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Limits for realizing single photons
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Exact single photons cannot be generated on demand due to their infinite tails. To quantify how close
realizable optical states can be to some target single photon in one dimension, we argue that there are two
natural but incompatible ways to specify the target state. Either it can be expressed as a photon with a chosen
positive-frequency spectrum, or it can be described as an (unphysical) photon in a chosen positive-time pulse. The
results show that for sufficiently short target pulses, the closest realizable states contain substantial multiphoton
components. Upper and lower bounds for the maximum fidelity are derived and are expressed as functions of the
size of the target state’s tail, for negative time or negative frequency, respectively. We also generalize the bounds
to arbitrary photon-number states.
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I. INTRODUCTION

Given an arbitrary electromagnetic source, what optical
signals can be generated on demand, i.e., produced reliably by
a free, local decision? Although it is not immediately obvious
there should be any restrictions, the answer is tied to the
limits of photon localization [1,2], a connection that was first
formulated in Ref. [3].

The question of how well single photons can be local-
ized has a long history. Early efforts were concentrated on
direct measures of localization resembling those in nonrela-
tivistic quantum mechanics, such as photon wave functions
[4], photon position operators [5], and spatial photon num-
ber operators [6]. All these concepts suffered from various
difficulties [7–9], which was usually taken as evidence for
that photons might not be possible to localize [10,11] (see
also review articles [12,13]). Although these methods oc-
casionally still receive some interest [12], it was with time
accepted that the only meaningful characterization of particle
localization in quantum field theory is through measurements
of local observables [14]. For instance for photons, a com-
mon local observable is the electromagnetic energy density
[2,15]. An early calculation of this quantity [16] produced a
long-standing belief that the energy density of a maximally
localized photon is spread out in space r with an asymptotic
falloff of |r|−7 [11]. However, this bound was eventually dis-
proved, as solutions with higher-inverse-power falloffs were
identified [17], before Bialynicki-Birula finally in 1998 dis-
covered the almost-exponential limit of photon localization
[2].

The reason that single photons cannot be localized is the
absence of negative frequencies in the quantum field’s anni-
hilation operator time dependence e−iωt = e−i|k|t [1], where
ω is the frequency, k the wave vector, and t the time. To
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see why, consider a one-dimensional (1D) source of a single
polarization as in Fig. 1. For an emitted photon traveling in the
+x direction from the source, we can calculate the expected
electromagnetic, normal-ordered energy density as a function
of position at a fixed time. By expressing this quantity as an
integral over the photon frequency (energy), which must be
positive, we obtain a Fourier integral over only positive argu-
ments [3]. Such a function with a purely positive spectrum
satisfies quite strict analytic properties in terms of position
and time [18]. In particular by the Paley-Wiener criterion [19]
(see also Appendix A), this function must either be identically
zero, in which case there is no photon, or it is nonzero (almost)
everywhere with an asymptotic falloff slower than e−Ax, for
A > 0 [2]. In other words, any falloff slower than exponential
is possible, but an exponential or faster falloff is impossi-
ble. This applies irrespective of the spectrum of the photon,
meaning that any single photon in 1D has a nonvanishing
energy density everywhere and is therefore not localizable
to any region in space or time (for a detailed derivation see
Appendix A).

In contrast, optical states that are distinguishable from vac-
uum only inside some space-time region are said to be strictly
localized to that region [1]. A signal generated on demand is
by definition triggered locally (in some freely chosen region
in space and time) and reliably (no option of postselection) by
some external action (e.g., the experimentalist). The generated
pulse then propagates outwards at maximally the speed of
light c and should therefore be strictly localized to the light
cone of the trigger region. Since this is impossible for single
photons, we conclude that exact photons cannot be generated
on demand.

A natural question is then what optical states can be gener-
ated in this manner? Letting some source be located in the
region x < −cT for some constant T > 0 as in Fig. 1, we
operate it on demand by switching it on at time t = −T and
off at t = −T/2. The source emits some optical pulse during
the time interval −T � t � −T/2. Assuming electromag-
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FIG. 1. A source is located in the region x < −cT , and we con-
sider field observables at the observation point x = 0. The source
is turned on at t = −T , which means that any measurement before
t < 0 must give the same value as for vacuum

netic vacuum initially, the resulting optical state |ψ〉 is then
strictly localized to t � 0 at the observation point x = 0. One
class of states that can satisfy this condition was discovered
by Knight [1] and later in Refs. [2,20], namely the coherent
states. The normal-ordered energy density for a coherent state
has a different form where both positive and negative frequen-
cies appear in the Fourier integral [3] (see also Appendix B).
This means that coherent states can be strictly localized to
t � 0 and therefore also generated on demand.

However, coherent states are very different from single
photons, which leads to the next question: is it possible to
generate optical states on demand that are close to single
photons and, if so, how close can we get? More precisely, we
formulate the question as what the maximum fidelity

Fmax(|1ξ 〉) ≡ max
|ψ〉 strict. loc.

|〈ψ |1ξ 〉| (1)

is between any state |ψ〉 strictly localized to t � 0 and a single
photon in some given spectrum ξ (ω),

|1ξ 〉 =
∫ ∞

0
dω ξ (ω)a†(ω)|0〉,

∫ ∞

0
dω |ξ (ω)|2 = 1, (2)

with ξ (ω) = 0 for ω < 0. Here a†(ω) is a frequency-mode
creation operator satisfying [a(ω), a†(ω′)] = δ(ω − ω′) [21]
(see also Sec. III B) and |0〉 is the electromagnetic vacuum
state. Equation (1) is useful as a measure of how close we can
come to a single photon because it clearly captures the size
of the multiphoton components of |ψ〉 necessary to make it a
localized state.

On the other hand, one drawback of this quantity is that
the state |1ξ 〉 has, as all single photons, tails stretching off
to infinity. It is therefore not always the best representation
of what we in an experiment would intuitively consider the
target state: an “ideal” single photon in some specified, causal
pulse form g(t ). Working with |1ξ 〉 does not allow choosing an
arbitrary time-pulse form g(t ), since not all such functions can
be represented by a spectrum ξ (ω) with only positive frequen-
cies. For example, if we want the target state to be a single
photon in an ultrashort pulse, there is no corresponding, valid
target spectrum ξ (ω) since a short pulse contains a significant
amount of negative frequencies.

We therefore consider an alternative quantity for determin-
ing how close we can come to a single photon: the maximum
fidelity

Fmax(|1g〉) ≡ max
|ψ〉 strict. loc.

|〈ψ |1g〉| (3)

between a state |ψ〉 strictly localized to t � 0 and a single-
photon state in some given positive-time pulse g(t ),

|1g〉 =
∫ ∞

0
dt g(t )a†(t )|0〉,

∫ ∞

0
dt |g(t )|2 = 1, (4)

with g(t ) = 0 for t < 0. Here a†(t ) is a time-domain creation
operator satisfying [a(t ), a†(t ′)] = δ(t − t ′) [21]. At the same
time, a†(t ) is the Fourier transform of a†(ω), and the required
negative-frequency modes are an artificial construction only
used to be able to express the state |1g〉. Such a state is of
course unphysical, as negative frequencies are not real, but
provided we extend the Hilbert space with these negative
frequencies, |1g〉 is an artificial single-photon state that is
localized to t � 0.

The advantage of this construction is that the state |1g〉
has a causal leading edge and is therefore a more intuitive
representation of an ideal target state. The disadvantage is
that whereas the state |1g〉 has no negative-time content, it
instead has negative-frequency content. This means that (3)
inadvertently measures the amount of the negative frequencies
that must be truncated to get a physical state |ψ〉, which can
only have positive frequencies.

There is thus a trade-off in the choice of target state. To
determine the closeness of realizable states to single photons,
we want a quantity that captures the size of the necessary
multiphoton components of the realizable state. Equations (1)
and (3) both achieve this, but we must choose between either
having a target state that is acausal or a target state containing
negative frequencies. The state |ψ〉 we maximize over is of
course physical and causal, and the goal is to determine how
close to a single photon, either in the form (2) or (4), it can be.

The exact values for the maximum fidelities (1) and (3) will
depend on the specific spectra of the target states. Still, we can
constrain them by upper and lower bounds expressed by some
general properties of the target spectra. For the fidelity with a
physical single photon (1), a useful, key property will turn out
to be the weight of the negative-time tail

μ =
∫ 0

−∞
dt |ξ (t )|2, (5)

where ξ (t ) is the inverse Fourier transform of ξ (ω). Similarly,
for the fidelity with a causal single photon (3), the key prop-
erty is the weight of the negative frequencies

η =
∫ 0

−∞
dω |G(ω)|2, (6)

where G(ω) is the Fourier transform of g(t ).
In this work we provide upper and lower bounds for both

fidelities (1) and (3), relying on four different arguments. The
upper bound for (1) is found by constraining the maximum
probability of distinguishing the single photon from vacuum
by a measurement local to t < 0. The corresponding lower
bound is found by providing an example using the strictly
localized near-single-photon state from Ref. [3]. Providing
such an example state clearly constitutes a lower bound for
the fidelity, which is a maximum over all strictly localized
states. The bounds for (3) are already found in Ref. [3], but
the derivation is repeated here in order to coherently present
and compare all four bounds.

It is worth noting that there is a potential, reasonable ob-
jection to the claims presented so far. After all, how can it
be that photons cannot be generated on demand when there
are numerous proposals and reported experiments for doing
so [22–26]? The answer is that the limitations imposed by the
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Paley-Wiener criterion only applies to exact single photons. If
the optical state is a superposition of different photon num-
bers, the theorem cannot be applied directly, and such states
might be possible to generate on demand. In fact, the reported
experiments are a good indication that there exist states real-
izable on demand that are very close to single photons, much
closer than, for instance, coherent states.

Another important question is whether the Paley-Wiener
limitation could have a different interpretation than the one
set forth here. For example, is it possible that our notion
of sharp causality is incorrect in the sense that generating
a signal on demand by a local, free choice is impossible to
begin with? Indeed, what if the quantum state governing the
external trigger (i.e., the experimentalist) is itself not localized
and has its own exponential tails? In that case there would be
no sharply defined cause and effect anymore, and the source
setup in our analysis would never occur. Instead, all events
and interactions would be smeared out in time, with small
probability tails stretching off to the infinite past and into
the infinite future. Such a deterministic world model would
seemingly lead to no inconsistencies, a possibility discussed
in Ref. [27].

Yet there are good arguments against such a viewpoint.
First, the Paley-Wiener limitation does not apply to all quan-
tum states, as we know that, for instance, coherent states can
be strictly localized [1,2] and therefore generated on demand.
In light of this, it is somewhat arbitrary to abandon sharp
causality purely because one type of state cannot be localized.
Second, it seems counterintuitive that if the world is nonlocal,
why does it appear to be local? Even if the fundamental inter-
actions are nonlocal and deterministically predetermined, our
own experience of free choice means that these microscopic
interactions must somehow conspire in a way to produce at
least an illusion of free choice in macroscopic settings.

Ultimately though, the discussion of whether sharp causal-
ity and free will exist is no longer a topic of physics, and
we therefore leave it aside. It appears that it is possible to
formulate a theory where these concepts are present, also for
quantum field theory. We therefore include as an assumption
in our analysis that on-demand sources exist.

The paper is organized as follows: Section II is a historical
overview of analyses similar to our setup, mainly focused
on investigations of the Fermi problem. In Sec. III we look
to algebraic quantum field theory to characterize the set of
strictly localized states through local measurements and vac-
uum expectation values. We then find how these states can
be generated by Licht or unitary operators. In Sec. IV we
construct a specific example of a state |η1,2〉 that is strictly
localized yet close to a single photon. The fidelity bounds for
(3) and (1) are then derived in Secs. V and VI, respectively. In
Sec. VII we look at some concrete examples of target states
|1ξ 〉 and |1g〉, and plot numerical values for the corresponding
fidelity bounds. Section VIII generalizes the analysis from
single photons to states of arbitrary photon number |nξ 〉 and
|ng〉. A discussion of the results and concluding remarks are
given in Sec. IX, where we also indicate connections to ex-
perimental results. Appendix A gives a short, self-contained
proof that single photons in 1D cannot be strictly localized,
and we recap the Paley-Wiener criterion. We then show in
Appendix B why coherent states avoid this limitation and

can be localized. Finally, Appendix C discusses spectral de-
composition and eigenvectors of quantum field observables in
connection with local measurements.

II. THE FERMI PROBLEM AND CAUSALITY IN
QUANTUM FIELD THEORY

The key insight linking analytic properties implied by en-
ergy positivity to particle localization and causality has been
rediscovered in several forms and subfields over the years.
In 1974 Hegerfeldt made an observation about the impos-
sibility of localizing quantum relativistic particles based on
a quite general argument [28]. Although the analysis had
some weaknesses [29], such as the usage of a particle local-
ization operator, the key argument was based on analyticity
and energy positivity. Hegerfeldt also subsequently connected
his analysis to something called the Fermi problem [30] and
arrived at the paradoxical conclusion that quantum field theory
is in violation with relativistic causality. This conclusion was
later refuted [31]; however, the arguments used to resolve
the paradox, and their connection to particle localization, are
somewhat subtle.

The usual way of demonstrating that quantum field theory
is in accordance with relativistic causality is through the field
commutator [32]. For example, for some real, scalar field
φ(r, t ), it is verified that [φ(r, t ), φ(r′, t ′)] = 0 for spacelike
separations. Since local measurements for bosonic fields are
made out of the field evaluated in the measurement region [1]
(see Sec. III), this means that measurements that are spacelike
separated cannot influence one another. However, it would
also be of interest to verify causality explicitly for the fun-
damental dynamical process in quantum field theory: particle
production, evolution, and detection.

The first attempt at such a calculation was made already in
1930, immediately following the inception of quantum field
theory [33,34]. Here [35] one considered an initially excited
atom decaying to its ground state under the production of
electromagnetic radiation, and the time development of the
radiated energy density was analyzed. Fermi subsequently
refined this setup in what has become known as the Fermi
problem [36] by adding a second, spatially separated atom
initially in its ground state acting as a detector. Assuming
the electromagnetic field starts out in vacuum, Fermi consid-
ered the timing of the energy propagation from the first to
the second atom by calculating the second atom’s excitation
probability as a function of time. In both Refs. [35,36] it
was shown that the emitted radiation propagates at the speed
of light, and their solutions demonstrated that quantum field
theory is in agreement with relativistic causality [37].

However, in 1964 Shirokov [38] pointed out that the causal
solutions to the Fermi problem were a result of an approx-
imation, where a certain integral was extended from only
positive frequencies to include negative frequencies as well.
Without this approximation there would be some nonzero
probability for the second atom becoming excited before
the signal has had time to propagate there [39]. Today we
understand that this integral restriction is in fact the same
as the positive-energy restriction encountered in the photon-
localization problem. The contradiction with causality came
from another approximation inadvertently done in Refs. [35]
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and [36], namely, of including only energy-conserving terms
in the interaction Hamiltonian. Under this assumption, the
excited atom decays under the production of a single photon.
Since single photons cannot be localized, this clearly leads to
acausal, observable influences on the second atom, meaning
that this cannot be an accurate description of the process.

The correct resolution to this issue came in 1968 by Ferretti
[40]. First, he pointed out that a proper analysis of atom radi-
ation dynamics can only be done while keeping all interaction
terms, meaning that the causally propagating, emitted light
state must contain multiple photons. Second, he realized that
it is necessary to specify an observable that is local to the
measurement region. In this case for measurements at the
second atom, an appropriate observable would, for example,
be given by the projector for the second atom in the excited
state, averaged over all possible photon states and first-atom
states. On the other hand, if we were to include, e.g., the
electromagnetic vacuum state in the measurement projector,
this would correspond to measuring the photon number ev-
erywhere in space at the observation time. Since this is not an
observable local to the second atom, the associated measure-
ment probability could show a time variation before the arrival
time of the signal at the second atom.

Third, Ferretti made another important observation,
namely, that even with a proper, local observable, a nonzero
excitation probability will occur for the second atom instan-
taneously. The reason for this is the now-familiar effect of
vacuum fluctuations in quantum field theory, where the inter-
action Hamiltonian allows an atom to be found in an excited
state even if no photons are initially present. Ferretti suggested
that the time-independent, nonzero excitation probability for
the second atom when no other sources are present constitutes
a “background signal.” By introducing the first, excited atom
into the system again, we can obtain its induced “pure signal”
by calculating the second atom’s excitation probability with
the background value subtracted. The result obtained by Fer-
retti was that, while keeping the exact spectral integral over
only positive energies, the second atom experiences a change
in its excitation probability precisely when the signal has had
time to propagate to it.

Interpreting measurement probabilities in quantum field
theory is in general somewhat delicate and has been a re-
curring source of misunderstanding [31] in the interpretation
of several theorems and claimed paradoxes [27,28,30,41,42]
related to particle localization. The question is when the
presence of a quantum state can be detected by some local
measurement, and naively any nonzero measurement prob-
ability seems to be a good detection threshold. However, it
turns out that no matter the measurement, some nonzero prob-
ability will occur even if there is just vacuum. Formally stated,
it follows from the Reeh-Schlieder theorem [43] that any pos-
sible outcome of any possible local measurement will occur
with nonvanishing probability in vacuum [31,44]. Therefore
states in quantum field theory are observable, in the sense that
they are distinguishable from vacuum, when their probability
for some measurement is different compared with that for the
vacuum state.

Unfortunately, Ferretti’s insights seem to have gone mostly
unnoticed, and textbooks on quantum field theory repeated
Fermi’s approximation years later [45]. The issues and so-

lutions concerning the energy positivity, local observables,
and measurement probabilities in vacuum were subsequently
forgotten and rediscovered a number of times [27,28,30,46–
50] (other discussions of the history of the Fermi problem can
be found in Refs. [51,52]). Today, Fermi’s original approxima-
tion of keeping only the energy-conserving terms, now known
as the rotating-wave approximation, and its limitations for
precise dynamics is well understood [53]. The causal nature
of the Fermi problem is easily demonstrated by using the
Heisenberg picture [54], where the operators’ equations of
motion are the same as classically [55].

On the other hand, the related topic of particle localization
appears somewhat confusing in the current literature. The
majority of established sources today claim that the state
given by φ(r)|0〉 is a single particle localized at r [32,56,57]
or use time-domain ladder operators [a(t ), a†(t ′)] = δ(t − t ′)
[21,58]. Although these claims are usually approximately
valid, the regime where they do not hold are not studied.
A second category of works are aware that single particles
cannot be localized but do not consider localization of super-
position states [28,42,59]. Finally, there are works that deal
with causality and localization from the perspective of mode
transformations through, e.g., the Heisenberg picture [54] or
quantization in bounded regions of space-time [60,61]. These
analyses generally find that quantum field theory supports
localized modes, however, they forgo information about how
the states of such localized excitations look, which is needed
to evaluate closeness to single particles, as in our analysis.

Lastly, through the circuitous history of this topic, there
is one work that stands out as particularly important but over-
looked: Knight’s 1961 treatment of strictly localized states [1].
Long before Bialynicki-Birula and Hegerfeldt, Knight made
the explicit connection between analytic properties implied by
the energy positivity and particle localization. Before Ferretti,
he realized the need for local observables, and he provided a
precise definition of local operators in quantum field theory.
He also correctly analyzed the measurement probabilities in
terms of a rigorous treatment of vacuum expectation values.
On top of that he provided a proof that any bosonic quantum
state only containing terms of finite particle number, such as
single-particle states, cannot be localized.

III. LOCAL MEASUREMENTS AND STRICTLY
LOCALIZED STATES

A. General (3 + 1)D

This section introduces the theory of local measurements
in the general case of 3 + 1 dimensions, as established by
Knight [1]. To analyze questions of localization in quan-
tum field theory, we need a concept of what, fundamentally,
is locally measurable within some space-time region. Mod-
ern methods in particle physics, however, mostly deal with
asymptotic scattering experiments. In quantum optics, local
measurements are treated by Glauber’s correlation functions,
but these are not suitable either because they are only an
approximation to local observables and are not strictly causal
[62,63]. We therefore go back to first principles, where Bohr
and Rosenfeld [64] argued that the basic measurable quantity
is the field itself, averaged over the space-time region of the
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measurement. Knight formalized this with the concept of local
observables [1], which was further refined as local algebras
with the formation of algebraic quantum field theory [65].

It should be noted that there is still an ongoing discus-
sion of exactly what observables in quantum field theory
really are locally measurable [66–71]. Several potential
issues with causality have been pointed out for local ob-
servables of extended space-time regions [72,73], and more
involved measurement models have been suggested, such as
Unruh-DeWitt detectors [74–76] and the FV measurement
framework [68,77]. Still, these topics are unlikely to be fully
resolved until the quantum measurement problem is. The con-
crete observable we will use, the smeared electric field, seems
to have some evidence supporting that it is measurable [70].
In any case, we will assume the simple definition of local
observables from Knight in this work; if this assumption is
later found to not reflect reality, our results would have to be
updated accordingly.

In this subsection, and here only, we let x denote space-
time coordinates xμ = (x0, x1, x2, x3)μ. Knight [1] defines
local operators for real, scalar quantum fields φ(x) as sums
and products of the field operator, smeared out in the mea-
surement region. Intuitively, the local observables for φ(x) at
point x are

C0, φ(x), φ(x)2, . . .

= constant, field strength, (parts of) energy density, . . . ,

(7)

as well as sums of such quantities. We may also include
normal-ordered expressions such as :φ(x)2 :, since :φ(x)2 : =
φ(x)2 − const. To get observables local to some space-time re-
gion G, we then smear (integrate) such pointwise observables
against some arbitrary function with support in G.

For electrodynamics, the quantum field we consider is the
electromagnetic four-vector potential Aμ(x). The generaliza-
tion of Knight’s definition to (bosonic) vector fields such as
Aμ(x) is given by Haag in Ref. [14]. Formally, local operators
for Aμ(x) for some region G are given by

Q(G) =
∑

n

∫
G

d4x1 · · · d4xn ζμ1... μn
n (x1, . . . , xn)

× Aμ1 (x1) · · · Aμn (xn). (8)

Here ζn(·) are a sequence of smearing functions of n space-
time arguments, each a tensor that can be contracted with n
field operators. Local observables are then defined as

L(G) = Hermitian, gauge-invariant Q(G), (9)

and they represent all measurable quantities in the region G.
Note that in definition (8) it is unnecessary to include other
fields such as derivatives ∂νAμ(x) since they are already cov-
ered, as can be seen with integration by parts.

The smearing of the operator is done because the quantum
field Aμ(x) is strictly speaking not an operator but rather an
operator-valued distribution. This distinction can be impor-
tant; for instance, when we wish to use the spectral theorem
[78], the smearing is necessary. Other times we will use the
usual physics shorthand of considering simpler, unsmeared
operators such as :A2(x): = :Aμ(x)Aμ(x):. Such unsmeared

operators are used with the understanding that expressions
such as 〈ϕ|:A2(x):|ϕ〉 for some state |ϕ〉 are to be smeared
out with a function ζ (x) in the end:

〈ϕ|
∫

d4x ζ (x) :A2(x): |ϕ〉 =
∫

d4x ζ (x)〈ϕ| :A2(x): |ϕ〉.
(10)

There are two [79] subtleties regarding definitions (8) and
(9). First, the summation range in (8) is unspecified. For finite
sums the meaning is unambiguous, but we must in general
consider also infinite sums of the form Q = limN→∞ QN ,
where QN are finite sums. However, formalizing this by a
specific type of operator convergence is difficult since the op-
erators QN are typically unbounded [80]. For our purposes we
will see how this difficulty can be avoided when considering
arguments that must hold for all possible operators Q. On the
other hand, when choosing some specific operator Q, we will
only use finite sums in (8).

The second subtlety concerns the definition of gauge-
invariance in (9). Characterizing the full set of observables
that are invariant under gauge transformations of some quan-
tized field Aμ(x) is not necessarily straightforward [73,81].
Instead we will again adopt a pragmatic point of view: When
we need specific examples of observables L, we can use the
electric or magnetic fields derived from Aμ(x), which we
know are gauge-invariant [81]. These fields are covered by
(8) since they are related to derivatives of Aμ(x). On the other
hand, for arguments concerning all possible observables L, it
will be easier to consider all possible Q instead, which must
include all L.

Knight then introduces the class of strictly localized states.
The idea is that such states are indistinguishable from vacuum
outside the region they are localized to, meaning that the
expectation value of any outside measurement should give the
same value as for vacuum. Formalizing this idea, we call a
state |ψ〉 strictly localized to G if

〈ψ |L(GC )|ψ〉 = 〈0|L(GC )|0〉 ∀ L(GC ), (11)

where GC is the complement region of G. Note that the physi-
cal content here is the postulate that all possible measurements
in some space-time region are given by some local observable
according to (9).

An important continuation of Knight’s analysis came by
Licht in 1963 [82]. Licht was able to show that, for every state
|ψ〉 strictly localized to G, there exists a unique operator W
such that |ψ〉 = W |0〉, which satisfies

[W, L(GC )] = 0 ∀ L(GC ) (12)

and

W †W = 1, (13)

where 1 is the identity operator. We label W the Licht operator
corresponding to the state |ψ〉. Equation (12) says that W
commutes with all observables (9) local to the outside of the
localization region of |ψ〉. Note also that since we have an
infinite-dimensional space, W may fail to be unitary, WW † 	=
1, even though it satisfies (13).

These two conditions for localized states are equivalent
in the sense that for every |ψ〉 satisfying (11), there exists a
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(unique) operator W satisfying (12) and (13), and for every
W satisfying these conditions, the state |ψ〉 = W |0〉 satisfies
(11). However, although (12) contains a lot of information
if we are given a valid Licht operator W , it is not as useful
for checking whether a particular W satisfies the condition; it
must in principle be checked for every possible local observ-
able satisfying (9), which is not very practical.

Here we introduce a simpler condition, which is sufficient
for guaranteeing (12):

[W, Aμ(x)] = 0 ∀ x ∈ GC, (14)

namely, that W commutes with every component of Aμ(x)
outside the localization region G. This implies that W also
commutes with any sums and products of Aμ(x) evaluated
outside G, meaning that it commutes with all QN (GC ) con-
sisting of finite sums of the form (8). Since W is bounded,
it must also commute with infinite sums, [W, limN→∞ QN ] =
limN→∞ [W, QN ], irrespective of the concrete choice of how
to define the limit. Hence (14) is a sufficient condition for (12).

It can also be useful to consider unitary operators U instead
of the isometric Licht operators W . This can always be done
by extending the Hilbert space through introducing a source
space consisting of ground and excited states |g〉 and |e〉, and
raising and lowering operators σ+ = |e〉〈g| and σ− = |g〉〈e|.
We can then construct a unitary operator U from W as

U = W ⊗ σ− + W † ⊗ σ+ + (1 − WW †) ⊗ |g〉〈g|, (15)

which acts on the total, electromagnetic, and source Hilbert
space. The strictly localized state |ψ〉 associated with the
Licht operator W is then found from U as the electromagnetic
reduced state [83]:

|ψ〉〈ψ | = trsrc[U (|0〉 ⊗ |e〉)(〈0| ⊗ 〈e|)U †], (16)

where the partial trace is over the source space. The commu-
tation condition (14) carries over to U , and since it is unitary,
we may rewrite it as

U †Aμ(x)U = Aμ(x) ∀ x ∈ GC . (17)

This condition was also the one considered in Ref. [3] (and in
Ref. [15]), where it was motivated directly from the action of
the source.

In summary, all measurements that can be done locally
in some space-time region G are characterized by a local
observable L according to (9). States |ψ〉 strictly localized to
G, i.e., states that are indistinguishable from vacuum outside
G, are the states that satisfy (11). If we are given a source
described by a Licht operator W satisfying (13) and (14) or
a unitary operator U satisfying (17), then the state given by
W |0〉 or (16), respectively, is strictly localized to G.

Note that the negated implications do not work; if we are
for instance given an operator U that does not satisfy (17), we
do not automatically know whether the state |ψ〉 given by (16)
is localized. This is because Licht’s theorem only guarantees
the existence of one operator W with |ψ〉 = W |0〉 such that
(12) and (13) hold. There could very well be other operators
W with |ψ〉 = W |0〉 that do not satisfy (12) and (13). The most
straightforward way of showing that some state is not strictly
localized is to pick some specific observable L and showing
that (11) does not hold for that particular observable.

B. 1D, single polarization

We now specialize the theory of the previous section to
the situation in Fig. 1. We assume the source produces plane-
wave modes, so we formulate the problem as one dimensional
by considering measurements along one coordinate direction
xμ = (ct, x, 0, 0)μ, and we keep only wave vectors kμ =
(ω/c, k, 0, 0)μ along this direction. Hence we again let x
denote the position along this axis and k denote the 1D wave
vector. The frequency is given by the vacuum dispersion re-
lation ω = |k|c. Furthermore, we simplify by assuming the
source produces only one, transverse polarization, say in the z
direction. We can then treat the electromagnetic potential as a
scalar A(x, t ) = A(x, t )ẑ, with

A(x, t ) =
∫ ∞

−∞
dk A(ω)a(k)eikx−iωt + H.c. (18)

Here a(k) is the usual annihilation operator satisfying
[a(k), a†(k′)] = δ(k − k′), and A(ω) is some function that
depends only on ω. For later convenience we note that we
may write A(ω) = K/

√−iω for some constant K > 0, by
absorbing any additional phase factor into a(k).

The source is located in the region x < −cT and is
switched on at t = −T , before which we let there be elec-
tromagnetic vacuum |0〉. We assume that the electromagnetic
reduced state produced by the source is a pure state |ψ〉
(see Sec. IX for comments about mixed states). Relativistic
causality then dictates that |ψ〉 must be strictly localized to
the region x � ct , meaning that it satisfies (11) for all x > ct .
From Sec. III A we know that this condition is ensured if we
for instance can find a unitary source operator U such that (17)
holds for x > ct . This is an appealing result because we have
started with characterizing the source by the types of states
it can produce, and we are led back to a requirement on the
source operator U .

We are interested in how close we can get with this source
to target states |1ξ 〉 and |1g〉 consisting of rightward-moving
modes, i.e., modes with k > 0 only. In this case there is a
one-to-one correspondence between k and ω = |k|c, which
is why we were able to define |1ξ 〉 and |1g〉 in (2) and (4)
in terms of their spectra; the creation operator a†(ω) is the
operator 1√

c
a†(k = ω/c) corresponding to modes propagating

in the +x direction.
We cannot immediately make the same restriction in k for

the state produced by the source |ψ〉, since the maxima in (1)
and (3) are to be taken over all strictly localized states, thus
also over states containing k < 0 modes. However, we divide
the analysis into two parts: When considering all possible
source states |ψ〉, as we do in the derivations of the upper
bounds for the maximum fidelities, we have to account for
states containing modes with k < 0. On the other hand, when
picking specific examples of source states |ψ〉, as we do for
the lower bounds, we restrict our attention to k > 0 (this is of
course assuming that having a strictly localized state |ψ〉 with
only k > 0 modes is possible in the first place, which will be
shown to be the case).

For source states |ψ〉 only containing k > 0 modes, the
corresponding source operator U also contains only k > 0 and
can thus be expressed in terms of a(ω) and a†(ω). In this
case, we can also simplify requirement (17), since we can split
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A(x, t ) from (18) into one integral over k > 0 and another over
k < 0. For sources U only containing k > 0 modes, the latter
integral automatically commutes with U , meaning that it is
sufficient to check that

U †Ak>0(x, t )U = Ak>0(x, t ) ∀ x > ct, (19)

for

Ak>0(x, t ) =
∫ ∞

0
dω A(ω)a(ω)eiω(x−ct )/c + H.c., (20)

where we have rewritten all quantities in terms of frequency
ω. (Note that we will for simplicity freely absorb factors
of (powers of) c into A(ω), and later E (ω), throughout this
manuscript.) To ensure that U is not time-dependent, we
consider only t > −T/2, i.e., after the source is switched off
again, and assume no interactions are present after this point.
That is, we assume a free field theory. Since Ak>0(x, t ) is a
function of x − ct , checking (19) for all x and t such that
x > ct (and t > −T/2) amounts to the same as checking for
x = 0 and all t < 0. This also justifies the situation indicated
in Fig. 1, where we have picked a fixed observation point.

Thus in summary, for finding examples of strictly localized
states, we are looking for sources described by unitary opera-
tors U satisfying

U †A(t )U = A(t ) ∀ t < 0, (21)

or, equivalently, for sources described by Licht operators W
satisfying

[W, A(t )] = 0 ∀ t < 0, (22)

where we have defined

A(t ) = Ak>0(x = 0, t ) =
∫ ∞

0
dω A(ω)a(ω)e−iωt + H.c. (23)

As a final ingredient for our analysis, in the derivation of
the upper bound for (1), we need an observable L local to
x = 0 and t < 0. It is beneficial for this local observable to
consist of only k > 0 modes in the same way as (23) does,
since a measurement is better at distinguishing |1ξ 〉 and |0〉
when it only contains modes present in |1ξ 〉. One such ob-
servable could be a smeared version of the electric field with
k > 0:

E (t ) = Ek>0(x = 0, t ) =
∫ ∞

0
dω E (ω)a(ω)e−iωt + H.c. (24)

Here E (ω) = iωA(ω). To show that E (t ) in fact is a local
observable, calculate

c∂xA(0, t ) − ∂t A(0, t )

2
=

∫ ∞

0
dk iωA(ω)a(k)e−iωt + H.c.

(25)

Since the right-hand side matches that of (24), and since
∂xA(0, t ) and ∂t A(0, t ) are covered by the definition of Q
in (8), we see that E (t ) is a local operator. Furthermore,
with only one polarization, the left-hand-side terms in (25)
are simply the magnetic and electric field, which we know
are gauge-invariant. Finally, E (t ) is clearly Hermitian. Thus
E (t ) is a local observable to x = 0 and the time t of the
measurement.

We make use of the operator E (t ) in both smeared and
unsmeared form. For showing that some state is not strictly lo-
calized, we typically use the unsmeared observable :E2(t ): =
E2(t ) − const. For any state |ϕ〉, a nonzero expectation value
〈ϕ| :E2(t ): |ϕ〉 for any negative t is enough to conclude that
|ϕ〉 is not strictly localized to t � 0, since 〈0| :E2(t ): |0〉 = 0.
For finding the upper bound for (3), we need the spectral
decomposition of an operator local to t < 0. In this case we
use a smeared observable of the form Eζ = ∫

dt ζ (t )E (t ) for
some real function ζ (t ), which is local to the support of ζ (t ).

IV. STRICTLY LOCALIZED STATE |η1,2〉 NEAR
SINGLE PHOTON

A. Pulse modes

In the following analysis it will be convenient to decom-
pose the Fock space into a countable basis rather than the
usual (uncountable) frequency decomposition. We do this by
introducing a set of pulse modes ξn(ω) forming a (countable)
basis for the function space L2(0,∞):∫ ∞

0
dω ξ ∗

n (ω)ξm(ω) = δnm, (26a)∑
n

ξ ∗
n (ω)ξn(ω′) = δ(ω − ω′). (26b)

To each pulse mode we then define corresponding ladder
operators

a†
n =

∫ ∞

0
dω ξn(ω)a†(ω), (27)

which then satisfy [an, a†
m] = δnm. Analogous to a†(ω) cre-

ating a photon with frequency ω, the operator a†
n creates a

photon in pulse mode ξn(ω). Since the states generated by
a†

n for different n must be orthogonal, we can write the Fock
space as a tensor product of a state space for each pulse mode;
for example, we can write the total identity operator as

1 =
(∑

n

|n1〉〈n1|
)

⊗
(∑

n

|n2〉〈n2|
)

⊗ · · · , (28)

with pulse-mode Fock states

|nm〉 = 1√
n!

a†n

m |0m〉, (29)

where |0m〉 is the vacuum state of pulse mode m.
We can also rewrite (23) and (24) in the pulse-mode basis

as

A(t ) =
∑

n

An(t )an + H.c. (30)

and

E (t ) =
∑

n

En(t )an + H.c., (31)

with associated functions

An(t ) =
∫ ∞

0
dω A(ω)ξn(ω)e−iωt (32)
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and

En(t ) =
∫ ∞

0
dω E (ω)ξn(ω)e−iωt . (33)

Note that, according to the Paley-Wiener criterion [19], the
functions An(t ) and En(t ) must be nonzero (almost) ev-
erywhere, since they contain only positive frequencies. In
particular they have infinite tails for t < 0.

B. Algorithm for |η1,2〉
Reference [3] gives the following algorithm for construct-

ing a state |η1,2〉 that is strictly localized to t � 0 while
also being close to a single photon. For understanding this
construction and why it works, it is easiest to start with the
description in Ref. [3].

(1) Pick a complex-valued function g(t ) with g(t ) = 0 for
t < 0, and calculate its Fourier transform G(ω). We refer to
g(t ) as the seed function for the state. We let g(t ) be normal-
ized,

∫ ∞
0 dt |g(t )|2 = 1.

(2) Modify G(ω) �→ G̃(ω) as follows:

G̃(ω) = G(ω) − βG∗(−ω), (34)

where

β = 1

2I∗ (1 −
√

1 − 4|I|2), (35a)

I =
∫ ∞

0
dω G(ω)G(−ω). (35b)

Note that the inverse Fourier transform g̃(t ) of G̃(ω) vanishes
for t < 0 since g(t ) does.

(3) Normalize G̃(ω) such that
∫ ∞

0 dω |G̃(ω)|2 = 1. Iden-
tify two pulse-mode spectra ξ1(ω) and ξ2(ω) using

ξ1(ω) = G̃(ω), ω > 0, (36a)

ξ2(ω) =
√

1 − η̃

η̃
G̃

∗
(−ω), ω > 0. (36b)

The constant η̃ > 0 is picked such that ξ2(ω) gets normalized.
The two pulse modes ξ1(ω) and ξ2(ω) are normalized and
orthogonal because of step 2, and can therefore be chosen as
two modes in the basis ξn(ω) in (26).

(4) Define operators

ã†
1 = a†

1

1√
a1a†

1

=
∑

n

|n + 11〉〈n1|, (37)

S = eγ a1a2−γ a†
1a†

2 , (38)

where tanh γ = [̃η/(1 − η̃)]1/2, which act on the mode space
of ξ1(ω) and ξ2(ω). Our strictly localized state is then

|η1,2〉 = W |0〉, (39)

given by the Licht operator

W ≡ S†ã†
1S. (40)

To see that |η1,2〉 indeed is strictly localized to t � 0, we
use condition (13) and (22). The operator S from (38) is a
two-mode squeeze operator with the property

Sa1S† = a1 cosh γ + a†
2 sinh γ , (41)

and similar for Sa2S†. In addition, Ref. [84] gives a list of
possible decompositions of S, of which we use

S = e−a†
1a†

2 tanh γ (cosh γ )−a1a†
1−a†

2a2 ea1a2 tanh γ . (42)

Using that S is unitary, (13) is in this case equivalent to
showing that ã1̃a†

1 = 1. Writing it out,

ã1̃a†
1 = 1√

a1a†
1

a1a†
1

1√
a1a†

1

, (43)

and considering how this operator acts on pulse-mode Fock
states |nm〉 from (29), it is easy to see that (13) holds.

To show (22), we again use the unitarity of S to get that
(22) is equivalent to

[̃a†
1, SA(t )S†] = 0, t < 0. (44)

Using (41), it follows that

S

⎛⎝a1 −
√

1 − η̃

η̃
a†

2

⎞⎠S† = −a†
2

√
1 − 2̃η

η̃
. (45)

At the same time, using that A∗(ω) = A(−ω∗), we get from
(36) that√

η̃

1 − η̃
A∗

2(t ) + A1(t ) =
∫ ∞

−∞
dω A(ω)G̃(ω)e−iωt . (46)

Since g̃(t ) = 0 for t < 0, it follows that G̃(ω) is analytic in
the upper half plane of complex frequency ω. The function
A(ω) ∼ 1/

√−iω is also analytic there with the conventional
branch cut of the complex square root. Therefore the product
A(ω)G̃(ω) is analytic in this half plane, and since it decays
sufficiently fast [85] for ω → ∞ there, it follows that its in-
verse Fourier transform vanishes for t < 0. Thus the left-hand
side of (46) is zero for negative times. Using this we can
rewrite (30) for t < 0 as

A(t ) = A1(t )

⎛⎝a1 −
√

1 − η̃

η̃
a†

2

⎞⎠
+

∑
n�3

An(t )an + H.c., t < 0. (47)

From (45) and (47), it is then clear that (44) holds, meaning
that |η1,2〉 is strictly localized to t � 0 as desired.

C. Fidelity of |η1,2〉
By expanding the exponential of S and S† in (38) and

inserting into (40), we find that the state |η1,2〉 is of the form

|η1,2〉 = c1|11 02〉 + c2|21 12〉 + c3|31 22〉 + · · · , (48)

for coefficients c1, c2, . . .. Its fidelity with the single-photon
state |11 02〉 is given by the size of the first coefficient, which
we can calculate by using (42) on (40) and some algebra,
giving

F ≡ |〈11 02|η1,2〉| =
√

(1 − 2̃η)3

η̃ 2 − η̃ 3 Li− 1
2

(
η̃

1 − η̃

)
, (49)

where Lis(z) = ∑∞
k=1 zk/ks is the polylogarithm function.
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Let η be the negative-frequency fraction of the square norm
of G(ω) as defined in (6). Similarly, it follows from (36) that η̃

is the negative-frequency fraction of the square norm of G̃(ω),

η̃ =
∫ 0
−∞ dω |G̃(ω)|2∫ ∞
−∞ dω |G̃(ω)|2 . (50)

Using (34), (35), and some algebra, we can show that

η̃ − η = −1 − J

2J
(1 − 2η), (51)

where

J =
√

1 − 4|I|2. (52)

We also get that

|I|2 � η(1 − η) (53)

by applying the Cauchy-Schwarz inequality to (35b).
In the algorithm for constructing |η1,2〉, we assume that

g(t ) is chosen such that η < 1/2, meaning that G(ω) has its
main weight for positive frequencies. This ensures that G̃(ω)
is nonvanishing. Additionally, it is clear from (51) and (53)
that this assumption means that the modification in step 2
never increases the amount of negative frequencies. In other
words,

η̃ � η. (54)

In practical situations we will often consider functions g(t )
with a very small amount of negative frequencies, i.e., η � 1.
It will be useful to have a lower bound for F in this regime,
expressed purely as a function of η. This is easily obtained by
expanding (49) for small η̃ and using (54), giving

F � 1 − (
3
2 −

√
2
)
η + O(η2). (55)

Thus we see that the parameter η, which is determined by the
choice of seed function g(t ) of the localized state, quantifies
the state’s similarity with a single photon: as η → 0, the state
|η1,2〉 tends to a single photon in pulse mode ξ1(ω) according
to (55). Also note that by the Paley-Wiener criterion [19], it is
impossible for a function and its Fourier transform both to be
supported for positive arguments only. Since g̃(t ) = 0 for t <

0, this means that η = 0 (a strictly localized single photon) is
impossible.

V. BOUNDS FOR Fmax(|1g〉)

A. Upper bound

We now turn to finding an upper bound for (3). Here we
consider the maximum fidelity between any strictly localized
state |ψ〉 and a causal single photon |1g〉 in some positive-time
pulse g(t ), as defined in (4). Any physical state |ψ〉 contains a
superposition of (products of) ladder operators a†(ω) only for
ω > 0, acting on the vacuum state. Therefore the maximum
fidelity satisfies

Fmax(|1g〉) ≡ max
|ψ〉 strict. loc.

|〈ψ |1g〉|

= max
|ψ〉 strict. loc.

∣∣∣∣〈ψ |
∫ ∞

0
dω G(ω)a†(ω)|0〉

∣∣∣∣, (56)

where G(ω) is the Fourier transform of g(t ). Using the
Cauchy-Schwarz inequality, we obtain an upper bound

Fmax(|1g〉) �
(∫ ∞

0
dω |G(ω)|2

)1/2

=
√

1 − η. (57)

Similar to (55), it is useful to consider the behavior for small
η, which we find by expanding,

Fmax(|1g〉) � 1 − η/2 + O(η2). (58)

B. Lower bound

A lower bound for (3) can be found by using the strictly
localized state |η1,2〉 described earlier. Clearly

Fmax(|1g〉) ≡ max
|ψ〉 strict. loc.

|〈ψ |1g〉| � |〈η1,2|1g〉|. (59)

We also see that the weight function g(t ) for the state |1g〉 is a
valid seed function for constructing a localized state |η1,2〉,
so we set them equal. Substituting |η1,2〉 in (59) with its
expansion from (48) leads to

|〈1g|η1,2〉| = F |〈1g|11 02〉|, (60)

where F is given by (49). The state |11 02〉 is just a single
photon in the mode ξ1(ω), which is the positive-frequency part
of G̃(ω):

|11 02〉 =
∫ ∞

0
dω G̃(ω)a†(ω)|0〉. (61)

By using (34), (35), and accounting for the required normal-
ization of G̃(ω), we get after some algebra that

Fmax(|1g〉) � F

2

√
(1 + J )(1 + J − 2η)

J
. (62)

As in (58), we are interested in examining the regime η �
1. To find this we plug (52) and (55) into (62), use (53), and
expand to first order in η to get

Fmax(|1g〉) � 1 − (2 −
√

2)η + O(η2). (63)

VI. BOUNDS FOR Fmax(|1ξ〉)

A. Upper bound

Next, we consider the fidelity (1) between a strictly local-
ized state |ψ〉 and a physical single photon |1ξ 〉 with some
spectrum ξ (ω), as defined in (2). The strategy for determining
this quantity is to use that the trace distance between two
states is related to the probability of distinguishing the states
by some measurement:

D(|ψ〉, |1ξ 〉) = max
P

(〈ψ |P|ψ〉 − 〈1ξ |P|1ξ 〉), (64)

where P is any projector. If we choose a measurement that
is local to t < 0, the state |ψ〉 is here indistinguishable from
vacuum |0〉, whereas the state |1ξ 〉 has some nonzero tail
extending to t → −∞. Thus for any projector P that is local
to t < 0, we have

D(|ψ〉, |1ξ 〉) � 〈0|P|0〉 − 〈1ξ |P|1ξ 〉. (65)

To find a local projector, we begin by choosing a local
observable. In accordance with Sec. III, we select a smeared
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electric field

Eζ = 1

2
√

π

∫ ∞

−∞
dt ζ (t )E (t ), (66)

for a real smearing function ζ (t ). According to (8), the observ-
able Eζ is local to the support of ζ (t ), so by setting ζ (t ) = 0
for t � 0, it is then local to t < 0. The factor 1/(2

√
π ) is a

normalization constant for later convenience.
Note that there is no normalization requirement for ζ (t ),

as we are free to set the scale of our measurement. However,
(65) depends purely on the projectors of the measurement,
which are unaffected by the scale of Eζ , so for convenience
we choose the normalization of ζ (t ) so that∫ ∞

0
dω |E (ω)|2|ζ (ω)|2 = 1, (67)

where ζ (ω) is the Fourier transform of ζ (t ). Expression (66)
can be rewritten as

Eζ = 1√
2

(aζ + a†
ζ ), (68)

with

a†
ζ =

∫ ∞

0
dω E∗(ω)a†(ω)ζ (ω). (69)

With the normalization (67), we get that [aζ , a†
ζ ] = 1, mean-

ing that the smeared field observable Eζ has the same form as
the position operator x̂ in a regular quantum harmonic oscilla-
tor. We therefore know that the spectrum of Eζ is the real line
R. We also see from (68) and (69) that, even though ζ (ω) is
defined for all ω, only its positive frequencies determine Eζ .

To find the eigenvectors of Eζ , we again use the decompo-
sition of the Fock space into a tensor product of spaces (28)
associated with the pulse mode set ξn(ω) in (26). This is useful
because the smeared field observable Eζ clearly operates only
on the subspace of E∗(ω)ζ (ω) (restricted to positive frequen-
cies). We therefore select the first pulse mode

ξ1(ω) = E∗(ω)ζ (ω), (70)

which has the required normalization (26) because of (67).
This means that a†

ζ = a†
1, where a†

1 is the creation operator on
the ξ1(ω) mode subspace according to (27). With this basis
choice, we can find the spectral decomposition of the self-
adjoint smeared-field observable Eζ as

Eζ =
∫ ∞

−∞
dX XPX , (71)

where

PX = |X1〉〈X1| ⊗ 12 ⊗ 13 ⊗ · · · (72)

is the projector density associated with the eigenvalue X and

|X1〉 = π−1/4e−X 2/2e−a†2

1 /2+√
2Xa†

1 |01〉 (73)

is the corresponding eigenstate of Eζ on the ξ1(ω) sub-
space (we show that this is true in Appendix C). On this
subspace, the eigenstates are not degenerate, and they sat-
isfy δ-function normalization as usual for continuous spectra:
〈Y1|X1〉 = δ(X − Y ).

We then select ξ2(ω) as the component of ξ (ω) orthogonal
to ξ1(ω) [in the edge case ξ1(ω) = ξ (ω), we let ξ2(ω) be

arbitrary], also normalized according to (26). We can then
write

ξ (ω) = cξ ξ1(ω) +
√

1 − |cξ |2ξ2(ω), (74)

with

cξ =
∫ ∞

0
dω ξ ∗

1 (ω)ξ (ω). (75)

This means that for the state |1ξ 〉 = a†
ξ |0〉, we can write

a†
ξ =

∫ ∞

0
dω a†(ω)ξ (ω) = cξ a†

1 +
√

1 − |cξ |2a†
2. (76)

To form a projector P from the projector density PX , we
must integrate over an indicator function 1χ (X ),

P =
∫ ∞

−∞
dX 1χ (X )PX . (77)

We now use the fact that the spectral projectors of any local
observable are local to the same region as the observable is.
To show this, note that by (13) the Licht operator W is iso-
metric and therefore bounded. Theorem 13.33 from Ref. [86]
then asserts that a bounded operator W commuting with an
(unbounded) self-adjoint operator L also commutes with the
spectral projectors PX of L (and W being isometric takes care
of the domain condition). Thus 〈ψ |P|ψ〉 = 〈0|P|0〉. We can
therefore insert (77) into (65) and use (76) to get

D(|ψ〉, |1ξ 〉) �
∫ ∞

−∞
dX 1χ (X )(〈0|PX |0〉 − 〈1ξ |PX |1ξ 〉)

= |cξ |2√
π

∫ ∞

−∞
dX 1χ (X )e−X 2

(1 − 2X 2). (78)

We are free to maximize over indicator functions 1χ (X ), and
selecting 1χ (X ) = 1 for |X | < 1/

√
2 and zero otherwise gives

D(|ψ〉, |1ξ 〉) �
√

2

πe
|cξ |2. (79)

Finally, converting to fidelity, we get

Fmax(|1ξ 〉) ≡ max
|ψ〉 strict. loc.

|〈ψ |1ξ 〉| �
√

1 − 2

πe
|cξ |4. (80)

The quantity cξ is given by the overlap between the spec-
trum of the target single photon ξ (ω) and the spectrum of the
measurement ζ (ω) [weighted by E (ω)]. To get as good an up-
per bound (80) as possible, we need to select the real smearing
function ζ (t ) so that ζ (ω) has a large overlap with E (ω)ξ (ω)
while satisfying ζ (t ) = 0 for t � 0 and having normalization
(67). Letting ξ (t ) be the inverse Fourier transform of ξ (ω), we
define

f (t ) =
{

0, t � 0

f0eiφ/2ξ (t ) + c.c., t < 0,
(81)

and F (ω) as its Fourier transform. Here f0 > 0 is a normaliza-
tion constant and φ is an arbitrary real phase. One choice for
the smearing function is then to let ζ (t ) be the inverse Fourier
transform of

ζ (ω) = F (ω)/E∗(ω). (82)
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To verify that this is a valid choice of ζ (t ), first note that
f (t ) is real, meaning that ζ ∗(ω) = ζ (−ω∗) so that ζ (t ) is
also real. Second, since f (t ) vanishes for positive times, F (ω)
is analytic in the lower half plane. The Fourier integral in-
volves only real ω, meaning that we can substitute 1/E∗(ω)
with 1/E∗(ω∗) = 1/E (−ω) in (82). The latter function is also
analytic in the lower half plane of complex ω with the con-
ventional branch cut of the complex square root. Therefore
ζ (ω) is analytic in the lower half plane, and since it decays
sufficiently fast (by a similar argument as in [85]), it follows
that ζ (t ) = 0 for t � 0. Finally, we choose the normalization
constant f0 so that (67) is satisfied.

With the choice (82), the first basis pulse mode (70) be-
comes ξ1(ω) = F (ω). In addition to μ from (5), we define the
complex constant

ν =
∫ 0

−∞
dt ξ 2(t ) (83)

and write ν = |ν|eiθν . Since F ∗(ω) = F (−ω∗), we have that∫ ∞

0
dω |F (ω)|2 = 1

2

∫ ∞

−∞
dω |F (ω)|2. (84)

With this relation, some algebra, and using the property that
function inner products are preserved under the Fourier trans-
form, we can calculate (75),

|cξ |2 = μ2 + |ν|2 + 2μ|ν| cos (φ + θν )

μ + |ν| cos (φ + θν )
. (85)

We are free to maximize with respect to φ. Setting cos(φ +
θν ) = 1 gives

|cξ |2 = μ + |ν|. (86)

Inserting (86) into (80), we finally get

Fmax(|1ξ 〉) �
√

1 − 2

πe
(μ + |ν|)2. (87)

Similar to the regime η � 1 for causal single photons,
we often have μ � 1 for physical single photons in practical
situations. We can find an expression for the upper bound (87)
for this case by expanding for small μ and noting that |ν| is
non-negative, giving

Fmax(|1ξ 〉) � 1 − 1

πe
μ2 + O(μ4). (88)

B. Lower bound

A lower bound for (1) can be found by providing an ex-
ample of a state |ψ〉 that is strictly localized to t � 0. The
state |η1,2〉 is a valid choice, although the single-photon state
it approximates, |11 02〉, has a particularly chosen spectrum
ξ1(ω), namely the positive-frequency part of some G̃(ω) com-
ing from (34). We can, however, use |η1,2〉 and try to find a
suitable spectrum ξ1(ω) that has a large overlap with ξ (ω),
while having the required properties. From the expanded form
of |η1,2〉 (48), we can then find the fidelity between |1ξ 〉 and
|η1,2〉 as

Fmax(|1ξ 〉) ≡ max
|ψ〉 strict. loc.

|〈ψ |1ξ 〉|

� |〈1ξ |η1,2〉| = F |〈1ξ |11 02〉|, (89)

where F is given by (49). The quality of the approximation is
largely dependent on the procedure for selecting the spectrum
ξ1(ω). The following method is probably not optimal, but it
provides a lower bound.

Start with taking the inverse Fourier transform of ξ (ω) to
obtain ξ (t ). Separate the positive and negative times into two
functions:

h+(t ) =
{

ξ (t ), t � 0

0, t < 0,
(90a)

h−(t ) =
{

0, t � 0

ξ (t ), t < 0.
(90b)

Label their Fourier transforms by H+(ω) and H−(ω), respec-
tively. We have

ξ (t ) = h+(t ) + h−(t ), (91a)

ξ (ω) = H+(ω) + H−(ω). (91b)

By normalizing,

g(t ) = 1√
1 − μ

h+(t ) (92)

is then clearly a valid seed function for generating |η1,2〉. From
(34) and (35), accounting for the required normalization of
G̃(ω), and using that function inner products are preserved
under Fourier transforms, we get after some algebra that

Fmax(|1ξ 〉) � F
√

1 − μ

√
J (1 + J )

1 + J − 2η
. (93)

To expand (93) for μ � 1, we must first find an up-
per bound for η in terms of μ. It follows from (91b) that∫ 0
−∞ dω |H+(ω)|2 = ∫ 0

−∞ dω |H−(ω)|2. Then Fourier trans-
forming (92) and using (5), (6), and the Plancherel theorem
gives

η = 1

1 − μ

∫ 0

−∞
dω |H+(ω)|2 <

μ

1 − μ
= μ + O(μ2). (94)

In other words, μ � 1 implies η � 1. An expansion of (93)
for small μ, similar to that leading to (88), finally gives

Fmax(|1ξ 〉) � 1 − μ + O(μ2). (95)

VII. NUMERICAL EXAMPLES

We now use a numerical routine to evaluate the bounds for
Fmax(|1g〉) and Fmax(|1ξ 〉) for some specific examples of target
states. Starting with |1g〉, one possible example for the pulse
form g(t ) is a Gaussian envelope around a carrier frequency
ω0. Since g(t ) must be zero for negative times, we must
truncate the Gaussian:

g(t ) ∝ θ (t )e−(t−τ )2/2σ 2
e−iω0t , (96)

where σ is the pulse width, τ is the pulse delay, and θ (t )
is the Heaviside function. The delay τ controls the amount
of truncation at t = 0. Using a numerical Fourier transform
routine, we perform the steps of the algorithm for constructing
|η1,2〉 and determine numerical values of the upper and lower
bounds (57) and (62) for various choices of the seed-function
parameters.

063708-11



JAN GULLA, KAI RYEN, AND JOHANNES SKAAR PHYSICAL REVIEW A 108, 063708 (2023)

FIG. 2. Upper and lower bound for the maximum fidelity be-
tween a state strictly localized to t � 0 and a positive-time single
photon |1g〉 in a Gaussian-modulated pulse g(t ) [see (96)]. The pho-
ton has fixed carrier ω0 and width σ , while the photon delay τ is
changed along the x axis. The bounds are calculated using the exact
expressions (57) and (62).

In Fig. 2 we keep the pulse width σ fixed and plot the
bounds for Fmax(|1g〉) as a function of delay τ . To understand
the plot behavior, consider the bound approximations (58) and
(63), which are expressed purely as a function of the amount
of negative frequencies η in the Fourier transform G(ω) of
g(t ). For τ = 0, both the clipping at t = 0 and the width of
the pulse contribute to the negative-frequency content, and
a narrow pulse has more negative frequencies, giving a low
fidelity. Increasing τ decreases the truncation at t = 0, giving
less negative frequencies and thus higher fidelity. This effect
is slower for large σ since wider pulses are effectively moved
less by the same delay. At some point the fidelity saturates
when the main contribution to the negative frequencies comes
from the pulse width. Increasing τ further after this point has
no more effect, and the fidelity remains roughly constant at a
value that increases with σ .

In Fig. 3 we plot the bounds for Fmax(|1g〉) now as a func-
tion of the pulse width σ . Instead of keeping the delay τ fixed,
we instead let it be proportional to σ so that the pulses have a
truncation fixed at some percentage of their width. For σ → 0,
the pulse is narrow and thus has a large negative-frequency
content and low fidelity. Increasing σ gives less negative fre-
quencies and a higher fidelity, up to a point where the negative
frequencies come mainly from the truncation at t = 0. The
fidelity at this saturation point is higher for larger τ since there
is less truncation. Increasing σ further after that still improves
the fidelity, although only very slowly since the ∼1/ω tail in
G(ω) introduced by the truncation at t = 0 has a slow falloff.

In both Figs. 2 and 3, the upper and lower bounds are
quite close together, meaning that the optimal fidelity is con-
strained tightly. One contributing factor to this is the artificial
negative-frequency modes in the construction of |1g〉. They
allow us to specify an arbitrary causal pulse in time g(t ), but
removing these artificial modes to achieve a physical state
results in a substantial, unavoidable factor

√
1 − η [in (57)]

in the fidelity. This factor gives the main contribution in both

FIG. 3. Same as Fig. 2, except here the fidelity is plotted against
the photon width σ , and the photon delay τ is kept proportional to σ .
This means that, as σ is changed, the truncation at t = 0 is fixed at
some percentage of the pulse width.

the upper and lower bound for Fmax(|1g〉), making the bounds
relatively close.

Note also that Fmax(|1g〉) being less than one is not just a
consequence of the truncation at t = 0. To show this explic-
itly, we can consider an experiment where only the shape, and
not the timing, of the target pulse matters, meaning that we can
delay the target pulse infinitely. This means that for, e.g., the
Gaussian pulse (96), we may take ω0τ → ∞. The truncation
at t = 0 is then redundant, and we can drop the Heaviside
factor θ (t ), so that g(t ) is a pure Gaussian:

g(t ) ∝ e−(t−τ )2/2σ 2
e−iω0t , ω0τ → ∞. (97)

In this case we can calculate the parameter η analytically,

η = 1
2 [1 − erf (ω0σ )], (98)

where erf (·) is the error function. Using this we can calculate
the first-order approximations for the upper and lower bounds
for Fmax(|1g〉) as given by (58) and (63). The bounds are indis-
tinguishable from the case τ = 3σ in Fig. 3 until ω0σ ≈ 3,
after which they continue downwards instead of flattening
out. Thus for 0 � ω0σ � 3, the plot for τ = 3σ in Fig. 3
also represents the fidelity bounds for a Gaussian target pulse
without truncation (97).

Next, we consider the upper and lower bounds (87) and
(93) of Fmax(|1ξ 〉). We would like to specify the pulse of the
target state |1ξ 〉 in time domain similar to (96). However, we
must choose a spectrum ξ (ω) defined on ω > 0, meaning that
not every time-domain pulse is possible. This fundamental
issue was also the main motivation for constructing the target
state |1g〉, which is unphysical but more convenient in this
regard. We construct the spectrum ξ (ω) in two steps: First
choose some time-domain Gaussian similar to before,

gpre(t ) ∝ e−(t−τpre )2
/2σ 2

pre e−iωpre
0 t , (99)

where ω
pre
0 , σpre, and τpre are free parameters as in (96). Note

that there is no requirement of truncating for negative times.
We then choose ξ (ω) as the (normalized) positive-frequency
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FIG. 4. Mean frequency ω0 times width σ of a pulse ξ (t ) contain-
ing only positive frequencies [see (100)]. The spectrum of the pulse
ξ (t ) is the positive-frequency part of gpre(t ), which is a Gaussian
envelope of width σpre and delay τpre around a center frequency ω

pre
0 .

As the pulse width of gpre(t ) is reduced, the width of ξ (t ) asymptotes
to ≈1.3, meaning that a pulse containing only positive frequencies
cannot be narrower than that. The plot is independent of τpre, which
is a desirable trait of the method for calculating the properties of ξ (t )
[see (101) and below].

part of the Fourier transform Gpre(ω) of gpre(t ),

ξ (ω) = Gpre(ω)√∫ ∞
0 dω |Gpre(ω) |2

, ω > 0, (100)

and label its inverse Fourier transform ξ (t ).
When Gpre(ω) has its main weight for positive frequencies,

the target pulse ξ (t ) is close to gpre(t ) and it therefore has
parameters close to those chosen in (99). In general however,
ξ (t ) will be significantly different from gpre(t ), meaning that
its carrier frequency, width, and delay must be computed.
Picking a procedure for how to do this will always involve
some amount of choice, especially since ξ (t ) may be signif-
icantly different from a Gaussian in some cases. We use the
method

ω0 =
∫ ∞

0
dω ω|ξ (ω)|2, (101a)

τ =
∫ ∞

0
dt t |ξ (t )|2. (101b)

Finally, σ is chosen so that the square of a Gaussian with
standard deviation σ has a width at 5% of its peak equal to
the width at 5% of the peak of |ξ (t )|2.

The behavior of this method is checked in Fig. 4. When
gpre(t ) has a wide pulse form, the width of ξ (t ) is about the
same. As the pulse is made narrower, the mean frequency of
ξ (ω) is pushed up compared with in Gpre(ω), meaning that the
width of ξ (t ) relative to its carrier decreases slower and finally
reaches a constant value of ≈1.3. Achieving a pulse with only
positive frequencies that is narrower than that is impossible.

In Fig. 5 we keep the pulse width σ fixed and plot the
bounds for Fmax(|1ξ 〉) as a function of delay τ . Again we can

FIG. 5. Upper and lower bound for the maximum fidelity be-
tween a state strictly localized to t � 0 and a physical single photon
|1ξ 〉 with pulse form ξ (t ). The photon spectrum is the positive-
frequency part of a Gaussian-modulated carrier gpre(t ) [see (100)].
The mean frequency ω0, width σ , and delay τ of the photon pulse
form ξ (t ) are computed using the method described in (101) and
below and are related to gpre(t ) according to Fig. 4. In the plot, the
duration of the single-photon σ is fixed, and the photon delay τ is
changed along the x axis. The bounds are calculated using the exact
expressions (87) and (93).

use the first-order bound approximations (88) and (95) to un-
derstand the plot, since they depend only on the negative-time
tail μ of the target pulse ξ (t ). When τ = 0, half of gpre(t ) is
located for negative t , and therefore ξ (t ) also has a significant
portion there which gives a large negative-time tail and low
fidelity. As τ increases, the tail is reduced, increasing the
fidelity. At some point the fidelity saturates when the Gaussian
tail of gpre(t ) is insignificant, and it is instead the ∼1/t tail
introduced by the truncation at ω = 0 in ξ (ω) that dominates.
This tail is smaller for larger values of σ since wide pulses
have less negative frequencies. Increasing τ further after this
point still improves the fidelity, but only very slowly since the
1/t tail is so slowly decreasing.

In Fig. 6 we plot Fmax(|1ξ 〉) as a function of pulse width σ .
Similar to before, we keep τ at a constant proportionality with
σ . As σpre → 0, σ reaches the minimum, nonzero possible
width of a pulse with only positive frequencies, as seen in
Fig. 4. At this point the negative-time tail comes mainly from
the severe truncation at ω = 0, and the fidelity is low. As σ is
increased, there is less frequency truncation, meaning that the
fidelity increases and ξ (t ) approaches gpre(t ). At some point
the truncation for ω = 0 becomes insignificant compared
with the tail of gpre(t ) itself, and the fidelity saturates depend-
ing on the delay τ .

VIII. FIDELITY BOUNDS
FOR ARBITRARY NUMBER STATES

So far we have considered the maximum fidelity between
states strictly localized to t � 0 and single photons, either in
the form |1ξ 〉 or |1g〉. Here we consider the generalization of
these bounds to states of arbitrary photon number. Concretely,
we wish to find upper and lower bounds for the maximum
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FIG. 6. Same as Fig. 5, except here the fidelity is plotted against
the photon width σ , and the photon delay τ is kept proportional to
σ . Narrower pulse widths than ω0σ ≈ 1.3 are not possible, as seen
in Fig. 4.

fidelity:

Fmax(|nξ 〉) ≡ max
|ψ〉 strict. loc.

|〈ψ |nξ 〉|, (102)

between any state |ψ〉 strictly localized to t � 0 and a physical
n-photon state

|nξ 〉 = 1√
n!

a†
ξ

n|0〉 (103)

in some spectrum ξ (ω),

a†
ξ =

∫ ∞

0
dω ξ (ω)a†(ω),

∫ ∞

0
dω |ξ (ω)|2 = 1, (104)

with ξ (ω) = 0 for ω < 0. Similarly, we wish to find upper and
lower bounds for the maximum fidelity

Fmax(|ng〉) ≡ max
|ψ〉 strict. loc.

|〈ψ |ng〉|, (105)

between any state |ψ〉 strictly localized to t � 0 and a causal
n-photon state

|ng〉 = 1√
n!

a†
g

n|0〉 (106)

in some pulse form g(t ),

a†
g =

∫ ∞

0
dt g(t )a†(t ),

∫ ∞

0
dt |g(t )|2 = 1, (107)

with g(t ) = 0 for t < 0.
Similar to |η1,2〉, we also construct an example of a strictly

localized state |ηn
1,2〉 that is close to an n-photon state, which

we obtain by iterated application of Licht operators (40):∣∣ηn
1,2

〉 = W n|0〉 = S†ã†
1

n
S|0〉

= c1|n1 02〉 + c2|n + 11 12〉 + c3|n + 21 22〉 + · · · ,

(108)

for some coefficients c1, c2, . . . [different from those in (48)].
In Sec. IV B we showed that the Licht operator W satisfies
W †W = 1 and [W, A(t )] = 0 for t < 0. It then follows imme-
diately that W n is another Licht operator since it satisfies the

same conditions, and thus |ηn
1,2〉 is a state strictly localized to

t � 0.
We can calculate the fidelity Fn between this state and its

n-photon component in the same way as was done in (49):

Fn ≡ ∣∣〈n1 02

∣∣ηn
1,2

〉∣∣
=

(
1 − 2̃η

1 − η̃

)1+ n
2

∞∑
k=0

(
η̃

1 − η̃

)k
√(

n + k

n

)
, (109)

and as before it is useful to obtain a lower bound for Fn in
terms of η for the regime η � 1,

Fn � 1 −
(

1 + n

2
− √

n + 1
)
η + O(η2). (110)

The calculations for the upper and lower bounds for the
fidelities follow the same lines as for single photons. We make
repeated use of that for any operators a and b such that a|0〉 =
0 and [a, b] = c for some constant c, we have that

〈0|anb†n|0〉 = n!cn. (111)

In the calculation for the upper bound for (102), we en-
counter an expression for the probability density of obtaining
result X when measuring the smeared field Eζ (66) for the
state |nξ 〉:

〈nξ |PX |nξ 〉 =
n∑

k=0

(
n

k

)
|cξ |2k (1 − |cξ |2)n−kψ2

k (X ), (112)

where ψk (X ) is the kth Hermite function

ψk (X ) = (
√

π2kk!)−1/2e−X 2/2Hk (X ), (113)

and Hk (X ) is the kth (physicist) Hermite polynomial. To con-
tinue with this expression, we must find an upper bound for
the integral of ψ2

k (X ) over some interval. Using the same tech-
nique as in Ref. [87], we can show that the following bound
holds for the Hermite functions: Let L � 0 and k be a positive
integer, so that ψk (X ) has a local maximum at X0 � L. Then
|ψl (X )| � ψk (X0) for all X ∈ [−L, L] and l � k.

For simplicity we pick the same projector as for n = 1,

P =
∫ 1/

√
2

−1/
√

2
dX PX , (114)

and we then want to show that∫ 1/
√

2

−1/
√

2
dX ψ2

k (X ) � erf

(
1√
2

)
−

√
2

πe
∀ k � 1. (115)

This can be done by first a brute-force calculation for k =
1, . . . , 14 and then noticing that there is a local maximum
ψ15(X0) < 0.35 at X0 ≈ 0.85 � 1/

√
2. Using the above result

with L = 1/
√

2, we can then verify (115) for all k � 15.
In the end we obtain the following upper and lower bounds

for (102) and (105):

1 − nμ � Fn(1 − μ)n/2

[
J (1 + J )

1 + J − 2η

]n/2

� Fmax(|nξ 〉)

�
√

1 − 2

πe
[1 − (1 − μ − |ν|)n]2 � 1 − n2

πe
μ2,

(116)
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and

1 − (n + 1 − √
n + 1)η � Fn

[
(1 + J )(1 + J − 2η)

4J

]n/2

� Fmax(|ng〉) � (1 − η)n/2

≈ 1 − n

2
η, (117)

where the approximations are valid for small μ and small η,
respectively.

IX. DISCUSSION AND CONCLUSION

We have considered the question of how close a state |ψ〉
produced by an on-demand, 1D, photonic source can be to
a single photon, or to an n-photon state. By causality, the
state |ψ〉 generated on demand must be strictly localized to
t � 0 at the observation point x = 0. We argue that there
are two natural but incompatible ways to specify the target
photon state. The most obvious is a photon |1ξ 〉 with a given
positive-frequency spectrum ξ (ω) as defined in (2). On the
other hand, as discussed in the introduction, sometimes a
better representation can be an (unphysical) photon |1g〉 in a
given positive-time pulse g(t ) as defined in (4).

We answer the question by constraining the maximum pos-
sible fidelity between |ψ〉 and the target states |1ξ 〉 and |1g〉.
We also find it convenient to obtain first-order approximations
for the fidelity bounds expressed purely as a function of the
negative-time tail μ of |1ξ 〉, and of the negative-frequency
tail η of |1g〉. The results are that the maximum fidelity be-
tween any state |ψ〉 strictly localized to t � 0 and a physical
(acausal) single photon |1ξ 〉 satisfies

1 − μ � F
√

1 − μ

√
J (1 + J )

1 + J − 2η

� Fmax(|1ξ 〉)

�
√

1 − 2

πe
(μ + |ν|)2 � 1 − 0.12μ2. (118)

Here μ is given by (5), η by (94), F by (49), J by (52), and ν

by (83). The approximations are valid for the regime μ � 1.
On the other hand, the maximum fidelity between any state
|ψ〉 strictly localized to t � 0 and a causal (unphysical) single
photon |1g〉 satisfies

1 − 0.59η � F

2

√
(1 + J )(1 + J − 2η)

J

� Fmax(|1g〉)

�
√

1 − η ≈ 1 − 0.5η, (119)

where η is given by (6). The approximations are valid for η �
1. The generalizations of these bounds to arbitrary number
states are given in (116) and (117), respectively.

The fidelity (118) is limited by the size of the negative-time
tail μ associated with the target state’s spectrum ξ (ω). Thus it
can always be improved by delaying the target state in time,
corresponding to a linear phase factor in ξ (ω), as seen by the
forever-decreasing curves in Fig. 5. Despite this improvement,

it is important to note that there is already a limitation in-
herent in the requirement of only positive frequencies in the
target state; a spectrum ξ (ω) for ω > 0 can never accurately
describe, for example, an ultrashort, few-cycle pulse, even if
it is infinitely delayed in time.

The fidelity (119) is related to the target pulse’s negative-
frequency content η. The bounds are severe for ultrashort
pulses of the order of a few cycles. Unlike (118), the fi-
delity (119) is at some point not improved by delaying the
pulse more, because few-cycle pulses necessarily contain a
significant amount of negative frequencies regardless of the
delay. This is discussed around (97) and seen in Fig. 2, where
the curves flatten out. Nevertheless, the fidelity tends to one
rapidly as the pulse envelope becomes slowly varying over an
optical cycle.

Note that we have so far assumed that the photonic state
produced by the source |ψ〉 is pure. However, the source can
very well entangle electromagnetic and internal degrees of
freedom, making the reduced photonic state mixed. Interest-
ingly, the four bounds derived in this paper (including the
generalizations to arbitrary number states) all apply also when
the maximizations in (1) and (3) are over all strictly localized
mixed states ρ instead. The definition of strict localization
for mixed states is the straightforward generalization of (11).
The validity of the two lower bounds to mixed states follows
trivially since they are proven by example. The derivation of
the upper bound for (3) is easily generalized since it relies
only on the source state being physical, which applies also to
the pure states of an ensemble expansion of ρ (even if these
states may fail to be strictly localized). Finally, the derivation
of the upper bound of (1) uses an operator local to a region
complementary to the localization region of the source state,
which works equally well for mixed states.

Also note that the regime in which the effects discussed
in this work become appreciable is quite far from current
technology. For typical on-demand single-photon sources to-
day [22–26], the bandwidth is orders of magnitude smaller
than the carrier frequency [23], making the effect of trun-
cating for ω < 0 vanishingly small. Thus it seems plausible
that we might with high accuracy replace the true state pro-
duced by such sources with a single photon. This is true even
though there have been demonstrations of pulsed lasers with
pulse lengths comparable to a single cycle [88]; it remains
to achieve similarly short pulses for sources of (near) single
photons, which is much more difficult.

Yet these are purely technological limitations that will
surely improve over time. There are already suggestions for
how one might create single-photon sources with a pulse
length on the order of a single cycle [89]. For on-demand
sources in this regime, the theoretical maximum single-photon
fidelity will be significantly less than one, as shown by the
plots in Sec. VII. Given the importance of single-photon
sources for quantum information and communication [22,23],
we can expect the results presented here to be relevant
for describing potentials and limitations of future quantum
technologies.

Additionally, it is not a priori given that replacing the true
source state with a single photon is actually a valid approx-
imation, even though the amount of negative frequencies is
very low. The states |η1,2〉 provide a specific mechanism for
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justifying and analyzing this approximation. The fidelity
bounds (118) and (119) give an exact range for which regime
such an approximation can be warranted, and for which it can-
not. The states |η1,2〉 also allow a manifestly causal description
of propagating signals in quantum field theory, potentially
opening up new methods for analyzing such processes.

The main limitation of our analysis is the assumption of
a free theory. We let the source produce some state and then
be switched off, assuming that the field is subsequently free
of any interactions, which is of course an unphysical idealiza-
tion. It would be interesting to generalize our analysis to a full,
interacting theory including the effects of renormalization.
This work is also limited to analyzing photon localization
along one dimension. Some of the results are generalized to
three dimensions in Ref. [90].

For future work, it would also be interesting to further
explore connections between our results and measurement
theories for quantum fields in curved space-time. Specifically,
there is some similarity between the mixing of annihilation
and creation operators in (41) and the Bogoliubov transfor-
mations relating operators associated with modes of global
space-time to modes of bounded regions [60,91]. Another
possible direction could be to check how the states |η1,2〉
look in other measurement models, such as Unruh-DeWitt
detectors, and see whether they are still strictly localized. A
full generalization of our analysis to curved space-time would
also be interesting, for instance, investigating the limitations
imposed by energy positivity when there is no longer an
identification of positive-frequency modes [92].

Looking back at the discussion of the Fermi problem and
causality in quantum field theory in Sec. II, we hope our
results might bridge some gaps in the understanding. There
is an apparent disconnect between experimental experience of
atoms emitting single photons [22], the theorems showing that
single photons are infinitely delocalized [1], and the abstract
analyses showing that causality is manifest but revealing little
about the actual quantum states [31,54]. Our results show that
a possible resolution is that the emitted states can be strictly
localized and propagate causally, while for quasimonochro-
matic pulses being extremely close to single photons. Indeed,
perhaps it is a general feature that real particles in quantum
field theory are not exact single-particle states?

APPENDIX A: PROOF THAT SINGLE PHOTONS IN 1D
CANNOT BE LOCALIZED

In the introduction we indicate why single photons travel-
ing to the right cannot be localized in space or time, using an
argument that neglects the leftward-moving modes (k < 0). If
we include leftward-moving modes k < 0, we get an apparent
possibility of localization of some observables at a single
point in time. For example, the electric energy density of
a single photon at t = 0 can be nonzero in a finite spatial
interval. However, this localization is only apparent, and the
photon becomes infinitely spread out in space instantaneously
for any t > 0. Here we show these claims in detail. For a
proof that single photons in general [in three dimensions (3D)]
cannot be localized, see Ref. [1].

Let |1〉 be an arbitrary single-photon state containing any
1D wave vectors k (both rightward- and leftward-moving

modes):

|1〉 =
∫ ∞

−∞
dk G(k)a†(k)|0〉, (A1)

where G(k) is an arbitrary function. The electric field at posi-
tion x and t is given by

E (x, t ) =
∫ ∞

−∞
dk E (ω)a(k)eikx−iωt + H.c. (A2)

Note that, unlike in (24), we are here including both positive
and negative k. Consider the expectation value of, e.g., the
normal-ordered observable :E2(x, t ):,

〈1| :E2(x, t ): |1〉 = 2|s(x, t )|2, (A3)

where

s(x, t ) =
∫ ∞

−∞
dk E (ω)G(k)eikx−iωt

=
∫ ∞

0
dk E (kc)G(k)eikx−ikct

+
∫ ∞

0
dk E (kc)G(−k)e−ikx−ikct

= u(x − ct ) + v(x + ct ), (A4)

for some functions u(·) and v(·).
For a fixed time, say t = 0, we can choose a function G(k)

in the first integral in (A4) such that the inverse Fourier trans-
form of E (|k|c)G(k) vanishes for any desired spatial region.
Thus a single photon may appear to be localized instanta-
neously, e.g., so that s(x, 0) = 0 for |x| > l/2, where l is a
localization width.

However, this localization disappears instantaneously since
it is impossible to have s(x, t ) = 0 for an interval in space
and time. Indeed, in the interior of the region where s(x, t ) is
zero, we can differentiate the last line in (A4) with respect to x
and t separately. Assuming for simplicity that the time interval
contains t = 0, we get that u′(x) and v′(x) must both vanish in
the space interval. Yet we see from (A4) that u′(x) and v′(x)
are (inverse) Fourier transforms of only positive frequencies.

Fourier transforms over only positive arguments are limited
by the Paley-Wiener criterion (Theorem XII in Ref. [19]; see
also Ref. [2]): Let F (ω) be a nonzero function in L2(0,∞),
meaning that it vanishes for ω < 0. Then its Fourier transform
f (t ) satisfies ∫ ∞

−∞
dt

|ln | f (t )||
1 + t2

< ∞. (A5)

In other words, f (t ) is nonzero (almost) everywhere on R
and has an asymptotic falloff that is slower than e−At for
some constant A > 0. For example, it may have an asymptotic
falloff of e−Atγ

for γ < 1.
Since u′(x) and v′(x) in (A4) are (inverse) Fourier trans-

forms of only positive frequencies, they cannot vanish in any
finite space interval as is required. Thus 1D single photons
cannot be localized to any interval in space and time. This
includes, for instance, the light cone region x < ct dictated by
causality for the source analyzed in the main text.

063708-16



LIMITS FOR REALIZING SINGLE PHOTONS PHYSICAL REVIEW A 108, 063708 (2023)

APPENDIX B: LOCALIZATION OF CLASSICAL FIELDS
AND COHERENT STATES

We have seen in Appendix A that single photons |1〉 cannot
be strictly localized. Here we show that classical fields as well
as coherent states |αξ 〉 can be localized, for instance, to t � 0.

In classical electrodynamics we are free to specify the
fields as any functions of space and time. For instance, letting
A(t ) be a 1D, single-polarization classical electromagnetic
potential at the point x = 0, we can always choose it to satisfy

A(t ) = 0, t < 0, (B1)

making all observable fields localized to t � 0. To compare
with the quantum case, we can Fourier transform the function
A(t ) as

A(t ) =
∫ ∞

0
dω c(ω)e−iωt + c.c. (B2)

Requirement (B1), along with A(t ) being real, can then be
formulated as requirements on the Fourier coefficients c(ω).

For a quantum field A(t ) from (23), the localization condi-
tion (21) for t < 0 cannot be satisfied for single photons |1〉,
but it can be satisfied, e.g., for coherent states. For α ∈ C,
define the coherent state |αξ 〉 = Dξ (α)|0〉 in an arbitrary spec-
trum ξ (ω):

Dξ (α) = eαa†
ξ −α∗aξ , (B3)

with

a†
ξ =

∫ ∞

0
dω ξ (ω)a†(ω). (B4)

To show that |αξ 〉 is strictly localized, we can find an operator
U so that (21) is satisfied. In this case we do not need a
source space because we can take Dξ (α) directly as our U
and calculate

D†
ξ
(α)A(t )Dξ (α) = A(t ) +

∫ ∞

−∞
dω Z (ω)e−iωt , (B5)

where

Z (ω) =
{

αA(ω)ξ (ω), ω > 0

α∗A∗(−ω)ξ ∗(−ω), ω < 0.
(B6)

The second term in (B5) is a Fourier integral that contains
both positive and negative frequencies, and it is therefore not
limited by the Paley-Wiener criterion. In particular we can
select a spectrum ξ (ω) so that the inverse Fourier transform
of Z (ω) vanishes for t < 0 and that Z (ω) = Z∗(−ω). Thus
coherent states |αξ 〉 can be strictly localized to t � 0.

APPENDIX C: EIGENVECTORS OF QUANTUM FIELDS

We are interested in measuring a (smeared) quantum field
observable, e.g., the electric field smeared with some real
function ζ (t ),

Eζ =
∫ ∞

−∞
dt ζ (t )E (t ). (C1)

As usual in quantum mechanics, the possible measurement
outcomes and corresponding probabilities are found by the
spectral decomposition of Eζ . Since smeared quantum fields

are generally unbounded, we must use the spectral theorem
for unbounded operators [78] on Eζ ,

Eζ =
∫

σ (Eζ )
λdμEζ

(λ). (C2)

Here σ (Eζ ) is the spectrum of Eζ and μEζ
(λ) are the spectral

projectors. When measuring the observable Eζ for some state
|ϕ〉, the possible outcomes λ are given by the set σ (Eζ ),
and the probability (density) for outcome λ is given by
〈ϕ|μEζ

(λ)|ϕ〉.
However, (C2) is not very constructive; it only asserts that

such a decomposition is possible and not how to actually
find it. In (66)–(73) we showed how to perform the spectral
decomposition of Eζ by writing

Eζ = 1√
2

(a1 + a†
1) (C3)

as an operator acting on the ξ1(ω) = E∗(ω)ζ (ω) subspace
in the pulse mode decomposition (28) of the Hilbert space.
Furthermore, with an appropriate normalization of ζ (t ), we
showed that the creation operator a†

1 satisfies [a1, a†
1] = 1.

This means that Eζ is isomorphic to the position operator in a
quantum harmonic oscillator, and thus the possible outcomes
when measuring Eζ are the real numbers σ (Eζ ) = R. For any
outcome X ∈ R, we then claimed that the corresponding spec-
tral projector of Eζ is given by the outer product μEζ

(X ) =
|X1〉〈X1| ⊗ 12 ⊗ · · · of the (generalized) eigenvectors

|X1〉 = π−1/4e−X 2/2e−a†
1

2
/2+√

2Xa†
1 |01〉 (C4)

of Eζ (see also [93]). Here |01〉 is the vacuum state of mode
ξ1(ω). In this section we demonstrate the required properties
of |X1〉.

To see that |X1〉 is an eigenvector of Eζ , note that the
commutator of a1 and a†

1 implies that

[a1, era†
1 ] = rera†

1 , (C5)

[a1, era†
1

2
/2] = ra†

1era†
1

2
/2, (C6)

for any constant r. This can in turn be used to show that

a1√
2
|X1〉 = X |X1〉 − a†

1√
2
|X1〉, (C7)

which means that |X1〉 is an eigenvector of Eζ corresponding
to the eigenvalue X .

Next, we demonstrate that |X1〉 has the correct δ-function
normalization: 〈Y1|X1〉 = δ(X − Y ). On the ξ1(ω) subspace,
define corresponding number states |n1〉 = a†

1
n|01〉/

√
n!, as in

(29), as well as coherent states |α1〉 = eαa†
1−α∗a1 |01〉. We can

then calculate the inner product

〈α1|X1〉 = π−1/4e−X 2/2e−|α|2/2
∞∑

l=0

α∗l

2l/2l!
Hl (X ), (C8)

using the generating function

e2Xt−t2 =
∞∑

l=0

Hl (X )
t l

l!
(C9)

063708-17



JAN GULLA, KAI RYEN, AND JOHANNES SKAAR PHYSICAL REVIEW A 108, 063708 (2023)

for the Hermite polynomials Hl (X ) for any constant t . By
expanding in the states |α1〉, we can calculate the inner product

〈n1|X1〉 = 1

π
〈n1|

∫
d2α |α1〉〈α1||X1〉

= (
√

π2nn!)−1/2e−X 2/2Hn(X ), (C10)

which is simply the nth Hermite function ψn(X ). Using the
completeness of the states |n1〉 and of the Hermite polynomi-
als, we then get that

〈Y1|X1〉 = δ(X − Y ), (C11)

as required.
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