k∈H0

v jk
e−iε j t − e−iεkt

ε j − εk
| j〉〈k| + H.c. (C3)

The nonzero coefficients are

ε00± = ∓J, ε10± = ε01± = δ ∓ J + iκ/2,

v10±,00± = �eff

2
cos

φ

2
, v01∓,00± = �eff

2
sin

φ

2
.

The correlation functions of the CW and CCW modes are the same, and both yield

g(2)(τ ) =
(

1 + 4J2

δ2 + κ2/4

)[
1 +

(
1 + 4J2

δ2 + κ2/4

)
cot2 φ

2

]−2
(

1

2

∣∣∣∣∣ (δ + iκ/2)e−2iJτ − 2Je−iδτ−κτ/2

δ + 2J + iκ/2

− δ − 2J + iκ/2

δ + iκ/2
cot2 φ

2

∣∣∣∣∣
2

+ = 1

2

∣∣∣∣∣ (δ + iκ/2)e2iJτ + 2Je−iδτ−κτ/2

δ − 2J + iκ/2
− δ + 2J + iκ/2

δ + iκ/2
cot2 φ

2

∣∣∣∣∣
2

+ 4 cot2 φ

2
cos2 Jτ

)
.

(C4)
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For a simple case, let δ = 0. Then the correlation function reads [Eq. (5)]

g(2)(τ ) = 1 +
[

1 +
(

1 + 4J2

κ2/4

)
cot2 φ

2

]−2( 4J2

κ2/4
e−κτ + 4J

κ/2
e−κτ/2 sin 2Jτ

)
. (C5)
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