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Nonreciprocal magnon-photon-phonon entanglement in cavity magnomechanics
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We propose a scheme to create nonreciprocal entanglement in a spinning cavity magnomechanical system.
The setup comprises a whispering gallery mode resonator with two counterpropagating modes, simultaneously
coupled to yttrium iron garnet. By spinning the resonator, the counterpropagating modes undergo an opposite
Fizeau drag caused by the optical Sagnac effect. We show that in a spinning resonator, the cavity-magnon-phonon
modes get entangled along a chosen direction while remaining fully uncorrelated in the other. The degree of
nonreciprocity is determined by the drive detuning and the spinning velocity of the resonator. Our work provides
a different route to achieve chiral control of quantum entanglement involving magnon-photon-phonon modes.
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I. INTRODUCTION

Nonreciprocal physics has become an actively pursued
field of research in recent times, having a wide range of
applications in invisible sensing or cloaking and noise-free
information processing [1]. Of particular interest here is elec-
tromagnetic nonreciprocity where magneto-optical materials
are commonly used to break the time-reversal symmetry.
While these magnet-based devices are difficult to integrate
and miniaturize, there has been an ongoing search for chip-
compatible nonmagnetic optical isolators and circulators.
Nonlinear optics [2,3], optomechanics [4–7], non-Hermitian
optics [8,9], and atomic gases [10–13] are a few of the
optical devices where nonreciprocity has been achieved. Fur-
ther achievements include the demonstration of acoustic and
electronic one-way devices [14–18]. However, most of the
studies reported so far are primarily driven towards the classi-
cal regime, focusing on the transmission-rate nonreciprocity.
It is only recently that nonreciprocal quantum devices
have been explored. Along this line, based on the Fizeau
light-dragging effect [19], very recently, proposals for nonre-
ciprocal photon blockade [20,21] and backscattering immune
optomechanical entanglement [22] have received considerable
attention.

Cavity magnonics [23,24] is, on the other hand, a rela-
tively young field that seeks to explore the interaction between
a magnon, the elementary excitation of magnetization, and
a cavity photon. In its simplest form, such a system com-
prises an electromagnetic cavity with a magnetic material
placed inside it. The magnetic material of choice here is yt-
trium iron garnet (YIG), a ferrimagnetic insulator with high
spin density and a low damping rate. With strongly cou-
pled magnon-photon modes [25], cavity magnonics shows
potential application prospects in quantum information pro-
cessing, acting as either a quantum transducer [26–30] or
memory [31]. In addition, because of the magnetostrictive
force, magnons can also couple to vibrational phonons [32].
Combining these concepts, a magnon coupled to both an
electromagnetic cavity and a mechanical resonator, have given

rise to a whole new field of cavity magnomechanics. Some of
the recent studies subjected to magnomechanical systems are
magnomechanically induced transparency [32–34], phonon
lasers [32,35], magnon-induced dynamical backaction [36],
ground-state cooling of magnomechanical resonators [37],
magnomechanical storage and retrieval of quantum states
[38], magnon chaos [39], and so on.

Another stimulating direction is to observe the nonclas-
sical states in magnonics [40]. Being typically of a size
of 100 µm, YIG provides an alternative route to probe the
macroscopic quantum effects, entanglement, and squeezing,
for instance. To date, cavity optomechanics [41] has been
the most successful candidate in realizing such nonclassical
states in micro- and nanomechanical oscillators. Apart from
a plethora of theoretical studies [42], there are also, in fact,
experimental demonstrations of entangling massive mechani-
cal oscillators [43–45]. However, as compared to the opto- or
electromechanical systems, magnonics appear to be the better
tunable ones, allowing an external magnetic field to control
the magnon frequency. The proposal for creating magnon-
photon-phonon entanglement was first studied in Ref. [46].
This has inspired a series of theoretical works on squeezing
the magnon mode [47] and entangling two magnon modes
[48–52], two cavity modes [53], and also two phonon modes
[54], in a cavity-magnon-phonon setup.

In parallel, cavity magnonics has been studied in the con-
text of nonreciprocal physics. Very recently, by harnessing the
cooperative effect of coherent and dissipative magnon-photon
coupling, nonreciprocal microwave transmission has been re-
alized in an open cavity-magnon system [55]. A theoretical
framework to achieve microwave circulation has also been
studied in a multimode cavity-magnon system [56]. More-
over, exploiting the same Fizeau light-dragging effect, there
are proposals of nonreciprocal magnon [57] and phonon [58]
lasers. Also, very recently, in a similar setup of a spinning
magnomechanical resonator, the nonreciprocal transmission
rate and magnon-phonon entanglement have been studied
[59,60]. These motivate us to study the nonreciprocal forma-
tion of quantum entanglement in a cavity magnomechanical
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FIG. 1. Schematic of the proposed model. A YIG sphere is
placed inside a spinning WGM resonator. The WGM resonator sup-
ports two counterpropagating modes, while the YIG hosts both a
magnon mode and a phonon mode.

setup. In particular, we are primarily focused here to observe
such an effect in a somewhat more complicated tripartite en-
tanglement including the magnon-photon-phonon modes. We
note that our scheme works well for creating nonreciprocal
bipartite entanglements involving both the magnon-photon
and magnon-phonon modes. This work could be of particu-
lar relevance to several applications in quantum information
processing and quantum computing [61,62].

II. SYSTEM AND ITS STEADY STATE

As schematically shown in Fig. 1, we consider a cav-
ity magnomechanical system that comprises a YIG sphere
placed in the center (where the magnetic field is maximum)
of a spinning whispering gallery mode (WGM) resonator.
The WGM resonator supports two counterpropagating modes
that experience a Fizeau shift when spinning the resonator.
By fixing the counterclockwise (CCW) spinning direction,
the circulating clockwise (CW) and counterclockwise (CCW)
mode frequencies respectively read as ω� = ωc + �F and
ω� = ωc − �F , where ωc is the optical resonance frequency
of the nonspinning resonator and

�F = ±�
nrωc

c

(
1 − 1

n2
− λ

n

dn

dλ

)
(1)

is the amount of the Fizeau shift [19,63]. The parameters
�, n, and r respectively characterize the spinning velocity,
refractive index, and radius of the resonator, and c (λ) is the
light velocity (wavelength) in vacuum. The dissipation term
dn/dλ incorporates the relativistic correction to the Fizeau
light-dragging effect, which is relatively small, and thus ne-
glected. The YIG sphere embodies, simultaneously, a magnon
mode of frequency ωm and a phonon mode of frequency ωb.

The Hamiltonian of such a system can be written as

H =
∑

j=�,�
[ω ja

†
j a j + gma(m†a j + a†

j m)] + ωmm†m

+ ωb

2
(q2 + p2) + gmbm†mq + Hdrive, (2)

where a (a†) and m (m†) ([O, O†] = 1, O = a, m) are the
annihilation (creation) operators of the cavity and the magnon
modes, respectively, and q and p ([q, p] = i) are the dimen-
sionless position and momentum operators of the phonon
mode. gma and gmb are respectively the coupling strengths
between the magnon and photon and the (single) magnon
and phonon modes. A typical parameter regime is where
the magnon-photon interaction lies in the strong-coupling
regime, while the magnon-phonon interaction is very weak.
Nevertheless, this coupling (gmb) can further be enhanced by
reducing the diameter (D) of the YIG sphere as gmb ∝ 1/D2

[32]. Finally, we consider the drive Hamiltonian Hdrive =
iε(e−iωd t a†

η − eiωd t aη ), where η ∈ (�,�) fixes the driving
direction and ε gives the driving amplitude. In a frame rotating
at the drive frequency ωd , the quantum Langevin equations of
the system are given by

ȧ� = − (i�� + κa)a� − igmam + εδ�,η +
√

2κaain
�,

ȧ� = − (i�� + κa)a� − igmam + εδ�,η +
√

2κaain
�,

ṁ = − (i�m + κm)m − igma(a� + a�) − igmbmq

+
√

2κmmin,

q̇ = ωb p, ṗ = −ωbq − γb p − gmbm†m + ξ, (3)

where ��,� = ω�,� − ωd (�0 = ωc − ωd ) and �m =
ωm − ωd respectively denote the cavity and the magnon
detuning. The decay rates of the cavity, magnon, and
phonon modes are respectively κa, κm, and γb, while
their associated input noise operators are ain

�,�, min,
and ξ . These noises are zero-mean quantum Gaussian
noises that obey the following correlation relations [64],
〈ain

j (t )ain,†(t ′)〉 = [Nj (ωc) + 1]δ(t − t ′), 〈ain,†(t )ain(t ′)〉 =
Nj (ωa)δ(t − t ′)( j =�,�), 〈min

j (t )min,†(t ′)〉 = [Nm(ωm) + 1]
δ(t − t ′), 〈min,†(t )min(t ′)〉 = Nm(ωm)δ(t − t ′), and 〈ξ (t )ξ
(t ′) + ξ (t ′) ξ (t ) 〉/2 � γb [2Nb (ωb) + 1] δ(t − t ′), where
Nj = [exp( h̄ω j

KBT ) − 1]−1 is the mean equilibrium thermal
occupation number at temperature T (and KB is the Boltzmann
constant and j = a�, a�, m, b).

Driven by a strong external field, the cavity field ampli-
tudes assume a large steady-state value |〈aj〉| � 1 ( j =�
,�). In the presence of strong magnon-photon coupling this
further enables us to rewrite each of these operators (O =
a�, a�, m, q, p) as O = 〈O〉 + δO, where 〈O〉 denotes the
classical steady-state amplitudes and δO are the fluctuation
operators. The steady-state amplitudes could be easily ob-
tained as 〈aj〉 = −(igma〈m〉 − εδ j,η )/(i� j + κa) [δ j,η = 1(0)
for j = η( j 	= η) where j ∈ [�,�]],

〈m〉 = − igmaε[δ�,η(i�� + κa) + δ�,η(i�� + κa)]

(i�̃m + κm)(i�� + κa)(i�� + κa) + g2
ma(i�� + i�� + 2κa)

, (4)
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〈q〉 = −(gmb/ωb)|〈m〉|2, and 〈p〉 = 0, where �̃m = �m +
gmb〈q〉 includes the magnomechanical shift in the magnon
detuning. As for the dynamics of the quantum fluctuations,
we switch to the continuous-variable (CV) description and
define the quadrature operators as δx j = (δa j + δa†

j )/
√

2,

δy j = i(δa†
j − δa j )/

√
2 ( j =�,�), δX = (δm + δm†)/

√
2,

and δY = i(δm† − δm)/
√

2, and similarly for the input noise
operators. Neglecting all the second-order fluctuation terms,
the linearized dynamics can be simply cast in the following
matrix form,

u̇(t ) = Au(t ) + n(t ), (5)

where u(t ) = [δx�(t ), δy�(t ), δx�(t ), δy�(t ), δX (t ), δY (t ),
δq(t ), δp(t )]T is the vector of quadrature fluctuation
operators and n(t )= [

√
2κaxin

�(t ),
√

2κayin
�(t ),

√
2κaxin

�(t ),√
2κayin

�(t ),
√

2κmX in(t ),
√

2κmY in(t ), 0, ξ (t )]T is the vector
of input noises. The drift matrix A is given by⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−κa �� 0 0 0 gma 0 0
−�� −κa 0 0 −gma 0 0 0

0 0 −κa �� 0 gma 0 0
0 0 −�� −κa −gma 0 0 0
0 gma 0 gma −κm �̃m 0 0

−gma 0 −gma 0 −�̃m −κm −Gmb 0
0 0 0 0 0 0 0 ωb

0 0 0 0 −Gmb 0 −ωb −γb

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(6)

where Gmb = √
2gmb〈m〉 is the effective magnon-phonon cou-

pling strength. A formal solution of Eq. (5) reads as u(t ) =
M(t )u(0) + ∫ t

0 dsM(s)n(t − s), where M(t ) = exp(At ). The
system is said to be stable only for a set of all negative-real
eigenvalues of A.

Due to the above linearized dynamics and zero-mean
Gaussian nature of the quantum noises, the steady state
is a quadripartite Gaussian state which is fully character-
ized by a 8 × 8 covariance matrix (CM) Vi j = [〈ui(t )u j (t ′) +
u j (t ′)ui(t )〉]/2. It is straightforward to show that the steady-
state CM satisfies the following Lyapunov equation [65],

AV (∞) + V (∞)AT = −D, (7)

where D = diag [κa (2N� + 1), κa(2N� + 1), κa(2N� + 1),
κa(2N� + 1), κm(2Nm + 1), κm(2Nm + 1), 0, γb(2Nb + 1)]
is the diffusion matrix, defined through 〈ni(t )n j (t ′) +
n j (t ′)ni(t )〉/2 = Di jδ(t − t ′).

III. ENTANGLEMENT MEASURES

To study the formation of bipartite and tripartite entangle-
ment in our system, we respectively consider the logarithmic
negativity EN [66,67] and the minimum residual contangle
Rmin [68] as the measures, where the contangle is the CV
analog of discrete-variable tripartite entanglement [69]. The
definition of CV logarithmic negativity reads as

EN = max[0,− ln 2ν̃−], (8)

where ν̃− = min|i�2Ṽ4| (with the symplectic matrix �2 =
⊕2

j=1iσy and σy = y-Pauli matrix) is the minimum symplec-
tic eigenvalue of the partially transposed 4 × 4 CM V4. The

FIG. 2. (a) Magnon-photon-phonon entanglement Rmin and
(b) effective magnomechanical coupling strength Gmb, as a func-
tion of the detuning parameter �0/ωb. The blacked (dashed-dotted),
red (solid), and blue (dashed) lines respectively correspond to the
nonspinning, CCW-driven, and CW-driven WGM resonator. For the
spinning WGM resonator, the Fizeau shift is chosen to be |�F /ωb| =
0.12, obtained through � = 2.4 kHz.

partial transposition is defined through the following trans-
formation, Ṽ4 = P1|2Ṽ4P1|2, where P1|2 = diag[1,−1, 1, 1],
while for a CV tripartite Gaussian state, the quantification
is given through the residual contangle, defined as Ri| jk ≡
Ci| jk − Ci| j − Ci|k , where Cu|v is the contangle of the subsys-
tems u and v (v contains one or two modes). The contangle
is a proper entanglement monotone which is defined as the
squared logarithmic negativity. For calculating this one-mode-
versus-two-modes logarithmic negativity, one needs to follow
the definition of Eq. (8) simply by replacing �2 with �3 =
⊕3

j=1iσy and Ṽ4 with Ṽ6 = Pi| jkV6Pi| jk , where the partial trans-
position matrices are P1|23 = diag[1,−1, 1, 1, 1, 1], P2|13 =
diag[1, 1, 1,−1, 1, 1], and P3|12 = diag[1, 1, 1, 1, 1,−1]. A
bona fide quantification of Gaussian tripartite entanglement
is given by the minimum residual contangle

Rmin ≡ min[Ra|mb,Rm|ab,Rb|am], (9)

which guarantees the invariance of tripartite entanglement
under all possible permutations of the modes.

IV. RESULTS AND DISCUSSION

To start with, in Fig. 2(a) we plot the tripartite entan-
glement, involving the (driven) cavity, magnon, and phonon
modes. For simulation, we use the following set of experi-
mentally feasible parameters [32,63]: n = 1.44, r = 1.1 mm,
λ = 1.5 µm, ωb/2π = 10.627 MHz, gma/2π = 5.43 MHz,
gmb/2π = 0.3 Hz, κa/2π = 3.87 MHz, κm/2π = 1.01 MHz,
γb/2π = 286 Hz, T = 20 mK, ωd/2π = 7 GHz, and ε =√

2Pinκa
h̄ωd

(with the driving power Pin = 75 mW). It is worth-

while to note that the magnon-phonon coupling (gmb) used
here is still significantly larger than the experimentally mea-
sured one [32], requiring a sphere diameter D ≈ 50 µm.
Instead, one can think of using a low coupling strength by
adding a strong drive to the cavity. However, such a strong
drive could result in unwanted nonlinear effects, as reported
in Ref. [70]. Finally, we set �m = ωb, a prerequisite for
magnomechanical cooling of the phonon mode. We see that
for a nonspinning resonator (� = 0), the entanglement is in-
dependent of the driving directions, while for the spinning
one (� 	= 0), it changes by reversing the spinning direction.
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FIG. 3. (a) Magnon-photon-phonon entanglement Rmin vs the
Fizeau shift |�F /ωb| at �0/ωb = 0.5. The red (solid) and blue
(dashed) lines, respectively, represent a spinning CCW- and CW-
driven resonator. (b) The isolation factor χ as a function of the
detuning �0/ωb and Fizeau shift |�F /ωb|.

For example, when the maximum entanglement is found
for driving the CCW mode, almost no entanglement is ob-
served by driving the CW mode. For a better understanding,
in Fig. 2(b) we plot the effective magnon-phonon coupling
strength, for varied driving directions. We see that when
spinning the resonator, driving the CCW mode enhances the
effective magnomechanical coupling strength, while the same
gets suppressed by driving the CW mode. Note also that such
an observation essentially implies an underlying classical non-
reciprocity 〈m〉(CCW) 	= 〈m〉(CW). Thus the physics of such
nonreciprocal entanglement generation can be understood as
follows. In cavity meganomechanics, entanglement occurs
due to the magnetostrictive coupling between the magnon-
phonon mode, which gets partially transferred to the cavity
mode due to the strong magnon-photon interaction. Now,
in a spinning resonator different driving induces different
coupling amplitudes which along with an optimal detuning
condition results in a nonreciprocal formation of quantum
entanglement. In passing, we note that for a WGM resonator
with a fixed CW spinning direction, one would observe a
larger entanglement along the CW direction than the CCW
direction.

To further demonstrate the effect of spinning on the non-
reciprocal entanglement generation, in Fig. 3(a) we plot the
tripartite entanglement at a fixed detuning, against |�F /ωb|,
for two different driving directions. One can see that while
driving the CCW mode significantly enhances the entangle-
ment, driving the CW mode results in enormous suppression.
To quantitatively describe the nonreciprocal entanglement, we
introduce the isolation factor, defined as

χ = 10 log10
Rmin,�

Rmin,� . (10)

Quantum nonreciprocity is said to be achieved for Rmin,� 	=
Rmin,�, i.e., for χ 	= 0. Figure 3(b) depicts the isolation factor
χ as a function of the normalized cavity detuning �0/ωb

and the Fizeau shift |�F /ωb|. We see that for an optimal
choice of parameters, a large isolation of up to 20 dB could
be achieved. We note that, to the best of our knowledge, so
far such chiral control of quantum entanglement has been
reported involving either optical and mechanical modes [22]
or optical and microwave modes [60]. Achieving the same for

FIG. 4. (a) Cavity-magnon Eam
N and (b) cavity-phonon Eab

N entan-
glement against the Fizeau shift |�F /ωb|. The red (solid) and blue
(dashed) lines respectively represent the CCW- and CW-driven en-
tanglements. The drive detunings are optimally chosen as �0/ωb =
0.78 and �0/ωb = −0.108, respectively.

a more complicated three-party system could be an important
step forward in realizing chiral quantum networks.

Here, it is also intuitive to examine the other two available
forms of entanglements, namely the (driven) cavity-magnon
Eam

N and the (driven) cavity-phonon entanglement Eab
N . In

Fig. 4 we see that both these entanglements also inherit
nonreciprocity where driving the resonator from one (CCW)
direction significantly enhances the entanglement and driving
it from the other (CW) suppresses the entanglement. We also
note that the degree of entanglement between the cavity-
phonon modes is comparatively higher than the other two.
This makes our scheme an alternative route to create strong
nonreciprocal photon-phonon entanglement, apart from a cav-
ity optomechanics-based protocol [22].

Finally, we consider an alternative measure for the tri-
partite quantum entanglement as proposed by Teh and

FIG. 5. Tripartite entanglement between the magnon-photon-
phonon modes as measured by S with respect to the detuning
parameter �0/ωb. The blacked (dashed-dotted), red (solid), and blue
(dashed) lines respectively correspond to the nonspinning, CCW-
driven, and CW-driven WGM resonator. The parameters are kept the
same as in Fig. 2.
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Reid [71]. Here, the emergence of genuine tripartite en-
tanglement is confirmed by the violation of the following
inequality (S),

〈{
δ

[
x�,� − X + q√

2

]}2
〉

+
〈{

δ

[
y�,� + Y + p√

2

]}2
〉
� 2.

(11)

Notably, a tripartite state is said to be genuinely tripartite
entangled, if and only if the density operator of the combined
three-mode system cannot be represented in a biseparable
form. Furthermore, an advantage of using Eq. (11) is it does
not require a full estimation of the 8 × 8 CM, thus it is simpler
for experimental implications. Figure 5 shows that the in-
equality is fulfilled around �0 = 0.5ωb indicating the onset of
genuine tripartite entanglement between the cavity-magnon-
phonon modes. Driving the resonator from opposite directions
respectively results in a stronger and weaker violation of

Eq. (11), or in other words, an enhanced and suppressed
tripartite magnon-photon-phonon entanglement.

V. CONCLUSION

In conclusion, we have shown how to create nonreciprocal
entanglement in a cavity magnomechanical setup. Our scheme
relies on the Fizeau light-dragging effect, where spinning the
resonator causes a different frequency shift in the counter-
propagating modes in a WGM resonator. By placing a YIG
sphere inside such a resonator, we are able to show that one
can realize nonreciprocal entanglement between the cavity,
magnon, and phonon modes. Moreover, with the chosen pa-
rameter set, we report an isolation of 20 dB by driving the
resonator from opposite sides. Such nonreciprocal formation
has also been found in cavity-magnon and cavity-phonon
entanglements. Our work opens up possibilities for nonrecip-
rocal quantum control of tripartite entanglement which may
find applications in quantum information processing and chi-
ral quantum networking [72,73].
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