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Quantum frequency up-conversion is a cutting-edge technique that leverages the interaction between photons
and quantum systems to shift the frequency of single photons from a lower frequency to a higher frequency. If a
photon before up-conversion was part of an entangled pair, it becomes crucial to comprehend the time-frequency
entanglement after up-conversion. In this study, we present a theoretical analysis of the transformation of the
time-dependent second-order quantum correlations in photon pairs and find the preservation of such correlations
under fairly general conditions. Furthermore, we analyze Hong-Ou-Mandel interference between the signal and
frequency-converted idler photons to gain insight into the indistinguishability of the two photons. The visibility
of two-photon interference is sensitive to the magnitude of frequency conversion and improves as the frequency
separation between two photons decreases.
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I. INTRODUCTION

Optical frequency up-conversion has been the subject of
much interest and investigation since its discovery in 1967
by Midwinter and Warner [1]. The driving factor behind the
importance of up-conversion [2] has been the possibility of
detecting infrared radiation [3–7] by converting it to the opti-
cal domain as the detection technology in the optical domain
is much better. This is because photons of visible light carry
more energy and can be detected using the well-developed
Si-based detector technology. Thus, techniques for improving
the efficiency of the up-conversion process have been devel-
oped [8,9]. The improved efficiency is important for many
applications, for example, in imaging [10,11]. Of particular
importance in the context of quantum technologies is the
up-conversion of a single photon. The quantum theory of
the up-conversion process has been developed [12,13]. With
the growing interest in quantum entanglement, Kumar et al.
[8,14,15] demonstrated preservation of the quantum correla-
tions between up-converted idler photons and signal photons
produced by an optical parametric amplifier. In particular, they
showed the survival of the nonclassical intensity correlation
between two photons at 1064 nm when one of these was con-
verted to 532 nm. Since these early experiments, the interest
shifted to single photons, and several experiments studied the
quality of the up-converted single photons [16,17] and verified
the preservation of quantum correlations during the process
[18–20]. As known, a versatile source of single photons is
the spontaneous parametric down-conversion process where
one has entangled pairs, i.e., signal and idler photons whose
frequencies can be quite different, still exhibiting strong
second-order quantum correlations represented by g(2)(τ ).
Direct measurement of g(2)(τ ) is difficult as the correlation
time could be 100 fs or less, and one uses the second-order
Hong-Ou-Mandel (HOM) interference [21–28] for getting in-
formation at these timescales. In a recent work [29,30] the
correlation time was about 80 ps [31] and the frequency of the

idler photon was up-converted by about 120 THz. Tyumenev
et al. [29] demonstrated the preservation of such correlation
time between the signal and up-converted idler photons.

The main purpose of our paper is twofold. First, we pro-
vide a theoretical framework to the observation of Tyumenev
et al. [29] on the preservation of time correlation. Second,
we examine the degree of indistinguishability between the
two photons of the pair before and after up-conversion. The
organization of the paper is as follows. In Sec. II, we present a
first-principle theoretical calculation of the nonclassical time
correlations between the signal photon and the up-converted
or down-converted idler photon. We find the preservation of
such correlations under fairly general conditions. This theo-
retical result is consistent with the observations reported in
[29]. In Sec. III, we analyze the two-photon HOM interference
between the signal and frequency-converted idler photons.
The visibility of the two-photon interference is sensitive to the
magnitude of the frequency conversion, and it improves when
the frequency separation between two photons decreases. Our
theoretical results on HOM interference are relevant to several
experiments, for example, Refs. [18–20] on the quality of
frequency-converted single photons. Our results also apply
to cases when the frequency is down-converted, though we
primarily focus on up-conversion processes. We present in
Sec. IV concluding remarks.

II. SECOND-ORDER CORRELATION OF SIGNAL AND
FREQUENCY UP-CONVERTED IDLER PHOTONS

As illustrated in Fig. 1, we study the entangled state [32],
which consists of a signal photon with frequency ωs and an
idler photon with frequency ωi,

|�〉 =
∫∫

dωsdωi f (ωs, ωi )a
†
s (ωs)a†

i (ωi ) |0, 0〉 , (1)
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FIG. 1. Experimental setup for the detection of second-order cor-
relation g(2)(τ ) of the signal and frequency-converted idler photons,
where a positive (negative) � value stands for up (down)-conversion.

where a†
s(i)(ωs(i) ) is the creation operator for the

signal (idler) mode, which satisfies the commutation
relation [as(i)(ω), a†

s(i)(ω
′)] = δ(ω − ω′), and

[as(i)(ω), ai(s)(ω′)]
= [as(i)(ω), a†

i(s)(ω
′)] = 0. The entanglement between signal

and idler photons arises from the nonfactorization of the
two-mode frequency distribution f (ωs, ωi ). We consider the
input photon frequency distribution following an entangled
Gaussian distribution [33]

f (ωs, ωi ) = 1√
2πσpσ−

e−(ωs+ωi−ωp)2/(16σ 2
p )e−(ωi−ωs+�)2/(4σ 2

− ),

(2)

where ωp represents the pump frequency and σp is its band-
width. � denotes the frequency difference between the central
frequencies of ωi and ωs, while σ− represents the bandwidth
of the photon pairs. It is important to note that the distribu-
tion is normalized, meaning that

∫∫ | f (ωs, ωi )|2dωsdωi = 1.
Furthermore, it is worth mentioning that the phase-matching
condition gives rise to the frequency distribution. While this
distribution is inherently a sinc function, it can often be ap-
proximated by a Gaussian distribution for practical purposes.
Consider next the frequency up-conversion of the idler pho-
ton. Let us assume that an idler photon of frequency (ω − �)
is up-converted to a photon of frequency ω. The up-conversion
would involve a strong classical field of frequency �. Let
bi(ω) and ai(ω − �) be the annihilation operators associated
with the up-converted idler photon of frequency ω and the
idler photon of frequency (ω − �). There are no input photons
at the up-converted frequency ω. Using the well-known results
from the quantum theory of frequency conversion [13,14], we
write the annihilation operator for the up-converted field in
terms of the annihilation operators for the fields at frequency
(ω − �) and ω, i.e.,

bi(ω) = T (ω,�)ai(ω − �) + η(ω,�)av (ω). (3)

Here |T (ω,�)|2 is the up-conversion rate and η(ω,�) =√
1 − |T (ω,�)|2. The operator av (ω) represents the up-

converted field at the input of the up-converter. Since there is
no up-converted field at the input of the frequency-converting
medium, the input state of the fields to the frequency converter
is |1ω−�〉i|0ω〉v , i.e., one photon in the idler at (ω − �) and
zero photon in the up-converted idler field at ω. The term
av (ω) does not contribute to normally ordered correlations
because of the initial state |0ω〉v . The situation would be
different if the up-converted field is present at the input to
frequency converter. It is also to be noted that, though av (ω)

does not contribute to the normally ordered correlations, it
is required for the preservation of Bosonic commutation re-
lation [bi(ω), b†

i (ω′)] = δ(ω − ω′). Several experiments on
frequency conversion employ modulation at the frequency
�. Consequently, the input photons at ω undergo conver-
sion to frequencies ω + � and ω − �. In this context, we
accommodate the frequency shift � in Eq. (3) to encom-
pass both positive and negative values, allowing for both up-
and down-conversion. It is worth noting that, as mentioned
in the Introduction, some experiments utilized modulation
in the GHz domain. Throughout this process, the frequency
of the signal photon remains unchanged. In this particu-
lar setup, one photon traverses through the medium, while
the other photon traverses through a vacuum. This discrep-
ancy in their paths introduces a time delay between the
two photons. Here, we introduce such a delay to the signal
photon

bs(ω) = as(ω)e−iωτ0 . (4)

The second-order correlation g(2)(t, t + τ ) is defined as

g(2)(t, t + τ ) = 〈b†
i (t )b†

s (t + τ )bs(t + τ )bi(t )〉. (5)

Considering Eqs. (1), (3), and (4), and changing the modes
to the frequency domain bi(t ) = 1√

2π

∫
dω1bi(ω1)e−iω1t and

bs(t + τ ) = 1√
2π

∫
dω2bs(ω2)e−iω2(t+τ ), we obtain

bs(t + τ )bi(t ) |�〉 = 1

2π

∫∫
dω1dω2T (ω1,�)as(ω2)

× ai(ω1 − �)eiω1t eiω2(t+τ−τ0 )
∫∫

dωs

× dωi f (ωs, ωi )a
†
s (ωs)a†

i (ωi) |0, 0〉 ,

(6)

which gives the result for Eq. (5) as

g(2)(t, t + τ ) = 1

4π2
|
∫∫

dω1dω2T (ω1,�)

× eiω1t eiω2(t+τ−τ0 ) f (ω1 − �,ω2)|2. (7)

Note that the term av (ω) in Eq. (3) has no impact on the
normal-ordered correlation g(2). Assuming that the conversion
rate remains nearly constant, denoted as T (ω,�) = T within
the relevant range, and implementing the parameter transfor-
mation �1 = ω1 − �, we can simplify Eq. (7) to

g(2)(t, t + τ ) = T 2

4π2

∣∣∣∣
∫∫

d�1dω2ei�1t eiω2(t+τ−τ0 )

× f (�1, ω2)|2. (8)

Considering a photon pair following the Gaussian distribution
in Eq. (2), we obtain

g(2)(t, t + τ ) = T 2

(2π )3σpσ−

∣∣∣∣
∫∫

d�1dω2

× ei 1
2 (ω2+�1 )[(t+τ ′−τ0 )+t]ei 1

2 (ω2−�1 )[(t+τ−τ0 )−t]

× e−(ω2+�1−ωp)2/16σ 2
p e−(ω2−�1−�)2/4σ 2

−|2.
(9)
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Through orthogonal parameter transformation to u =
(ω2 + �1)/

√
2 and v = (ω2 − �1)/

√
2, the double integral

simplifies into the product of two separate single-parameter
integrals

g(2)(t, t + τ ) = T 2

(2π )3σpσ−

∣∣∣∣
∫

dueiu(2t+τ−τ0 )/
√

2

× e−(u−ωp/
√

2)2/(8σ 2
p )

∫
dveiv(τ−τ0 )/

√
2

× e−(v−�/
√

2)2/(2σ 2
− )|2. (10)

It is worth mentioning that the two integrals in the ex-
pression correspond to the Fourier transforms of Gaussian
functions. Thus, the shifts ωp and � do not have any impact
on the mode square. Consequently, we arrive at the following
result:

g(2)(t, t + τ ) = 2σpσ−T 2

π
e−2σ 2

p (2t+τ−τ0 )2
e− 1

2 σ 2
−(τ−τ0 )2

.

(11)

The two-time correlation presented in Eq. (11) should
be averaged over the detector’s resolution time, denoted
as TR,

g(2)(τ ) =
∫ +TR/2

−TR/2
dtg(2)(t, t + τ ), (12)

which gives

g(2)(τ ) = 1

2
√

2π
σ−T 2e− 1

2 σ 2
−(τ−τ0 )2

[erf(
√

2σp(τ − τ0 + TR))

− erf(
√

2σp(τ − τ0 − TR))], (13)

where erf(x) stands for the error function. Note that, when
there is no conversion, T = 1, τ0 = 0, and Eq. (13) will be the
correlation of the photons produced by the down-converter.
Thus, the functional form of the time correlation is essen-
tially preserved. This includes dependence on the detector’s
resolution time.

In this analysis, we examine two scenarios. In the first
scenario, we assume that the large-detection time condition
is met, specifically, when σpTR → ∞ and TR 	 τ − τ0. This
condition is satisfied, for instance, when TR is on the order of
10 : ps or 100 : ps. Under these circumstances, we derive

g(2)(τ ) = σ−T 2

√
2π

e− 1
2 σ 2

−(τ−τ0 )2
. (14)

The height of the peak is proportional to T 2, representing
the probability of frequency conversion. The full width at
half maximum (FWHM) of g(2)(τ ) between the signal and
up-converted idler photons remains identical to that between
the original photon pairs. This is illustrated in Fig. 2, where
g(2)(τ ) (by dropping the factor T 2) is plotted for the signal
and up-converted idler photons, revealing only a peak shift

FIG. 2. The second-order correlation g(2)(τ ) in Eq. (13) of the
signal and frequency up-converted idler photons (yellow), compared
to g(2)(τ ) of the original photon pair (blue), for σ− = 2π × 1 T Hz,
σp = σ−/10, τ0 = 0.2 ps and TR = 100 ps.

attributable to the difference in path length. It is worth noting
that Fig. 2 is generated using the precise result outlined in
Eq. (13).

In the second scenario, as σpTR → 0 and σp(τ − τ0) → 0,
but TR and τ can be of comparable magnitude, we derive the
following expression:

g(2)(τ ) = 2TRσpσ−T 2

π
e− 1

2 σ 2
−(τ−τ0 )2

. (15)

In both of these limiting cases, the g(2)(τ ) function is exactly
the same as the correlation observed in the absence of up-
conversion, with the only difference being a multiplication
by T 2 and a phase shift of τ0. This aligns with the findings
of the experiment detailed in Ref. [29], where the perti-
nent parameters encompass σ− = 1/80 : ps, TR = 50 : ps, and
σp approximately equals 2π × 1 : GHz. In this context, the
time correlation g(2)(τ ) experiences a shift due to the delay
introduced by the up-conversion medium. Furthermore, the
magnitude of g(2)(τ ) is directly proportional to T 2, a value
that is diminished compared to that of g(2)

0 (τ ).
Now, we delve into the impact of phase-matching on the

two-photon correlation during the up-conversion process. To
investigate this, we introduce a modification to the factor
T (ω,�), which is expressed as

T (ω,�) = Te−(ω−ωi0 )2/(2β2 ). (16)

In this expression, the conversion rate achieves its maximum
at ωi0 to optimize the conversion process and decreases signif-
icantly beyond the range indicated by β. We proceed to update
Eqs. (11) and (13) as follows:

g(2)(t, t + τ ) = 4T 2β2σpσ−
π

(
2β2 + 4σ 2

p + σ 2−
)

× exp

[
−�2 + 16σ 2

p σ 2
−(t + τ − τ0)2

2
(
2β2 + 4σ 2

p + σ 2−
)

− +4β2σ 2
p (2t + τ − τ0)2 + β2σ 2

−(τ − τ0)2

β2 + 4σ 2
p + σ 2−

]
,

(17)
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and

g(2)(τ ) = T 2β2σ−√
2π

(
2β2 + 4σ 2

p + σ 2−
)
(σ 2− + 2β2)

exp

[
− �2

2
(
2β2 + 4σ 2

p + σ 2−
) − β2σ 2

−(τ − τ0)2(
2β2 + 4σ 2

p + σ 2−
)]

× exp

[
− 4(τ − τ0)2β2σ 2

−σ 2
p(

2β2 + 4σ 2
p + σ 2−

)
(σ 2− + 2β2)

]{
erf

[√
2(σ 2− + 2β2)

2β2 + 4σ 2
p + σ 2−

(2τ − 2τ0 + TR)

]

− erf

[√
2(σ 2− + 2β2)

2β2 + 4σ 2
p + σ 2−

(2τ − 2τ0 − TR)

]}
. (18)

The expressions in Eqs. (17) and (18) reduce to Eqs. (11) and
(13) when β2 → ∞. Under the condition where TR 	 (τ −
τ0), we observe that

g(2)(τ ) ∝ exp

[
− �2

2
(
2β2 + 4σ 2

p + σ 2−
) − β2σ 2

−
(σ 2− + 2β2)

× (τ − τ0)2

]
, (19)

showing explicit dependence on the parameter β and the fre-
quency change �.

III. HONG-OU-MANDEL MEASUREMENT OF THE
SIGNAL AND FREQUENCY-CONVERTED IDLER

PHOTONS

The HOM interferometer [21,34,35] serves as a widely
employed tool for measuring the biphoton joint frequency
distribution, particularly effective on timescales of around
tens of femtoseconds, as illustrated in Refs. [33,36–38].
Consequently, we embark on an exploration of two-photon
interference involving the signal and up-converted idler pho-
tons. To facilitate this study, we introduce a tunable delay
denoted as τT in the signal photon’s path, as depicted in
Fig. 3. This setup enables us to examine the impact of both
the frequency shift � and the delay on coincidence detection
on coincidence detection. For the signal photon,

bs(ω) = as(ω)e−iω(τT +τ0 ), (20)

while the idler photon travels through the same up-conversion
medium. Following the frequency conversion process, the two
photons are then reunited at a 50:50 beam-splitter. The output

FIG. 3. Experimental setup for the HOM measurement of the
signal and frequency-converted idler photons, where τT is a tunable
delay. A positive (negative) � value stands for up (down)-conversion.

from this beam-splitter is represented as

c(ω) = bi(ω) + ibs(ω)√
2

,

d (ω) = ibi(ω) + bs(ω)√
2

. (21)

As a result, the averaged coincidence rate of the output fields

Rc(τT ) =
∫

dt
∫

dτ 〈d†(t )c†(t + τ )c(t + τ )d (t )〉 (22)

is measured, where we assume the detection time is much
larger than the pump correlation time 1/σp and the en-
tanglement time 1/σ−. Changing the modes to the fre-
quency domain d (t ) = 1√

2π

∫
dω1d (ω1)e−iω1t and c(t + τ ) =

1√
2π

∫
dω2c(ω2)e−iω2(t+τ ), we obtain

Rc(τT ) = 1

2

[ ∫∫
dω1dω2 f ∗(ω1 − �,ω2) f (ω1 − �,ω2)

× T ∗(ω1,�)T (ω1,�)

−
∫∫

dω1dω2 f ∗(ω1 − �,ω2) f (ω2 − �,ω1)

× T ∗(ω1,�)T (ω2,�)e−i(ω1−ω2 )(τT +τ0 )

]
. (23)

For a system with the same constant conversion rate assump-
tion and photon distribution as in Sec. II, we obtain

Rc(τT ) = T 2

2
[1 − e−(�−�)2/(2σ 2

− )e− 1
2 σ 2

−(τT +τ0 )2
]. (24)

The FWHM of Rc(τT ) remains consistent with the simple
g(2) function, as described in Eqs. (14) and (15). The po-
sition of the peak within the HOM dip yields insights into
the delay, whereas the visibility, denoted as e−(�−�)2/(2σ 2

− ),
within the dip provides information about the frequency shift
�. As depicted in Fig. 4, the visibility of the HOM dip
exhibits an increase when the frequency difference between
the signal and idler photons decreases due to frequency con-
version. It is worth noting that Eq. (24) highlights that the
visibility of the HOM dip remains substantial as long as the
parameter f = �−�

σ−
� 1. This condition aligns with reported

experiments such as those in [18–20]. Consider a scenario
where one utilizes an infrared (IR) photon alongside a visible
photon to study HOM interference; under such circumstances,
interference is scarcely observable. However, if the IR photon
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FIG. 4. (a) The 2Rc(τT )/T 2 function of the signal and up-
converted idler photons (yellow), compared to the Rc(τT ) of the
original photon pair (blue), for σ− = 2π × 1 THz, τ0 = 0.2 ps, � =
2π × 2 THz and � − � = 2π × 0.05 THz. (b) HOM dip visibility
as a function of the shifted frequency � when σ− = 2π × 1 THz and
� = 2π × 2 THz.

undergoes up-conversion into the visible part of the spec-
trum, robust HOM interference becomes evident. The HOM
interference between photons of different colors was initially
predicted by Raymer et al. [39] and subsequently experimen-

tally validated by Kobayashi et al. [40]. In this context, two
photons passing through an active beam-splitter undergo a
conversion into each other’s “color.” For instance, the active
beam-splitter transforms a red photon into a blue photon with
a probability of 50% and vice versa. The situation in the
research conducted by Tyumenev et al. [29] differs in that
only the idler photon undergoes up-conversion. In this case,
there is no mutual conversion between the signal and idler
photons, and a passive beam-splitter, akin to the original HOM
experiment, is employed. This distinction arises because the
use of a passive beam-splitter necessitates that significant
HOM interference occurs only when there is some overlap
in the frequencies of the two photons. The interference be-
comes pronounced when the frequency difference, denoted as
(� − �), approaches zero. This explains why, in the study
conducted by Kambs et al. [41], photons with wavelengths
of 904 nm are converted into photons with wavelengths of
1557 nm, enabling the assessment of their indistinguishability.

Moving forward, we investigate the consequences of im-
perfect phase-matching within the up-conversion process
using Eqs. (16) and (23). This analysis yields

Rc(τT ) =
√

2T 2β

2

{
1√

4σ 2
p + σ 2− + 2β2

exp

(
− 2�2

4σ 2
p + σ 2− + 2β2

)
− β√

(β2 + 2σ 2
p )(2β2 + σ 2−)

exp

[
− (� + �)2

4(β2 + 2σ 2
p )

]

× exp

[
− (� − �)2

2σ 2−
− σ 2

−β2(τT + τ0)2

2β2 + σ 2−

]}
, (25)

which reduces to Eq. (24) for β2 → ∞. Note that Eq. (25) shares the same FWHM as Eq. (19). From Eq. (25), we obtain the
visibility of the HOM dip

V =
β
√

4σ 2
p + σ 2− + 2β2√

(β2 + 2σ 2
p )(2β2 + σ 2−)

exp

[
− (� + �)2

4(β2 + 2σ 2
p )

]
exp

[
− (� − �)2

2σ 2−
+ 2�2

4σ 2
p + σ 2− + 2β2

]
. (26)

The visibility is maximized when � = � as

V =
β
√

4σ 2
p + σ 2− + 2β2√(

β2 + 2σ 2
p

)
(2β2 + σ 2−)

× exp

[
−

(
8σ 2

p + σ 2
− + 4β2

)
�2

(4σ 2
p + σ 2− + 2β2)

(
β2 + 2σ 2

p

)]
. (27)

When β 	 σ− and σp, the visibility approaches 1. However,
an excellent visibility of 0.96 can still be achieved when
β ∼ 2σ− for a system, as depicted in Fig. 5(a). The FWHM
depends both on σ− and β. As shown in Fig. 5(b), when
β ∼ 2σ− the peak only undergoes a 50% expansion in com-
parison to the scenario where β 	 σ−.

IV. CONCLUSION

Our theoretical investigation yields comprehensive insights
into the influence of frequency conversion on the time-
dependent quantum correlation of a photon pair. By deriving
the second-order correlation function, we illustrate that the
FWHM remains unaltered, while both the peak height and po-

sition undergo shifts following the up-conversion procedure.
Remarkably, this observation aligns with recent experiments,
as evidenced by the authors of Ref. [29], where the correlation
time fell within the range of detector resolution time. This re-
mains true when phase matching is satisfied across the spectral
width of the idler photon.

In our quest to gain a deeper understanding of the rami-
fications of frequency up-conversion on quantum correlation,
we delve into the intricacies of two-photon Hong-Ou-Mandel

FIG. 5. (a) HOM dip visibility and (b) FWHM for both Rc(τT )
and g2(τ ), as a function of the phase-matching factor β when σ− =
2π × 1 THz, σp = σ−/10, � = 2π × 2 THz, and � − � = 2π ×
0.05 THz. The dashed lines indicate the limits when β 	 σ−.
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interferometry. Here, we demonstrate how the visibility of
two-photon interference is sensitive to factors such as the
magnitude of frequency change in the up-conversion process,
the bandwidth of the signal photon, and the phase-matching
factor β. It is noteworthy that these findings possess a level
of generality and are anticipated to be applicable to various
forms of frequency conversion.
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