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Photon-number resolution with microwave Josephson photomultipliers

E. V. Stolyarov ,1,2 O. V. Kliushnichenko ,2 V. S. Kovtoniuk ,1 and A. A. Semenov 1,2,3

1Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Vulytsya Metrolohichna 14-b, 03143 Kyiv, Ukraine
2Institute of Physics, National Academy of Sciences of Ukraine, Prospect Nauky 46, 03028 Kyiv, Ukraine

3Department of Theoretical and Mathematical Physics, Kyiv Academic University, Boulevard Vernadskogo 36, 03142 Kyiv, Ukraine

(Received 9 October 2023; accepted 4 December 2023; published 18 December 2023)

We study counting photons confined in a mode of a microwave resonator via repeated measurements by a
Josephson photomultiplier (JPM). The considered JPM is essentially a flux-biased phase qubit operating as a
single-photon detector. We identify optimal operational regimes that maximize photon-number resolution within
a predetermined range. Two counting techniques are studied. The first is to count the total number of clicks in
the measurement sequence. The second involves counting the number of clicks until the occurrence of either
the first no-click event or the end of the measurement sequence. Our theoretical methods employ the derived
positive operator-valued measures for the considered photocounting techniques and the introduced measure of
the photon-number resolution. The results reveal that the resolution decrease in both cases is mainly caused
by the JPM relaxation. As an example, we show how the obtained results can be used for practical testing
nonclassical properties of electromagnetic radiation in a microwave resonator.
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I. INTRODUCTION

The measurement theory [1] is a vital part of quantum
physics, linking quantum states to experimentally accessible
measurement outcomes and their probabilities. Photocount-
ing measurements, the theoretical description of which was
introduced in Refs. [2–5], are an example of measurements
that play a key role in quantum optics. These measurements
are essential for both quantum technologies [6–16] and exper-
iments testing quantum theory [17,18].

In an ideal scenario, the presence of n photons in the elec-
tromagnetic radiation must always be converted into n clicks
of the photocounter. However, practical situations often differ
significantly from this idealized situation. Even the simplest
imperfection—detection losses—leads to the possibility of
registering fewer clicks than the number of photons present
[19]. On the other hand, dark counts may increase the number
of clicks [20–22].

Photocounters commonly used in quantum optics, in-
cluding photomultiplier tubes, avalanche photodiodes, and
superconducting nanowire single-photon detectors, typically
operate as single-photon on-off detectors [9] with no photon-
number resolution at all. Nevertheless, the usage of various
experimental approaches enables approximating a challenging
experimental issue of resolving between adjacent numbers of
photons. One such method entails dividing the light beam into
multiple spatial or temporal modes and detecting each of them
with on-off detectors [23–30]. Another approach involves
counting the number of photocurrent pulses in measure-
ment time windows [31]. However, none of these techniques
provides reasonable photon-number resolution [32–35]. This
means that the number of detected clicks may differ consider-
ably from the actual number of photons.

Alternatively to the optical domain, one can use microwave
radiation, which has been extensively studied within circuit

quantum electrodynamics (QED); see, e.g., Refs. [36,37]
for a review. In this context, a number of theoretical and
experimental advances have been demonstrated in quan-
tum state engineering [38–44], quantum computation and
simulation [37,45–50], etc. A promising approach involves
utilizing Josephson photomultipliers (JPM) [51–57] as single-
photon detectors for electromagnetic radiation confined in
a microwave resonator [53,54,58–61] or propagating in a
microwave waveguide [62–65]. For example, the use of
JPMs can be advantageous for dispersive qubit readout
[56,57,60,61,66].

The JPM is an on-chip device compatible with other circuit
QED components. Technically, it is a phase qubit [67] that acts
as a narrowband absorbing photodetector. In general, there
are two types of JPMs. The first type [51–55,58–60,65] is
based on a single current-biased Josephson junction (JJ) [68].
While compact and simple, this type of JPM has an essential
disadvantage. When a photon is absorbed by such a JPM, it
switches to the voltage state, resulting in an outburst of quasi-
particles which strongly affect the next measurements. The
quasiparticles have relaxation times of milliseconds [69,70]
which decreases the measurement repetition rate for this JPM
design to ≈1 kHz [71] limiting its practical use.

To remedy the limitations of current-biased JPMs, another
design has been proposed and experimentally demonstrated;
cf. Refs. [56,57,72,73]. In this design, a JJ is shunted by
an inductor, which adds the quadratic term to the JJ cosine
potential. By adjusting the external flux through the JPM loop,
the JPM potential can be set to a two-well configuration. This
prevents the JPM from switching completely to the voltage
state due to photon absorption and subsequent tunneling out of
the local potential well. Instead, photon absorption results in
a single tunneling event. By reading which well the particle is
in, one can determine if the tunneling event has occurred. The
inductively shunted design provides fast readout and reset.
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FIG. 1. Setup and JPM details. (a) General scheme of the considered system. The JPM is coupled to the resonator via a static capacitance
Cc. (b) Schematics of the JPM realization we consider. (c) Illustration of the JPM potential featuring a two-well structure: the shallow left
well accommodates just two levels (|0〉 and |1〉), while the deep right well accommodates multiple levels. The metastable levels |0〉 and |1〉
in the shallow well have tunneling rates γ0 and γ1, correspondingly. (d) Potential implementation of the “waste” mode. The transmission line,
terminated by the absorbing element, is supplemented by the Purcell filter, which rejects the photon frequencies in the vicinity of the JPM
working frequency ωp. (e) Considered photodetection procedure. We start with preparing a quantum state in the resonator mode. Then, to
capture the photon, the JPM potential is adjusted to a configuration with two levels in the left well. Next, the JPM readout is performed to
determine whether the tunneling has occurred. After the readout, the JPM is reset. For the next measurement, the JPM is again adjusted for the
photon capture.

The macroscopic response of JPMs indicates absorption of
a single photon with high detection efficiency. This feature
sets them apart from most single-photon detectors oper-
ating in the optical domain, whose macroscopic response
is indistinguishable for single- and multiphoton absorption.
This brings us to the idea of using JPMs for fast repeti-
tion measurements. In this paper, we theoretically examine
whether such a measurement sequence can give a result
similar to that of ideal photon-number resolving (PNR)
detectors.

We focus on two counting techniques. In the first, we repeat
the measurement a fixed number of times, regardless of the
obtained outcomes. The second approach consists in counting
photons until either the first no-click event or the end of the
sequence. The number of photons is then associated with the
number of clicks.

Our theoretical methods imply an accurate derivation of
the positive operator-valued measures (POVMs), see, e.g.,
Refs. [74,75], for both counting techniques. This in fact means
that we get photocounting formulas tailored to the considered
scenarios. We introduce a measure of photon-number reso-
lution, based on a recent observation in Ref. [76], that the
probability of registering n clicks given n photons is a relevant
characteristic of photon-number resolution. We optimize this
measure with parameters of JPM and show that in practical
situation such detectors can be considered as pseudo-PNR
detectors, with high ability to resolve between adjacent photon
numbers.

We use our theory to show how JPMs can be employed
to test nonclassicality of electromagnetic radiation. As widely
accepted in quantum optics [5,77–82], a quantum state of
light is nonclassical if it cannot be considered as a statisti-
cal mixture of coherent states, i.e., if its Glauber-Sudarshan
P distribution [83,84] cannot be interpreted as a probability
density function. We utilize the methods recently developed in
Refs. [85,86], which enable us to test whether the photocount-

ing statistics for the given quantum state can be reproduced
with the classical electromagnetic radiation.

The rest of the paper is organized as follows: Section II
provides a detailed description of the operation principle
of the considered JPM. The Hamiltonian of the resonator
mode–JPM system is derived in Sec. III. The POVM of the
JPM counter for two different photon counting techniques is
derived in Sec. IV. In Sec V, we introduce a measure charac-
terizing the ability of detectors to resolve between adjacent
numbers of photons and use it for the optimization of the
detector parameters. In Sec. VI, we determine the counting
statistics of the JPM for different quantum states of the res-
onator field. In Sec. VII, we apply our theory to develop a
method for testing nonclassicality of photocounting statistics
with the JPM. Our results are summarized in Sec. VIII. The
derivation of the classical circuit Hamiltonian is given in the
Appendix.

II. JOSEPHSON PHOTOMULTIPLIER
OPERATION PRINCIPLE

We consider a circuit QED setup consisting of a Josephson
photomultiplier (JPM) coupled to a mode of a microwave
resonator. The scheme of the considered system is shown
in Fig. 1(a). The resonator is represented by either a copla-
nar waveguide resonator (CPW) [87–89], a lumped-element
resonator [90–92], coaxial resonator [93,94], or a three-
dimensional (3D) microwave cavity [95–98]. All these types
of resonators are routinely employed in the state-of-the-art
circuit QED systems. In the considered setup, the coupling
between the resonator mode and the JPM is mediated by a
capacitor Cc.

The JPM design we consider is based on a flux-biased
phase qubit [99] constituted by the JJ shunted by a gradio-
metric inductance LG and a large capacitance Cs � CJ, where
CJ is the capacitance of the junction. The JJ is characterized

063710-2



PHOTON-NUMBER RESOLUTION WITH MICROWAVE … PHYSICAL REVIEW A 108, 063710 (2023)

by the critical current I0 and the Josephson energy EJ =
I0�0/(2π ), where �0 = h/(2e) denotes the magnetic flux
quantum. The JJ and the gradiometric inductance LG comprise
together an rf-SQUID loop threaded by the external flux �̃b

generated by the external flux-bias line (FBL). Such a JPM
design was experimentally demonstrated by Opremcak et al.
[56,57]. For gaining more control over the JPM operation
frequency, one can replace the single JJ in the JPM circuit with
a dc SQUID controlled via an individual FBL [72]. However,
for conciseness, here we consider a JPM design with a single
JJ similar to that demonstrated in Refs. [56,57]. The JPM
schematic is demonstrated in Fig. 1(b).

With the proper choice of the Josephson energy EJ and
the gradiometric inductance LG, the JPM potential can feature
either one or two wells depending on the value of the external
flux �̃b. For probing the resonator field, one tunes the flux �̃b

in such a way that the JPM potential has an asymmetric two-
well configuration with a deep well, accommodating multiple
energy states, and a shallow well hosting only two metastable
states (denoted |0〉 and |1〉) as shown in Fig. 1(c). For ensuring
the efficient excitation exchange between the resonator and
the JPM, the resonator frequency and the frequency ωp of
|0〉 ↔ |1〉 JPM transition are tuned to resonance. The level
|1〉 lies near the top of the potential barrier separating the
wells. This provides the rapid tunneling of the excitation to
the deep well. Once the excitation has tunneled to the deep
well, it undergoes the fast cascaded relaxation via multiple
levels accommodated in the deep well and ultimately relaxes
to the global minimum of the JPM potential. This process is
schematically illustrated in Fig. 1(c). The tunneling and relax-
ation to the deep potential well results in the change of the
JPM classical fluxoid state, which is interpreted as a “click.”

To ensure the rapid relaxation to the bottom of the potential
well, we propose to couple the JPM to an additional “waste”
mode. The latter constitutes an engineered electromagnetic
environment implemented by a long microwave transmission
line terminated by an impedance-matched absorbing element
[100] and supplemented by a side-coupled resonator with
frequency ωp. This resonator serves as a band-stop Purcell
filter [101] rejecting the photons with frequencies close to the
JPM working frequency. The scheme of this JPM supplement
is shown in Fig. 1(d). Besides, such a “waste” mode coupled
to the JPM efficiently channels the broadband cascade of mi-
crowave photons generated in the course of the JPM relaxation
out of the resonator-JPM system. This provides an additional
suppression of the spurious population of the resonator by
those photons. The latter effect was observed in experiment
in Ref. [56].

Now, let us outline the procedure of photodetection [see
diagram in Fig. 1(e)] in the setup we consider. Here, we
mainly follow Refs. [56,57], and the considered sequence is
essentially a simplified version of a detection procedure pre-
sented therein. On the initial stage, we prepare a quantum state
of the resonator mode. In particular, Fock states [39,41,42]
and their arbitrary superpositions [40], squeezed vacuum
[44,102–106], and Schrödinger cat states [42,43,107,108] can
be prepared for further analysis. On the preparation stage,
the JPM potential is set in a symmetric two-well config-
uration. The frequencies of the JPM interlevel transitions
are far detuned from the resonator frequency and there is

no excitation exchange between the resonator mode and
the JPM.

After the resonator field state being prepared, we need to
efficiently capture the resonator photons by the JPM. On the
photon capture stage, the JPM potential is rapidly tilted in
such a way that the left well contains just two levels and
the transition frequency between them is close to the res-
onator frequency, which enables excitation exchange between
the resonator and the JPM. As we mentioned earlier, in this
regime, the resonator photon drives the JPM from the ground
to the excited state. The excitation then tunnels via the barrier
and relaxes to the bottom of the right deep well. We let the
resonator and the JPM interact during time tcpt long enough to
ensure high probability of photon absorption and subsequent
interwell tunneling.

Next, we need to perform the JPM readout to determine
whether the photon absorption and tunneling have occurred
and the JPM has changed its fluxoid state. On the readout
stage, the JPM potential is tilted back to a slightly asymmetric
two-well configuration that each well is characterized by a
different plasma frequency. By probing the JPM with a weak
microwave signal on one of the plasma resonances, one can
determine the JPM fluxoid state with high (>99.9%) fidelity
in ≈250 ns [57].

Besides the JPM readout approach of Refs. [56,57] out-
lined above, there are other techniques for the JPM readout.
For example, the interwell tunneling induced by the absorp-
tion of the resonator photon results in the change of the JPM
fluxoid state which can be detected by the rf SQUID weakly
coupled to the JPM [73]. Alternatively, the JPM fluxoid state
can be detected by the ballistic fluxons propagating in the
underdamped Josephson transmission line interfaced with the
single-flux quantum logic digital circuitry [109].

Finally, after the readout the JPM is reset to the single-
well configuration and the current photodetection procedure
is over. For the next measurement, the JPM potential is again
set to the photon capture regime and the whole detection
procedure is repeated.

III. THE MODEL

A. The Hamiltonian

Let us start our analysis with a classical description of the
considered system comprised by the resonator mode coupled
to the JPM. It is described by the classical Hamiltonian

H = Hr + Hp + Hint, (1)

see the Appendix for details of its derivation. Here Hr , Hp, and
Hint are terms describing the resonator mode, the JPM, and the
interaction between them, respectively.

The first term in Eq. (1) is given by

Hr = 4EC,rn
2
r + EL,r

φ2
r

2
, (2)

where nr and φr denote the resonator Cooper-pair number and
phase variables, respectively, which are proportional to field
quadratures of the resonator mode. In Eq. (2), parameters
EC,r = e2/(2C′

r ) and EL,r = (�0/2π )2/Lr are the resonator
capacitive and inductive energies, respectively. The last term
in Eq. (2) is the resonator potential energy.
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The second term in Eq. (1) is the JPM Hamiltonian ex-
pressed as

Hp = 4EC,pn2
p +

Up(φp )︷ ︸︸ ︷
EL,p

(φp − φ̃b)2

2
− EJ cos φp, (3)

where np and φp denote the JPM Cooper-pair number and
phase variables, respectively. The quantities EC,p = e2/(2C′

p)
and EL,p = (�0/2π )2/LG stand for the capacitive and induc-
tive energies of the photodetector, respectively. The last two
terms in Eq. (3) constitute the JPM potential energy Up(φp),
where EJ is the Josephson energy.

The third term in Eq. (1), describing the interaction be-
tween the resonator mode and the JPM, reads

Hint = EC,c nrnp, (4)

where EC,c = e2/(2C′
c) stands for the energy of the capacitive

coupling between the resonator and the JPM. The definitions
of the renormalized (loaded) capacitances C′

r , C′
p, and C′

c aris-
ing in Eqs. (2)–(4) are given in Eq. (A7) in geometric.

In the phase qubit regime, one has EC,p � EJ, EL,p. This
implies that the JPM phase “particle” is localized in the vicin-
ity of the local minimum of the JPM potential resembling
a behavior of a classical heavy particle oscillating near its
equilibrium position in a potential well. The positions of the
local minima of the JPM potential Up(φ) are determined from
the standard conditions

d

dφ
Up(φ)

∣∣∣∣φm
p

= 0,
d2

dφ2
Up(φ)

∣∣∣∣
φm

p

> 0,

which yield

EL,p
(
φm

p − φ̃b
) + EJ sin φm

p = 0,

EL,p + EJ cos φm
p > 0. (5)

Next, let us define φp = φm
p + ϕp with ϕp being a fluctuation

from the equilibrium position of the JPM phase “particle.”
Similar arguments hold for the resonator phase “particle” as
well, since EC,r � EL,r. Thus, we can formally write φr =
φm

r + ϕr, where φm
r is the minimum of the resonator poten-

tial. However, since φm
r = 0, we just replace φr with ϕr for

consistency of notation.
To proceed, we expand the cosine term in the JPM potential

Up(ϕp + φm
p ) up to the fourth order in ϕp. Accounting for

the first line in Eq. (5) and dropping the constant terms, one
obtains

Up
(
ϕp

) = E ′
L,p

ϕ2
p

2
− EJ sin φm

p

ϕ3
p

6
− EJ cos φm

p

ϕ4
p

24
. (6)

Here E ′
L,p = EL,p + EJ cos φm

p can be interpreted as the total
inductive energy of the JPM.

Now, we proceed to a quantum description of the consid-
ered resonator mode–JPM system. For obtaining the quantum
version of the circuit Hamiltonian, we follow the canonical
quantization approach [110–112]. We promote the classical
variables of the JPM and the resonator mode to the quan-
tum operators obeying the commutation relations [ϕ̂p, n̂p] =
[ϕ̂r, n̂r] = i. Then, we express these operators in terms of the
ladder operators. For the resonator phase and Cooper-pair

number variables ϕ̂r and n̂r , one has

ϕ̂r = ϕzpf,r (â
† + â), n̂r = −i nzpf,r (â

† − â), (7)

where â (â†) is the annihilation (creation) operator of an ex-
citation (photon) in the resonator mode. Parameters ϕzpf,r =
(2EC,r/EL,r )1/4 and nzpf,r = [EL,r/(32EC,r )]1/4 correspond to
the zero-point fluctuations of the phase and the Cooper-pair
number of the resonator, respectively. Analogously, the JPM
phase and the Cooper-pair number variables are expressed as

ϕ̂p = ϕzpf,p(b̂† + b̂), n̂p = −i nzpf,p(b̂† − b̂). (8)

Here b̂ (b̂†) is an annihilation (creation) operator of an ex-
citation in the JPM, ϕzpf,p = (2EC,p/E ′

L,p)1/4 and nzpf,p =
[E ′

L,p/(32EC,p)]1/4 are the zero-point fluctuations of the JPM
phase and Cooper-pair number.

Substitution of the expressions given by Eqs. (7) and (8)
in the quantum counterparts of Eqs. (1)–(3) and (6) yields the
quantum Hamiltonian of the resonator mode–JPM circuit,

Ĥ
h̄

=
Ĥr︷ ︸︸ ︷

ωrâ
†â +

Ĥp︷ ︸︸ ︷
�pb̂†b̂ − Ξ3(b̂† + b̂)3 − Ξ4(b̂† + b̂)4

− g(â† − â)(b̂† − b̂)︸ ︷︷ ︸
Ĥint

. (9)

Here the first term is the Hamiltonian of the quantum har-
monic oscillator (mode of the resonator) with frequency ωr =
1/

√
LrC′

r . The second term in the above equation is the Hamil-
tonian of the JPM, where �p is the JPM plasma frequency
determined as

�p = 1

h̄

√
8EC,pE ′

L,p. (10)

Note that �p depends on the external flux �̃b. Parameters Ξ3

and Ξ4 in Eq. (9) are defined as

Ξ3 = EJ

6h̄
ϕ3

zpf,p sin φm
p , Ξ4 = EJ

24h̄
ϕ4

zpf,p cos φm
p . (11)

The last term in Eq. (9) describes the coupling between the
resonator mode and the JPM, where

g = EC,c

h̄
nzpf,rnzpf,p (12)

is the strength of this coupling.
The JPM Hamiltonian in Eq. (9) can be approximately

diagonalized using the Schrieffer-Wolff (SW) unitary trans-
formation [113,114]:

Ĥp → eλŜĤpe−λŜ , (13)

where λ = Ξ3/�p and the anti-Hermitian operator Ŝ is given
by

Ŝ = 1
3 (b̂†3 − b̂3) + 3(b̂†2b̂ − b̂†b̂2) + 3(b̂† − b̂). (14)

For the typical circuit parameters we work with, one has
λ2 � 1. Applying the SW transformation to the Hamiltonian
in Eq. (9), keeping the terms only up to the first order in
λ, and making the rotating-wave approximation by dropping
the fast-oscillating terms, one arrives at the effective circuit
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FIG. 2. Dependence of the transition frequency ωp of the uncou-
pled (Cc = 0) JPM on the external flux �̃b for various values of the
JJ critical current I0 (indicated near the corresponding lines). The rest
of the JPM parameters used for computations are LG = 0.5 nH and
Cp = 1.0 pF. Thick solid parts of lines indicate that the shallow well
of the JPM potential hosts only two levels, while the thin dashed parts
correspond to more than two levels existing in the shallow well.

Hamiltonian as follows:

Ĥ
h̄

= ωrâ
†â + ωpb̂†b̂ − ξ

2
b̂†2b̂2

+ g(b̂†â + â†b̂) − g2(b̂†2â + â†b̂2), (15)

where ωp = �p − ξ is the JPM transition frequency and ξ =
60λΞ3 + 12Ξ4 is the anharmonicity of the JPM levels. Fig-
ure 2 demonstrates the dependence of the JPM transition
frequency ωp on the bias flux �̃b and the JJ critical current
I0. The terms in the bottom line in Eq. (15) describe couplings
between the resonator mode and the JPM. The first term in
the bottom line describes the coupling between the resonator
mode and the JPM giving rise to the coherent single-excitation
exchange between them. The second term in the bottom line
in Eq. (15) describes the resonator mode-JPM coupling with
strength g2 = 4λg, which leads to conversion of a single exci-
tation (photon) in the resonator into a pair of excitations in the
JPM. This nondipolar interaction arises due to the asymmetry
of the shallow well of the JPM potential resulting in that the
transitions between the JPM states with the same parity of
their wave function become allowed.

On the photon capture stage, for providing the fastest
excitation exchange, the JPM frequency is tuned close to
the resonator frequency |�p| � g, where �p = ωp − ωr is
the detuning between the frequencies of the JPM and the
resonator. Besides, for the circuit parameters we work with,
one has ξ � g. Under these conditions, the JPM acts effec-
tively as a two-level emitter (2LE) even when the shallow
well accommodates more than two levels. In this case, the
nondipolar interaction described by the last term in Eq. (15)
is strongly suppressed and this term can be neglected. Thus,
the Hamiltonian (15) reduces to the standard Hamiltonian of
the Jaynes-Cummings model describing a mode of a resonator
coupled to a single 2LE [115,116]:

Ĥ
h̄

= ωrâ
†â + (ωr + �p)σ̂11 + g(σ̂10â + â†σ̂01). (16)

Here we introduced the 2LE operator σ̂ j j′ ≡ | j〉〈 j′|, where
j, j′ ∈ {0, 1}, obeying the spin-1/2 commutator algebra
[σ̂ j j′ , σ̂ll ′ ] = σ̂ jl ′δ j′l − σ̂l j′δl ′ j .

To proceed, it is convenient to move to a rotating frame via
a transformation

Ĥ → R̂(t )ĤR̂†(t ) + ih̄
∂R̂(t )

∂t
R̂†(t ), (17)

where R̂(t ) = exp(−iωrt N̂ex) with N̂ex = â†â + σ̂11 being the
operator of the total number of excitations in the system. In the
rotating frame, the Hamiltonian of the resonator mode-JPM
system reads as

Ĥ
h̄

= �pσ̂11 + g(â†σ̂01 + σ̂10â). (18)

This is the Hamiltonian we use in what follows for describ-
ing the coupled resonator mode–JPM system on the photon
capture stage.

Contrary to the resonant regime of the interaction between
the JPM and the resonator mode on the capture stage, on
the JPM readout stage the potential is tilted to a slightly
asymmetric configuration [56] and the JPM transition ω̄p

frequency becomes strongly detuned from the resonator fre-
quency |�̄p| � g, where �̄p = ω̄p − ωr. Thus, the excitation
exchange between the resonator and the JPM is essentially
suppressed on the readout stage. The same holds also for the
reset stage. Thus, on these stages, we can treat the resonator
mode and the JPM as decoupled subsystems.

B. Master equation

We describe the evolution of the system state ρ̂(t ) by the
master equation [117]

∂t ρ̂(t ) = L̂(t )ρ̂(t ). (19)

Here, assuming that the switching between the regimes of
photon capture and the JPM readout occurs much faster
than the durations of these regimes, we represent the time-
dependent Liouvillian superoperator L̂(t ) as

L̂(t ) = [�(t ) − �(t − tcpt )]L̂cpt

+ [�(t − tcpt ) − �(t − tmsr )]L̂rdt, (20)

where tmsr = tcpt + trdt + trst is the total duration of a single
photodetection cycle comprised by the times of the photon
capture tcpt, readout trdt, and reset trst; �(t ) denotes the Heav-
iside step function. The first term in the above expression
describes the evolution of the system during the photon cap-
ture stage, while the second term corresponds to the JPM
readout and reset stages.

The Liouvillian L̂cpt has the Lindblad form [118] and
reads, cf. Refs. [59,119],

L̂cptρ̂ = − i

h̄
[Ĥ, ρ̂] +

∑
j=0,1

γ jD̂[|c〉〈 j|]ρ̂

+ �10D̂[σ̂01]ρ̂ + �11D̂[σ̂11]ρ̂ + κD̂[â]ρ̂, (21)

where D̂[•̂]ρ̂ = •̂ρ̂•̂† − (•̂†•̂ρ̂ + ρ̂•̂†•̂)/2. The first term in
Eq. (21) describes the unitary quantum evolution during the
photon capture stage described by the Hamiltonian Ĥ given
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FIG. 3. Dependence of the tunneling rates γ1 and γ0 on the ex-
ternal flux �̃b threading via the JPM. Thick solid and thin dashed
parts of lines have the same meaning as in Fig. 2. Computations are
performed for I0 = 1.2 μA, while the rest of the circuit parameters
are the same as in Fig. 2.

by Eq. (18). The second term describes the interwell tunneling
of the JPM metastable states |0〉 and |1〉 from the shallow well
to the deep well. Here, similarly to Ref. [59], we replaced the
cascade of multiple states in the deep well with a single state
|c〉 into which the metastable states |0〉 and |1〉 can irreversibly
transit to. We assume that the relaxation of the top levels in
the deep well occurs much faster than the interwell tunneling.
That implies that once the particle tunneled from the shallow
well, it does not tunnel back but rapidly dissipates its energy,
eventually falling to the bottom level of the deep potential
well. Such a simplified description significantly reduces the
Hilbert space of the JPM states, abating the numerical com-
plexity of the problem while retaining the essential general
features of quantum evolution of the considered system. The
third and fourth terms in Eq. (21) describe the processes of the
JPM relaxation with rate �10 and the pure dephasing with rate
�11, respectively. The last term corresponds to the resonator
mode relaxation with rate κ .

The tunneling rates of the metastable levels |0〉 and |1〉 are
evaluated using the WKB approximation [120]:

γ j = � j

j!
√

2π

(
j + 1/2

e

) j+1/2

× exp

(
−2

h̄

∫ φ2

φ1

dφ
√

2C′
p[Ej − Up(φ)]

)
, (22)

where � j = Ej/h̄ with Ej being the eigenenergy of the jth
level in the shallow well. Figure 3 shows the dependence of
the tunneling rates of the levels |0〉 and |1〉 on the external flux
�̃b. Calculations demonstrate that γ1/γ0 � 103 for the typical
JPM parameters we use. A similar estimate was obtained, e.g.,
in Ref. [73].

As we mentioned earlier, on the readout and reset stages,
the JPM transitions are effectively decoupled from the res-
onator mode due to strong detuning. Since the JPM dynamics
on these stages does not affect the resonator field and the
detailed description of the JPM dynamics is not required, we
can take partial trace with respect to the JPM states and con-
sider the evolution of the resonator mode ρ̂r (t ) alone, where

tcpt < t < tmsr. Here ρ̂r (t ) ≡ Trp[ρ̂(t )], where the subscript p
of the trace operator implies that only the JPM states are traced
out. The master equation governing the evolution of the state
of the resonator mode reads

∂t ρ̂r (t ) = L̂rdtρ̂r (t ), tcpt < t < tmsr, (23)

where the Lindbladian

L̂rdtρ̂r = − i

h̄
[Ĥr, ρ̂r] + κD̂[â]ρ̂r (24)

describes the free evolution and the relaxation of the resonator
mode.

The Lindblad master equation given by Eqs. (19)–(21),
(23), and (24) is solved numerically using QuantumOptics.
jl—the Julia library offering versatile toolkit for simulating
various quantum optics problems [121]. For simulations, we
assume that at the beginning of the photodetection (we set
this moment as t = 0) the state of the system ρ̂(0) is sep-
arable with the JPM residing in its lowest metastable state
|0〉, i.e., ρ̂(0) = �̂ ⊗ |0〉〈0| with �̂ being the initial state of the
resonator mode.

In our analysis, we neglect the effects of the thermal
excitations on the system evolution. The working tempera-
tures of the circuit QED setups are usually lie in the range
Tsys ≈ 10–30 mK. For the typical operational frequencies
ωsys/(2π ) ≈ 4–10 GHz, assuming the Bose-Einstein distribu-
tion of the thermal excitations, one obtains the upper estimate
for its average number nth � 10−2 which justifies our approx-
imation.

IV. PHOTOCOUNTING STATISTICS

Having developed the model describing the resonator
mode–JPM system, we proceed to considering the process
of counting photons in the resonator mode. Here we aim to
determine the statistics of the photocounts obtained as a result
of the repeated measurements of the resonator mode by the
single JPM. As mentioned in introduction, the photocounting
statistics is a prominent example of quantum measurements.
Its outcome probabilities are described by Born’s rule [122].
The photocounting distribution for the resonator mode in the
state �̂ is given by

P(k) = Tr{�̂ �̂k}, (25)

where �̂k is the POVM element corresponding to the outcome
with k clicks. Thus, as it follows from Eq. (25), also known
as the photocounting formula, calculation of photocounting
statistics requires knowledge of the POVM.

The POVM of the JPM-based photocounter we study
depends on the counting technique. Here we consider two
approaches to counting resonator photons. The first approach
is to count photons by performing a fixed number of measure-
ment (photodetection) iterations, M, regardless of the obtained
results. In the second approach, the measurement is iterated
until either the first no-click event occurs or the maximum
number of iterations, M, is reached. In both cases, the mea-
surement outcome k is given by the total number of clicks.

The POVM is convenient to consider in the Fock-state
basis,

P(k|n) = r〈n|�̂k|n〉r. (26)
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Here P(k|n) are diagonal matrix elements of the POVM el-
ements, defining the probability of obtaining k clicks given
the n-photon Fock state. Importantly, since photocounting
is a phase-insensitive measurement, the nondiagonal matrix
elements of the POVM vanish, r〈n|�̂k|m〉r = 0 for n �= m. On
the other hand, the spectral decomposition theorem yields

�̂k =
+∞∑
n=0

P(k|n)|n〉r〈n|. (27)

This implies that the POVM in Eq. (25) is uniquely defined by
its diagonal matrix elements.

A. Statistics of subsequent events

Our initial objective is to determine the probability of ob-
taining a series of measurement outcomes IM = {iM, . . . , i1}
given an n-photon Fock state. Each event within this sequence,
l = 1, . . . , M, can have a binary result: il = 0 and il = 1,
corresponding to “no-click” and “click,”, respectively. The en-
tire measurement procedure could be explained by Bernoulli’s
process, if all events were independent and described by the
same binary probability distribution. In such a scenario, the
two measurement techniques mentioned in the preamble of
this section would be described by binomial and geometric
distributions, respectively. However, in our case, every event
modifies the state of the resonator mode and, consequently,
their probabilities are not independent.

Let us define the probability W (m, i|n) to get m photons
in the resonator mode and the measurement result i = 0, 1
given n photons before the iteration event. In the sequence
of measurements, the result of the subsequent event depends
solely on the number of photons that remain after the previous
measurement event, and not on any prior states of the res-
onator mode. This indicates a typical Markov process. Thus,
we can calculate the joint probabilities to obtain the outcome
sequence I and the sequence of remaining photon numbers
{mM, . . . , m1}. Averaging this probability with respect to the
latter results in an expression for the probability of obtaining a
series of measurement outcomes, IM , from the n-photon Fock
state at the beginning,

P(IM |n) =
+∞∑

mM=0

· · ·
+∞∑

m1=0

M∏
l=1

W (ml , il |ml−1), (28)

where we set m0 = n.
Using Bayes’ theorem, we can decompose the probabilities

in the right-hand side of Eq. (28),

W (ml , il |ml−1) = W (il |ml−1)W (ml |il , ml−1). (29)

Here W (il |ml−1) is the probability to get the measurement
result il given ml−1 photons before the iteration event and
W (ml |il , ml−1) is the probability that the state of the resonator
mode contains ml photons given the measurement result il
and also ml−1 photons before the iteration event. Both these
probabilities can be calculated with the model considered
above.

B. Positive operator-valued measures

The probabilities P(IM |n) enable us to obtain the POVM in
the Fock basis. The first technique, which involves counting
the total number of click events in the sequence I, yields
a probability distribution of clicks that can be considered a
generalization of the binomial distribution. In this scenario,
the POVM in the Fock basis is given by

Pb(k|n) =
∑

IM∈Ik

P(IM |n). (30)

Here

Ik =
{
IM

∣∣∣∣∣
M∑

l=1

il = k

}
(31)

is the set of all measurement sequences with k click events.
We refer to this counting technique as generalized binomial.

The second technique involves counting clicks until the
first no-click event or reaching the end of the sequence. This
yields the probability distributions of clicks, which is a gen-
eralization of the geometric distribution. Thus, the POVM in
the Fock representation for this scenario reads

Pg(k|n) = P
(
I (1)

k

∣∣n)
. (32)

Here

I (1)
k =

{
{ik+1 = 0, ik = 1, . . . , i1 = 1}, k < M

{iM = 1, . . . , i1 = 1}, k = M
(33)

is the sequence of measurement outcomes with k consecutive
click events. This counting technique will be referred to as
generalized geometric.

C. Click probability

As mentioned, the probabilities W (i|n) in Eq. (29) can be
calculated with the model considered above. In this context,
we first note that W (0|n) = 1 − W (1|n). Hence, it is sufficient
to determine only the probability W (1|n) to get a click given
n photons.

The probability W (1|n) of the JPM delivering a click is
given by

W (1|n) = βPc(n; tcpt ). (34)

Here Pc(n; t ) = Tr[ρ̂(n; t )|c〉〈c|] stands for the population of
the state |c〉 at an instant t for the resonator mode initially
in the n-photon Fock state. Here we introduced a notation
ρ̂(n; t ) for the system density operator at a moment of time
t given that at the beginning of the photon capture stage
the resonator mode is in an n-photon Fock state �̂ = |n〉r〈n|.
The phenomenological parameter 0 � β � 1 introduced in
Eq. (34) models the efficiency of the JPM readout procedure
outlined in Sec. II. As we mentioned therein, the efficiency of
the reflectometry-based JPM readout can exceed 99.9%.

D. Conditional photon-number distribution

Next, we determine the probability W (m|i, n) to get m pho-
tons given the measurement result i and n photons before the
measurement iteration. For this purpose, we need to determine
the postmeasurement state �̂(i, n) of the resonator mode, i.e.,
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FIG. 4. Dependence of the photocounter resolution RM (for M = 3, 4, 5) on the photon capture time tcpt and the JPM upper level tunneling
rate γ1 for the generalized binomial (upper row) and for the generalized geometric (lower row) counting technique. Parameters of the system
used for computations are g/2π = 30 MHz, �10/2π = 1 MHz, �11 = 5�10, and κ/2π = 1 kHz. For computations, we assume the resonant
regime of the resonator mode-JPM coupling � = 0 and take trdt + trst = 300 ns.

the state after obtaining the measurement result i under the
Fock state with n photons. This yields the probability to find
m photons in the resonator mode given i and n,

W (m|i, n) = r〈m|�̂(i, n)|m〉r. (35)

Here partial averaging is taken over the Fock state of the
resonator mode, |m〉r.

The resonator mode postmeasurement state �̂(i, n) is deter-
mined as [59]

�̂(i, n) = Trp[ρ̂(n; tmsr ) π̂i]

W (i|n)
, (36)

where ρ̂(n; tmsr ) is the state of the system at the end of the
measurement sequence given the initial n-photon Fock state
of the resonator mode. As above, the subscript p of the trace
operator indicates that the trace is taken over the JPM states
only. In Eq. (36), π̂i stands for operators in the space of the
JPM states,

π̂1 = β|c〉〈c|, π̂0 = 1̂ − π̂1, (37)

where i = 0, 1 denotes the measurement result. In this case,
the unity operator reads as 1̂ = |0〉〈0| + |1〉〈1| + |c〉〈c|.

V. PHOTON-NUMBER RESOLUTION

As mentioned above, our goal is to tune the parameters of
the JPM detectors to make such counters as close as possible
to the ideal PNR detectors. Such an optimization requires a
quantity (measure) that characterizes the ability of detectors
to resolve between adjacent numbers of photons. As discussed
in Ref. [76], the probability P(n|n) of obtaining n clicks given
n photons can be considered as a relevant characteristic of the
photon-number resolution for a fixed photon number n.

We generalize this characteristic to define a measure of the
photon-number resolution between M photons. Let us assume
that (i) the resonator mode does not contain more than M

photons and (ii) our a priori information about the photon
number is minimal for n = 0, . . . , M. In other words, this
means that the prior photon-number distribution is uniform
for these M + 1 values. Therefore, the quantity

RM = 1

M + 1

M∑
n=0

P(n|n) (38)

can be considered as the probability to get the correct value
for the number of photons in the aforementioned domain,
given the minimal a priori information and assuming that
the state of the resonator mode is restricted by M photons.
Obviously, this quantity can be considered as a suitable mea-
sure of the photon-number resolution, which we refer to as
the photocounter resolution. This measure takes values in the
interval RM ∈ [0, 1]. For RM = 1 we get the ideal resolution
between M photons, for RM = 0 it vanishes at all. Note
that even for PNR detectors with losses this measure is less
than one.

Figure 4 demonstrates the dependence of the photocounter
resolution RM (for M = 3, 4, 5) on the photon capture time
tcpt and the tunneling rate of the JPM excited state γ1 for
the different resonator mode–JPM couplings g. Computations
reveal that for the given value of the coupling g and the JPM
relaxation rate �10 there is a combination of γ1 and tcpt for
which the resolution attains its maximal value Rmax

M .
This feature of the resolution emerges due to an interplay

between different competing processes occurring in the con-
sidered system. The obtained results show that the resolution
RM rapidly grows with the increase of γ1/g attaining its global
maximum for γ1/g ≈ 3–4 and then starts to slowly diminish
with the further increase of γ1/g. Similar interplay between
the coherent excitation exchange and the relaxation is char-
acteristic for noise-assisted transport [123,124]. It was also
observed in the experimental study of simplified models of
light-harvesting complexes in circuit QED [48].
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FIG. 5. Dependence of the maximal photocounter resolution Rmax
M on M for (a) various coupling strengths g for �10/2π = 1.0 MHz

and κ/2π = 1.0 kHz, (b) various relaxation rates �10 for g/2π = 30 MHz and κ/2π = 1.0 kHz, and (c) various resonator loss rates κ for
g/2π = 30 MHz and �10/2π = 1.0 MHz. The rest of the system parameters are the same as in Fig. 4. Empty (filled) markers correspond to
the generalized binomial (geometric) counting techniques. Thin dashed lines are added for the better perception.

The existence of the optimal capture time topt
cpt agrees with

the earlier results of Ref. [58]. On the one hand, the prolon-
gation of the photon capture stage increases the probability of
the resonator photon to be absorbed by the JPM and induce a
click. On the other hand, the longer capture time increases the
probability of the false click due to tunneling from the lower
metastable level |0〉 in the case of the vacuum-state input,
which reduces the probability P(n|n).

Figure 5 shows the effect of the system parameters on
the dependence of the maximal resolution Rmax

M on M. Com-
putations demonstrate that Rmax

M decreases with the increase
of M for both generalized geometric and binomial photo-
counting techniques. The increase of the coupling between
the resonator mode and the JPM leads to the increase of the
maximal resolution Rmax

M as illustrated in Fig. 5(a). As ex-
pected, stronger JPM and resonator mode relaxation reduces
the resolution which is shown in Figs. 5(b) and 5(c). Stronger
losses deteriorate the resolution with more pronounced impact
for larger M.

It is worth noting that the setup parameters we use for com-
putations are accessible for the current or near-term circuit
QED technologies. Frequencies of the resonator mode and
JPM transition as well as the coupling parameters we work
with are typical for the circuit QED setups [37]. The internal
Q factors of the CPW resonators can exceed 106 [88,89]
which corresponds to the photon loss rates κ/2π � 10 kHz.
Comparable Q factors ≈106 were achieved in the lumped-
element resonators [125]. Even higher internal Q factors up
to 108 can be attained in the coaxial resonators [93,94] and
the three-dimensional (3D) microwave cavities can demon-
strate Q factors exceeding 1010 [95–98]. The experimentally
reported relaxation rate of the flux-biased JPM is �10/2π ≈
15 MHz [56]. However, we anticipate that by using different
materials and fabrication techniques the JPM relaxation will
be reduced in the near-term devices.

The obtained results show that for the same coupling g and
the JPM relaxation �10, the generalized geometric counting
technique provides better resolution than the generalized bi-
nomial one. We attribute this behavior to the effect of the false
clicks arising due to superfluous tunneling from the lower
JPM level. In the case of the generalized binomial counting
technique, we perform the fixed number of measurement

iterations which results in the higher probability (for the same
photon capture time tcpt) of obtaining a false click compared
with the generalized geometric technique when we stop
counting if one obtains no click. For reducing the probability
of obtaining a false click, one can shorten the photon capture
time. That, however, results in the reduction of the probability
of absorbing a photon. As a result of the trade off between
these competing effects, for the generalized binomial counting
technique, the optimal photon capture time tcpt is shorter and
the maximal resolution is lower than those for the generalized
geometric technique. These qualitative considerations agree
with the numerical results presented in Fig. 4, demonstrating
that the optimal photon capture time tcpt is indeed shorter for
the generalized binomial counting technique.

VI. EXAMPLES OF PHOTOCOUNTING STATISTICS

In this section, we apply the description of the JPM-based
photocounter developed in Sec. IV to obtain photocounting
statistics for the typical quantum states for which the protocols
of preparation are already implemented in the circuit QED
architecture. The examples of the POVMs we use for eval-
uation of the photocounting statistics are shown in Fig. 6(a)
for the generalized binomial technique and Fig. 6(b) for the
generalized geometric technique.

As a measure of an overlap between the obtained pho-
tocounting statistics P(k) of the considered JPM-based
photocounter and the counting statistics Pi(k) of the ideal PNR
detector, we use the Bhattacharyya coefficient 0 � B � 1,
defined as

B =
M∑

k=0

√
P(k)Pi(k). (39)

The counting statistics obtained by the ideal PNR detector
is equivalent to the photon-number distribution of the initial
state of the resonator mode Pi(k) = r〈k|�̂|k〉r . The coefficient
B is related to the distance between the probability distri-
butions and shows how similar the obtained photocounting
statistics of the JPM photocounter is to the genuine photon-
number distribution. The limiting case of B = 1 implies that
P(k) = Pi(k), while B = 0 indicates no overlap between dis-
tributions P(k) and Pi(k).

063710-9



E. V. STOLYAROV et al. PHYSICAL REVIEW A 108, 063710 (2023)

FIG. 6. The POVM for the case of (a) the generalized binomial
and (b) the generalized geometric counting techniques for the max-
imal number of iterations M = 5. Parameters of the system used
for computations are (a) γ1/2π = 162.3 MHz, and tcpt = 17.4 ns;
(b) γ1/2π = 173.6 MHz, and tcpt = 19.2 ns. The values of the
tunneling rate γ1 and the capture time tcpt are taken to maximize
the photodetector resolution RM . The rest of the parameters are
as follows: g/2π = 30 MHz, �10/2π = 1 MHz, �11 = 5�10, and
κ/2π = 10 kHz. As earlier, we assume the resonant coupling regime
� = 0 and set trdt + trst = 300 ns.

The first example we consider is the initial Fock state of the
resonator field |n〉r. The obtained photocounting statistics and
the corresponding Bhattacharyya coefficients for n = 3 are
shown in Fig. 7(a). The tunneling from the lower metastable
level |0〉 leads to false counts manifesting themselves as
nonzero probability of obtaining more counts than there were
initially photons in the resonator mode. This contribution is
lower for the geometric technique as demonstrated in the inset
in Fig. 7(a). Resonator and JPM losses are the primary source
of imperfect resolution of the Fock states in the considered
photocounting setup.

Next, we consider the resonator mode prepared in the co-
herent state |α〉r with the photon average number |α|2 = 3. The
corresponding photocounting statistics are shown in Fig. 7(b).
For the chosen amplitude α, both counting techniques give
almost identical statistics. Here, the discrepancy from the
statistics of the ideal detector stems from the lack of resolution
for the photon numbers n � 5.

Finally, we study the case of the resonator mode prepared
in the squeezed vacuum state

|r〉r = 1√
cosh r

+∞∑
k=0

(
2n

n

)1/2( tanh r

2

)2

|2n〉r, (40)

FIG. 7. Photocounting statistics obtained for the resonator mode
prepared in (a) the Fock state |n〉r with n = 3, (b) the coherent state
|α〉r with the amplitude α = √

3, and (c) the squeezed vacuum state
|r〉r with the squeezing parameter r = 1. The corresponding POVMs
and the parameters of the system used for computations are given in
Fig. 6 and its caption.

where r is the squeezing parameter. Figure 7(c) shows
the photocounting statistics for r = 1. In contrast with the
ideal photodetector, the JPM photocounter can deliver an
odd number of clicks. These erroneous outcomes arise
mainly due to the JPM relaxation. The generalized bino-
mial counting technique delivers higher deviation from the
statistics of the ideal detector than the generalized geometric
technique.

Figure 8 shows the effect of the JPM relaxation on the
dependence of the Bhattacharyya coefficient B on the coher-
ent amplitude α for the case of the resonator mode prepared
in the coherent state and the squeezing parameter r for the
resonator mode prepared in the squeezed vacuum state. The
results demonstrate that the photocounting statistics are closer
to the statistics of the ideal PNR detector when the average
number of photons (determined as |α|2 for the coherent states
and sinh2(r) for the squeezed vacuum) is much less than the
number of measurement iterations M. Degradation of B for
the weak coherent states (|α|2 � 1) is explained by the excess
probability of getting no clicks due to JPM relaxation. With
the increase of the average photon number, the coefficient
B starts to rapidly decrease due to the lack of resolution for
higher photon numbers. Similarly to the results obtained in
Sec. V, computations of the Bhattacharyya coefficient sug-
gest that the generalized geometric technique provides better
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FIG. 8. Dependence of the Bhattacharyya coefficient on (a) the
amplitude α for the initial coherent state |α〉r of the resonator field
and (b) the squeezing parameter r in the case of the resonator field
prepared in the squeezed vacuum state |r〉r for M = 5 and the differ-
ent values of the JPM relaxation rate �10. Solid lines correspond to
the generalized geometric counting technique while the dashed lines
correspond to the generalized binomial technique. The parameters of
the setup used for computations are g/2π = 30 MHz, �11 = 5�10,
and κ/2π = 1 kHz.

results than the binomial technique, especially for the stronger
JPM relaxation.

VII. NONCLASSICALITY
OF PHOTOCOUNTING STATISTICS

The aim of this section is to analyze the principal ability
of the JPMs to serve as a playground for testing nonclas-
sical properties of electromagnetic radiation in a microwave
resonator. Based on the results of the previous section, we
anticipate that the considered JPM detector will provide suf-
ficiently high quality photocounting statistics to solve this
task efficiently. It is also important to realize how test re-
sults for JPM detectors differ from results for the ideal PNR
detectors.

Any measurement conducted under the coherent states
or their statistical mixtures can be explained by classical
electrodynamics; see, e.g., Refs. [5,77–82]. The density op-
erator of any quantum state can be expanded by coherent
states as

�̂ =
∫

α∈C
d2α P(α)|α〉r〈α|, (41)

where P(α) is the Glauber-Sudarshan P function [83,84].
Hence, nonclassical states are characterized by P(α) � 0,
which cannot be interpreted as probability distributions.

Photocounting measurements, even if they are ideal, do
not provide complete information about the quantum state.
Consequently, any test with such measurements represents
only a sufficient condition for nonclassicality of quantum
states. On the other hand, such tests address another important
issue: can the given photocounting statistics be replicated with
a statistical mixture of classical electromagnetic fields? For
instance, this question is addressed in the test of the sub-
Poissonian statistics of photocounting based on the Mandel
Q parameter [126], its higher-order generalization [127], the
Klyshko test [128] and its generalization [129], etc. An issue
with these tests is that they are formulated for ideal PNR
detectors. When applied directly to JPM detectors, even with
high values of the photocounter resolution RM , they may lead
to incorrect conclusions. Other tests adapted for arrays of
on-off detectors (see, for example, Refs. [130–132]) are not
applicable in our case since they are based on a significantly
different POVM.

The nonclassicality test adapted to arbitrary POVMs has
been proposed in Refs. [85,86,133]. This states that the pho-
tocounting statistics can be explained classically if and only
if, for any λ(n), the inequality

M−1∑
n=0

λ(n)P(n) � sup
α∈C

M−1∑
n=0

λ(n)�(n|α) (42)

holds. Therefore, if there exists such λ(n) that this inequality
is violated, then photocounting statistics is nonclassical. In
Eq. (42),

�(n|α) = r〈α|�̂n|α〉r = e−|α|2
+∞∑
k=0

|α|2k

k!
P(n|k) (43)

is the Q symbol of the POVM, describing the probability of
obtaining n clicks of the photocounter given the resonator
mode prepared in the coherent state |α〉r . Both sides of this
inequality can be estimated experimentally. The left-hand side
can be estimated with the tested nonclassical state, while
the right-hand side can be estimated with a set of coherent
states. Hence, in experiments one should not even trust the
POVM model to make a conclusion about nonclassicality of
photocounting statistics.

The squeezed vacuum states described in Eq. (40) serve
as archetype examples of nonclassical states, and they can be
prepared well beyond the 3 dB limit of squeezing in circuit
QED [44,105,106]. These states are used here as a test case.
Interestingly, the Mandel Q parameter associated with these
states is positive. However, other tests show a nonclassical
character of the photocounting statistics for squeezed vacuum
states; see, e.g., Refs. [85,86].

We have considered the case of M = 3. Inequality (42)
has been optimized numerically with respect to λ(n) to find
its maximum violation. We define the violation as the dif-
ference of the left- and right-hand sides of inequality (42).
For the numerical optimization, we used the adaptive differ-
ential evolution algorithm [134]. This means that for each
quantum state (the squeezing parameter r for the considered
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FIG. 9. Dependence of the maximal violation of inequality (42)
(difference of its left- and right-hand sides) on the squeezing param-
eter r given the resonator mode is prepared in the squeezed vacuum
state |r〉r for M = 3 and the various values of the JPM relaxation rate
�10. Solid lines correspond to the generalized geometric technique.
Empty circles represents the data for the generalized binomial tech-
nique. Dashed line corresponds to the ideal PNR detector. Here we
take g/2π = 50 MHz, while the rest of the system parameters are the
same as in Fig. 8.

example) we search for such a function λ(n) that the violation
is maximized. This procedure has been performed for both
generalized binomial and geometric counting techniques, as
well as for different values of the detector parameters. We also
applied this procedure to the ideal PNR detectors, consider-
ing only n = 0, . . . , M − 1. The results are shown in Fig. 9.
Evidently, counting techniques with the JPM detectors can
be efficiently considered to test nonclassicality of squeezed
vacuum states. Moreover, for small squeezing (�2 dB) the
results for the JPMs are almost the same as for the ideal PNR
detectors. Therefore, for small squeezing parameters, JPMs
can be used for nonclassicality tests as proper PNR detectors.
It is worth noting that the described nonclassicality test does
not necessarily require optimization of the detector parame-
ters and can be applied even with state-of-the-art devices.

VIII. SUMMARY

In this paper, we have theoretically investigated the
possibility of using repeated measurements of microwave
electromagnetic radiation confined in a resonator mode by a
JPM detector. Our goal was to understand if this method can
be used to obtain the maximum possible resolution between
adjacent numbers of photons—a key feature of photocoun-
ters required for various fundamental and applied problems.
We have considered two counting techniques referred to as
generalized binomial and geometric. The first involves count-
ing the number of detector clicks in a given range of the
predetermined measurement sequence. The second assumes
counting up to either the first no-click event or the end of the
measurement sequence.

Our theoretical methods involve three steps. First, we have
developed a description of a JPM photocounter coupled to
a resonator mode with the Lindblad master equation, which

we then solve numerically. Second, this solution has been
applied to derive the POVMs for both counting techniques.
Third, the POVM is used in the proposed measure of photon-
number resolution, which is then optimized by detector
parameters.

We conclude that the currently available or near-term cir-
cuit QED devices can be used to achieve a high degree of
photon-number resolution up to about seven photons. Inter-
estingly, the generalized geometric technique shows better
results compared with the generalized binomial technique.
That could be explained by the fact that in the latter technique,
we perform a fixed number of measurement iterations. This
leads to a higher probability of obtaining erroneous results
compared with the generalized geometric technique, where
we stop counting once a no-click result is obtained. The er-
roneous result can arise due to photon loss in the JPM or the
resonator mode or the superfluous tunneling from the lower
metastable level of the JPM.

We have applied our theory to show that the JPM detec-
tors can be used to experimentally solve a typical problem
in quantum optics—testing nonclassicality of photocounting
statistics. Using the example of the squeezed vacuum state, it
is shown that for relatively small squeezing parameters, the re-
sults are indistinguishable from those obtained with ideal PNR
detectors. Therefore, nonclassical properties of low-intensity
radiation analyzed by JPM detectors can be assumed to be
analyzed by the ideal PNR detectors with a high degree of
confidence. We hope that our theoretical results will be useful
in fundamental and applied research requiring detectors with
high photon-number resolution.
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APPENDIX: DERIVATION OF
THE CIRCUIT HAMILTONIAN

Figure 10 illustrates the circuit diagram of the consid-
ered resonator-JPM system. Following the standard procedure
[110,111], for deriving the classical Hamiltonian of the circuit
shown in Fig. 10, we start with the circuit Lagrangian L

resonator JPM

FIG. 10. The lumped-element circuit diagram of the system com-
prised by the resonator coupled to the JPM.
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given by

L = Cp�̇
2
p

2
+ EJ cos

(
2π

�p

�0

)
− (�p − �̃b)2

2LG

+ Cr�̇
2
r

2
− �2

r

2Lr
+ Cc(�̇r − �̇p)2

2
, (A1)

where Cp = Cs + CJ is the total capacitance of the JPM. �r

and �p denote the resonator and JPM node fluxes, respec-
tively. Using the Legendre transform [135], one derives the
Hamiltonian

H = Qp�̇p + Qr�̇r − L, (A2)

where Qp = ∂L/∂�̇p and Qr = ∂L/∂�̇r are the generalized
momenta corresponding to the charges on the resonator
and JPM capacitances, respectively. Using Eq. (A1) one
obtains (

Qp

Qr

)
=

(
Cp + Cc −Cc

−Cc Cr + Cc

)(
�̇p

�̇r

)
. (A3)

Plugging Eqs. (A3) and (A1) into Eq. (A2) leads to

H = (Cp + Cc)�̇2
p

2
+ (Cr + Cc)�̇2

r

2
− Cc�̇p�̇r

+ �2
r

2Lr
+ (�p − �̃b)2

2LG
− EJ cos

(
2π

�p

�0

)
. (A4)

Expressing �̇p and �̇r via Qp and Qr using Eq. (A3) gives

�̇p = Cr + Cc

Cp(Cr + Cc) + CrCc
Qp

+ Cc

Cp(Cr + Cc) + CrCc
Qr, (A5a)

�̇r = Cc

Cp(Cr + Cc) + CrCc
Qp

+ Cp + Cc

Cr (Cp + Cc) + CpCc
Qr. (A5b)

Substituting the above expressions into Eq. (A4), one arrives
at the circuit Hamiltonian expressed as

H = Q2
r

2C′
r

+ �2
r

2Lr
+ QpQr

C′
c

+ Q2
p

2C′
p

+ (�p − �̃b)2

2LG
− EJ cos

(
2π

�p

�0

)
, (A6)

where the renormalized capacitances C′
p, C′

r , and C′
c are given

by

C′
p = Cp + CrCc

Cr + Cc
, C′

r = Cr + CpCc

Cp + Cc
, (A7)

and

C′
c = Cr + Cp + CrCp

Cc
. (A8)

Next, we define the capacitive and inductive energies of the
corresponding circuit elements and introduce the phases φr =
2π�r/�0 and φp = 2π�p/�0 across the resonator and the
JPM, respectively. We also introduce the numbers of Cooper
pairs nr = −Qr/(2e) and np = −Qp/(2e) on the resonator and
JPM capacitors, correspondingly. Note that variables nr and
np can take both positive and negative values, corresponding
to an excess or deficiency of the Cooper pairs. Using these
notations in Eq. (A6) yields the Hamiltonian (1).
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