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Significant enhancement of group delay in electromagnetically induced transparency
with a spatially partially coherent coupling field
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The slow light propagation effect in electromagnetically induced transparency with a spatial partially coherent
coupling field has been studied. We find that the group velocity of the probe beam can be significantly reduced
when the spatial coherence of the coupling field decreases. It shows that the group delay of the probe beam can
achieve about 10 times that of the fully coherent case. This work shows the effect of spatial coherence of the
coupling field in a coherent atomic medium and provides a slow-light mechanism in optical coherence systems.
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I. INTRODUCTION

Electromagnetically induced transparency (EIT) [1,2] is a
quantum interference phenomenon which has been observed
in various physical systems [3,4]. Some novel properties of
EIT, such as ultralow absorption [5], steep dispersion [6], slow
light effect [7], and light storage [8,9], have been proposed to
apply in some devices [10]. In the recent decade, the studies
on strong interactions between Rydeberg atoms based on EIT
have been paid great attention [11]. With the controllable con-
ditions in practical experiments, EIT has promising potential
in the progress of quantum computers and communications.
In addition to the properties mentioned above, EIT can be
used to preserve the quantum state of light, ensuring the in-
tactness of quantum squeezing of input fields under certain
conditions [12]. Besides, EIT can play an entangler, which
can create quantum entanglement between the two interacting
fields [13]. Its simple configuration and ease of manipulation
in experiments make EIT an ideal system not only for applica-
tions but also for fundamental research. It is no doubt that EIT
is a great candidate to help us study new physical phenomena.

In conventional EIT experiments, people use laser light
sources which have great temporal and spatial coherence, and
one can obtain good matching results between experimental
observations and theoretical simulations. However, more gen-
eral studies of the interactions between the partially coherent
light source and resonant atomic media are still missing. The
degree of coherence provides an extra degree of freedom to
study the physics of atom-light interactions and field prop-
agation in the media, and it has no counterparts in fully
coherent light, which has a coherence length much larger than
1. On the other hand, many important applications of partially
coherent beams have been widely studied, such as micro-
densitometry [14], holography [15], lithography [16], free
space optical communications [17], ghost imaging [18], and
plasmonics [19].

In recent decades, some interesting properties of EIT in
the quantum domain have been intensely investigated. The
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quantum noises and correlations can be transferred between
the two interacting fields via the atomic coherent process [20].
With a similar process, it is natural to consider the transfer
process for the stochastic properties of the partially coherent
lights in an EIT system. It is evident that the connection be-
tween partially coherent light sources and quantum coherence
in atomic media provides a different avenue to study light-
matter interactions.

Here we are interested in the case of a spatially partially
coherent light source, which has an extra physical degree of
freedom that never exists in the fully coherent light case. In
order to quantitatively study the effect of the spatially par-
tially coherent light in EIT, we consider how the slow light
changes in EIT, i.e., group delay of the probe beam under the
different spatial coherence degrees of the coupling field. In
the fully coherent case, the group delay of the probe beam
is inversely proportional to the intensity of the coupling field
[21]. However, in the spatially partially coherent case, the
intensity of the coupling field in the EIT medium would be
affected by the initial coherence degree, so the group delay
of the probe beam is also dependent on the initial spatial
coherence of the coupling field. According to the concept,
one can expect that the slow light propagation, as well as the
absorption and dispersion relation, is essentially related to the
coherence degree of the coupling field. This is the main idea
of this work.

The organization of this paper is as follows. In Sec. II, we
start from a fundamental formula of the EIT system and intro-
duce the spatial coherence degree. A general expression for
the probe beam pulse propagation under the spatially partially
coherent coupling field is derived. In Sec. III, we will show
our results, comparing the two cases of full coherence and
partial coherence. Some discussions and physical interpreta-
tions are also included in Sec. III. Finally, a brief conclusion
is given in Sec. IV.

II. THEORETICAL MODEL

Let us consider a type �-type EIT configuration, which has
two lower states labeled by |1〉 and |2〉 and one excited state
|3〉. The two interacting fields, probe and coupling, couple to
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FIG. 1. The EIT setup. Two light fields, the probe field (thin red
arrow) and the coupling field (thick green arrow), interact with an
atomic ensemble. The atomic configuration is shown in the inset

the dipole transitions from |1〉 → |3〉 and |2〉 → |3〉, respec-
tively. The EIT configuration is shown in the insert of Fig. 1.
Under the EIT condition, the intensity of the probe beam is
much weaker than that of the coupling field; therefore, one
has a good approximation to consider that most populations
of atoms stay on the ground state |1〉. Since only the first-
order atomic coherence terms are important, we can write the
equations of motion for the first-order atomic density matrix
elements [22] as

∂

∂t
ρ31 � −(γ31 − i�p)ρ31 + i

2
�p(r, t ) + i

2
�c(r)ρ21,

(1)

∂

∂t
ρ21 � −(γ21 − iδp)ρ21 + i

2
�∗

c (r)ρ31, (2)

where γ31 and γ21 are the dephasing rates of ρ31 and ρ21.
�p and δp are the one- and two- photon detunings, and �p

and �c are the Rabi frequencies of the probe and coupling
fields, respectively. The definition of the Rabi frequency of a
field is � ≡ μE/h̄, where μ is the electric dipole moment of
the corresponding dipole transition, and E is the electric field
amplitude. It is noticed that the two Rabi frequencies �p(r, t )
and �c(r) are spatial dependent. Here r ≡ (ρ, z) stands for
the transverse part ρ and the longitudinal part z.

On the other hand, the field propagation equation of the
probe beam is governed by the Maxwell-Schrödinger equa-
tion, that is,[(

∂

∂z
+ 1

c

∂

∂t

)
+ 1

2ik
∇2

⊥

]
�p = i

	α

2L
ρ31, (3)

where ∇2
⊥ ≡ ∂2

x + ∂2
y is the transverse Laplacian operator. α

is the optical density of the EIT atomic medium. 	 is the
excited-state spontaneous emission rate, and its value 	 =
2π × 6 MHz in the 87Rb atom. L is the medium length, and
c is the speed of light. It is clear to see that the probe beam
propagation equation given in Eq. (3) depends on the atomic
coherence term ρ31 and essentially couples to Eqs. (1) and (2).

Compared with the probe beam, we assume that the cou-
pling field is freely propagating through the EIT medium
because the contribution of the corresponding atomic dipole
source term ρ32 is negligible. However, the transverse effect
of the coupling field is taken into account in order to introduce

the effect of spatial coherence into our system. Under paraxial
approximation, the coupling field solution is given as

Ec(ρ, z) = − ik

2πz
eikz

∫∫
IP

d2ρ′ Ec(ρ′, 0) exp

[
ik

2z
(ρ − ρ′)2

]
.

(4)

In Eq. (4), the coupling field amplitude at z = z can be de-
termined by its amplitude in the incident plane (IP) at z = 0.
Since we consider the stochastic behaviors in transverse of the
coupling beam, it is relevant to obtain the statistical average of
the field correlations. Therefore, the statistical average of the
coupling field can be directly calculated by Eq. (4). It shows

〈|Ec(ρ, z)|2〉 =
(

k

2πz

)2 ∫∫
IP

d2ρ′
∫∫

IP
d2ρ′′W (ρ′, ρ′′, 0)

× exp

{
ik

2z
[(ρ − ρ′′)2 − (ρ − ρ′)2]

}
, (5)

where W (ρ′, ρ′′, 0) ≡ 〈E∗
c (ρ′, 0)Ec(ρ′′, 0)〉 is the cross spec-

tral density (CSD) of the input coupling field. In Eq. (5),
one can find that the coupling field intensity at z essentially
depends on the CSD at the incident plane. Here we consider
the coupling beam generated by the electromagnetic Gaus-
sian Schell-model source [23], for which the CSD can be
expressed by

W (ρ1, ρ2) = √
S(ρ1)

√
S(ρ2) μ(ρ2 − ρ1), (6)

in which

S(ρ) = A2 exp(−ρ2/2σ 2), (7)

μ(ρ2 − ρ1) = exp

[
− (ρ1 − ρ2)2

2δ2

]
, (8)

where A, σ , and δ are all positive quantities, and they are
independent of position. A2 is proportional to the coupling
beam intensity. σ and δ are the beam width and the coherence
length of the coupling beam, respectively.

According to Eqs. (5)–(8), we can obtain the statistical
average of the coupling field intensity at z as

〈|Ec(ρ, z)|2〉 = A2 1

β2
exp

(
− ρ2

2σ 2β2

)
, (9)

and

β2 ≡ 1 + z2

4k2σ 4

(
1 + 4

q2

)
, (10)

where q ≡ δ/σ is called the degree of global coherence of
the source [24,25], which is the ratio between the coherence
length and the beam width of an optical beam. When q 
 1,
the source is considered as coherent in the global sense, while
q � 1, the source is treated as incoherent in the global sense.
The coherence length δ can be achieved to the order of μm in
practical experiments [26–28]. The two parameters, δ and σ ,
are two independent quantities, and it is possible to achieve a
small value of q by increasing the beam width. The coherence
length in experiments ranging from 27 to 112 μm can be
achieved [27]. One can use suitable beam width σ for the
corresponding δ, so that q = 0.002 is achievable in practical
experiments.
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FIG. 2. The curvature R(z) and width w2(z) of the Gaussian
beam. The blue curves are the results when � �= 0, while the red
dashed curves are the case with � = 0. The parameters we used here
are σ = 1 mm, σprobe = 0.2σ , L = 5 cm, �p = 0 = δp, �0 = 0.7	,
λ = 780 nm, τ = 40(1/	), ω = (1/40)	, and q = 0.002.

The propagation solution of probe field can be found by
using the Fourier transform to the coupled equations given
by Eqs. (1), (2), and (3). Then one can obtain the following
equation:(

∂

∂z
+ 1

2ik
∇2

⊥

)
�̃p(z, ρ, ω) = −�(z, ρ, ω)�̃p(z, ρ, ω),

(11)

where

�(z, ρ, ω) = (	α/4L)(γ̃21 − iω)

(γ̃31 − iω)(γ̃21 − iω) + 〈|�c(ρ, z)|2〉/4
− i

ω

c
.

(12)

Here we can find the statistical average of coupling field Rabi
frequency 〈|�c(ρ, z)|2〉 in the probe field equation. It can
directly obtain 〈|�c(ρ, z)|2〉 in Eq. (12) from Eqs. (9) and (10).
It is

〈|�c(ρ, z)|2〉 = |�0|2 1

β2
exp

(
− ρ2

2σ 2β2

)
, (13)

where �0 ≡ μ32A/h̄ in Eq. (13) is the Rabi frequency of input
coupling field in the center of the incident plane. Besides, in
Eq. (12) we have used the replacements that γ̃21 ≡ γ21 − iδp

for the ground state dephasing rate, andγ̃31 = 	/2 − i�p for
practical EIT system.

From Eq. (11), one can find that the probe field has spatial
dependence in transverse and longitudinal direction. However,
the transverse dependence can be ignored for practical EIT
experimental condition: (i) The beam width of probe beam
is much smaller than that of coupling beam. σprobe � 0.1σ

for example. As we can see from Eq. (13), the term of
exp(−ρ2/2σ 2β2) � 1 when |ρ| � 0.1σ and β � 1. Thus one
can safely ignore ρ dependence of probe beam. (ii) The probe
beam propagates on axis with the coupling beam. The probe
beam is focused around ρ = 0, which corresponds to the peak
intensity of coupling beam. Hence, the function of � is sym-
metric to probe beam. If the propagation direction of the probe
beam is off-axis, the probe beam can only see the local cou-
pling beam intensity at ρ = ρc �= 0. It doesn’t affect the main
physics of probe beam propagation. The more detailed calcu-
lations and simulations are given in the Appendix. In Fig. 2
we just compare the numerical results of the curvature and
beam width of probe beam with respect to the case without
having the term from atomic polarization �. The parameters
are given by σ = 1 mm, σprobe = 0.2σ , L = 5 cm, �p = 0 =
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)|
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FIG. 3. The statistical average intensity of the coupling field in
the center ρ = 0 and at z = L versus the global coherence degree
q. The parameters we used here are �0 = 0.7	, �p = 0 = δp, σ =
1 mm, L = 5 cm, and k = 2π/λ, with λ = 780 nm.

δ, �0 = 0.7	, λ = 780 nm, τ = 40(1/	), ω = (1/40)	, and
q = 0.002. Please note that we have use the upper limit in
frequency according to ωτ = 1. As we can see, the curvature
and the width of the probe beam are almost the same as
those of the Gaussian beam propagating in free space when
σprobe = 0.2σ . When the probe beam width is getting smaller,
the transverse distribution is closer to the distribution of the
Gaussian beam with � = 0. This implies that the transverse
variation is insignificant in the beam propagation.

After dropping the Laplacian term in Eq. (11), the solution
of the probe field is

�̃p(z, ω) = �̃p(0, ω) exp

[
−

∫ z

0
dz′�(z′, ω)

]
, (14)

where �̃p(0, ω) = (�p0τ/
√

2) exp(−ω2τ 2/4) is the spectra
of the input probe field, which is the Fourier transform of
the input probe field in the time domain given by �p(0, t ) =
�p0 exp(−t2/τ 2), in which �p0 is the peak value of the probe
Rabi frequency and τ is the pulse width of the probe field.

Once the input probe field pulse �p(0, t ) is determined,
we can find the output probe field pulse by the inverse Fourier
transform of Eq. (14).

III. RESULTS AND DISCUSSIONS

In Sec. II, we have developed a theory to describe the probe
field propagation in the EIT system with a spatially partially
coherent coupling field. In Eq. (9), it implies that the statistical
average intensity of the coupling field depends on not only
the peak intensity �0 but also the spatial coherence degree q.
Thus, it provides us an opportunity to study the group delay of
the probe beam with respect to the degree of spatial coherence.

In Fig. 3, we have shown the relation between the statistical
average intensity of the output coupling field. We set ρ = 0
where the probe and coupling beams are overlapped in their
beam center. The peak value of �0 = 0.7	 and the resonance
condition have been used, i.e., �p = 0 = δp. As we can see,
when the global coherence degree q is larger than 0.04, the
statistical average intensity of the coupling field approaches
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FIG. 4. The Rabi frequency of the probe field pulse |�p| under
various degrees of spatial coherence q. The black curve is the input
probe pulse. The solid red, dashed green, solid blue, and solid ma-
genta curves are the output pulses under the global spatial coherence
degrees of q = 1, q = 0.1, q = 5 × 10−3, and q = 2 × 10−3, respec-
tively. The input probe pulse is a Gaussian pulse with a pulse width of
τ = 40(1/	). The optical density α = 50, and γ21 = 10−5	. Other
parameters are the same as those in Fig. 3.

|�0|2, which is the result of the fully coherent case. The
statistical average intensity drops quickly when q < 0.01.

In order to have a clear visual picture of the relation of slow
light and the spatial coherence degree, we have plotted the
Rabi frequency of the input probe field pulse and the output
probe pulse with different values of q in Fig. 4. The black
curve represents the input probe pulse, which is the Gaussian
pulse with a width of τ = 40/	. The solid red, dashed green,
solid blue, and solid magenta curves are the output probe
pulse with values of q = 1.0, q = 0.1, q = 5 × 10−3, and
q = 2 × 10−3, respectively. The optical density of the EIT
medium is α = 50, and the other parameters are the same as
those in Fig. 3. The maximum of the Rabi frequency of the
input probe pulse is 0.01	, which is much smaller than the
Rabi frequency of the coupling field with the corresponding
coherence degree. The low-intensity approximation in EIT is
always satisfied in our theory. From Fig. 4, we can find that
the group delay of the probe pulse is getting larger when the
degree of spatial coherence is getting lower.

The group delay time of the probe pulse can be measured
by the peak position between the input pulse and the output
pulse [29]. In Fig. 4, we define the peak of the input probe
pulse at t = 0; thus, it is easy to read the delay time of the
output pulse. In Fig. 5, we have shown the ratio of the delay
time between the partially coherent case and the fully coherent
case, i.e., TD/TD,coh with respect to the coherence degree q. As
we can see, when the coherence degree q > 0.01, the delay
time is closed to the delay time in the fully coherent case.
However, when q < 0.01, the delay time increases signifi-
cantly. The small range of q from 0 to 0.01 is zoomed-in in the
inset in Fig. 5. It shows that the delay time can achieve about
10 times that of the fully coherent case when q � 10−3. There
is clear evidence to show that, when q = 0.002, the value
of β2 � 10, which means that the coupling beam intensity
average decreases about 10 times, so that the group velocity
of the probe field is 10 times slower because vg ∝ 1/〈|�c|2〉.
Essentially, the enhancement of group delay under a spatially
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FIG. 5. The ratio of delay time TD/TD,coh versus the coherence
degree q. The range of q from 0 to 0.01 is zoomed-in in the inset.

partially coherent coupling field can be understood by the fact
that the statistical average of the coupling field intensity is
decreasing as the coherence degree is decreasing. The group
velocity of the probe field pulse becomes smaller when the
coupling field intensity decreases, so that we have a larger
group delay time.

Finally, we discuss the Doppler-broadening effect, which
is a practical phenomenon in EIT experiments using atomic
vapors. The Doppler-broadening effect can be removed when
one prepares the ultracold atoms by using the laser cooling
technique, which is a mature technique in the field of atomic
molecular and optical sciences. However, it is still an inter-
esting issue in practical cases when the atomic ensembles are
in room-temperature or even in hot atomic vapor systems. In
a hot atomic vapor, the crucial problem is the Doppler shift.
Fortunately, the problem can be resolved by the copropaga-
tion scheme, i.e., �p and �c propagate in the same direction
[30,31]. For the case of the 87Rb atom, the angular frequency
difference between the two ground states |1〉 and |2〉 is ω21 =
(E1 − E2)/h̄ = 2π × 6.8 GHz. In this copropagation setting,
the two-photon detuning δD due to the Doppler shift of the
root-mean-square atom velocity in the propagation direction
of light, v̄, is given by

δD = |kp − kc|v̄ = ω21

c
v̄. (15)

At the temperature of 100 ◦C, δD ≈ 2π × 6 kHz = 0.001	,
which is less than the EIT linewidth �ωEIT ≡ |�c|2/	 in
our case. However, when q is very small, such that β2 �
�2

0/(	δD), the Doppler shift is out of the EIT linewidth, and
the Doppler broadening effect should be taken into account.

IV. CONCLUSION

In this work, we have studied the partial spatial coherence
degree of the coupling field in the EIT system. We have
pointed out that the statistical average of the coupling field
intensity in the EIT medium is essentially dependent on the
spatial coherence degree at input. Due to the decrement of the
statistical average coupling field intensity at low coherence
degree, the group delay time can be significantly enhanced. It
can achieve about 10 times the group delay time of the fully
coherent case when q � 10−3. This is a different mechanism
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of the slow-light effect, and it is impossible to have an analog
in the fully coherent case. In addition, we also discuss the
Doppler-broadening effect in practical experiments, and we
give the condition of the coherence degree to preserve the
transparency of the EIT linewidth. The partial spatial coher-
ences of interacting fields provide an extra degree of freedom
in optical coherent atomic media like EIT, and it will open a
different avenue to study atom-light interactions in the spa-
tially partially coherent regime.
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APPENDIX

In this Appendix, we try to find a solution of Eq. (11). As
we know, when the term on the right-hand side vanishes, the
fundamental mode of the probe beam is a Gaussian beam,
which is the solution of the paraxial wave equation. Here
we assume that the probe beam still maintains the Gaussian
profile during the propagation when the term on the right-hand
side is nonzero. We can use the trial solution given by

�̃p(r, z) = A exp

[
ip(z) + ikr2

2q(z)

]
, (A1)

where p(z) and q(z) are the two functions, which will be
determined later. A is the given amplitude, which is a constant.
r = |ρ| =

√
x2 + y2 is the radial distance from the beam cen-

ter at (x, y) = (0, 0).
One can substitute Eq. (A1) into Eq. (11). Then one can

obtain the following relation:
(

1

q(z)
+ ip′(z)

)
+ ikr2

2q2(z)
[1 − q′(z)] + �(z, r) = 0,

(A2)

where � is the function given by Eq. (12).
In Eq. (12), we have the intensity profile of the coupling

beam, which is the function of r and z, as shown in Eq. (13).
As we have mentioned, the beam width of the probe beam is

much smaller than the coupling beam width, so that we can
expand the exponent term of the coupling beam intensity to
O(r2):

〈|�c(r, z)|2〉 � |�0|2
β2

(
1 − r2

2σ 2β2

)
. (A3)

After substituting Eq. (A3) into Eq. (12), one can expand �

as follows:

�(z, r) � �0(z)r0 + �2(z)r2, (A4)

where

�0(z) = (	α/L)β2(z)(γ̃12 − iω)

D(z)
− i

ω

c
, (A5)

�2(z) = (	α/2L)(γ̃12 − iω)|�0|2
σ 2D2(z)

, (A6)

where D(z) ≡ 4β2(z)(γ̃13 − iω)(γ̃12 − iω) + |�0|2.
Substituting Eq. (A4) into Eq. (A2) and collecting the order

of r, we obtain(
1

q(z)
+ ip′(z) + �0(z)

)
r0

+
[

ik

2q2(z)
[1 − q′(z)] + �2(z)

]
r2 = 0. (A7)

From Eq. (A7), we have two equations for q(z) and p(z),
which are

p′(z) − i

q(z)
− i�0(z) = 0, (A8)

q′(z) + 2i�2(z)

k
q2(z) − 1 = 0. (A9)

When �0 = 0 = �2, the solutions of q(z) and p(z) are

q(z) = z − izR, (A10)

exp[ip(z)] = w0

w(z)
exp (iψ ), (A11)

in which zR = πw2
0/λ is the Rayleigh range of a Gaussian

beam, and ψ = tan−1(z/zR) is the Gouy phase. w0 is the
beam waist of the Gaussian beam. q(z) is related to the width
w(z) and the curvature R(z) of the Gaussian beam, in which
R(z) = Re[q(z)−1]−1 and w2(z) = (λ/π )Im[q(z)−1]−1. When
�0 and �2 are nonzero, one has to solve Eqs. (A8) and (A9).
Since �0 and �2 are z dependent, it is difficult to obtain
the analytical solutions of q(z) and p(z). We have shown the
numerical calculation results of the beam curvature and the
beam width in Fig. 2 in Sec. II.
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