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Magnon squeezing by two-tone driving of a qubit in cavity-magnon-qubit systems
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We propose a scheme for preparing magnon squeezed states in a hybrid cavity-magnon-qubit system. The
system consists of a microwave cavity that simultaneously couples to a magnon mode of a macroscopic yttrium-
iron-garnet sphere via the magnetic-dipole interaction and to a transmon-type superconducting qubit via the
electric-dipole interaction. By far detuning from the magnon-qubit system, the microwave cavity is adiabatically
eliminated. The magnon mode and the qubit then get effectively coupled via the mediation of virtual photons of
the microwave cavity. We show that by driving the qubit with two microwave fields and by appropriately choosing
the drive frequencies and strengths, magnonic parametric amplification can be realized, which leads to magnon
quadrature squeezing with the noise below vacuum fluctuation. We provide optimal conditions for achieving
magnon squeezing, and moderate squeezing can be obtained using currently available parameters. The generated
squeezed states are of a magnon mode involving more than 1018 spins and thus macroscopic quantum states. This
work may find promising applications in quantum information processing and high-precision measurements
based on magnons and in the study of macroscopic quantum states.
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I. INTRODUCTION

With the increasing improvement of experimental tech-
nology, the study of macroscopic quantum states has been
attracting more and more attention since the Schrödinger’s cat
state was proposed [1]. In particular, cavity optomechanics
(COM), exploring the interaction between electromagnetic
fields and mechanical motion via radiation pressure, provides
an ideal platform to prepare macroscopic quantum states [2].
In the past decade, significant progress has been made in the
field of COM in generating macroscopic quantum states of
massive mechanical oscillators. These include the realization
of the entangled states of a mechanical oscillator and an elec-
tromagnetic field [3], the entangled states of two mechanical
oscillators [4–6], the squeezed states [7], and superposition
states [8,9] of mechanical motion, etc. In addition, nonclas-
sical states, e.g., superposition states [10], Fock states [11],
cat states [12], and entangled states [13,14], of macroscopic
mechanical resonators can also be generated by coupling to
and controlling the superconducting qubit.

In recent years, hybrid systems based on collective spin
excitations (magnons) in macroscopic ferromagnetic crys-
tals, such as yttrium iron garnet (YIG), have become a new
platform to explore macroscopic quantum phenomena and
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develop novel quantum technologies [15–17]. It was first pro-
posed in cavity magnomechanics [18–21] that macroscopic
entangled states of magnons, photons, and phonons can be
created by exploiting the dispersive magnetostrictive interac-
tion [19]. Such nonlinear magnomechanical coupling can also
be used to entangle two magnon modes [22], two mechanical
modes [23], and generate squeezed states of magnons and
phonons [24]. It can also be exploited to achieve Einstein-
Podolsky-Rosen steering between magnons, photons, and
phonons [25,26], and quantum ground states of mechanical
vibration [27–29]. Apart from utilizing the nonlinear mag-
netostriction, many other mechanisms have been put forward
in cavity magnonics to prepare macroscopic quantum states.
Specifically, the nonlinear magnon-photon interaction in cav-
ity optomagnonics is exploited to cool magnons [30], and
prepare magnon Fock [31], cat [32], and path-entangled [33]
states, as well as the entangled states of magnons and optical
photons [34,35]. Dissipative coupling between magnons and
microwave photons is used to generate a magnon-photon Bell
state [36]. Anisotropy, together with conditional measure-
ments on microwave cavity photons, is utilized to prepare a
magnon cat state [37]. Kerr-type nonlinearities are adopted
to entangle two magnon modes [38,39] and achieve one-way
quantum steering between ferrimagnetic microspheres [40].
Another approach is to use external quantum drives, e.g.,
single-mode or two-mode squeezed vacuum fields, which are
employed to entangle two magnon modes [41,42] and me-
chanical modes [43], and control one-way quantum steering
[44–46].
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The effective coupling of magnons with superconduct-
ing qubits via the mediation of microwave cavity photons
can also provide necessary nonlinearity to prepare quantum
states of magnons [15,16,47]. Due to the high controllability
and scalability of the superconducting circuits, studies on
the hybrid cavity-magnon-superconducting-qubit system have
been receiving increasing attention in recent years. Signif-
icant experimental progress has been made in this system.
Specifically, strong coupling between a magnon and a super-
conducting qubit and magnon-vacuum-induced Rabi splitting
were demonstrated [48]. Shortly afterwards, the quanta of a
magnon mode in a millimeter-sized YIG sphere were resolved
by using the magnon-qubit strong dispersive interaction [49].
Working in the same dispersive regime, high-sensitivity de-
tection of a single magnon in a YIG sphere with a quantum
efficiency of up to 0.71 was realized [50]. Very recently,
the superposition state of a single magnon and vacuum was
deterministically generated [51]. These successful experimen-
tal demonstrations have further stimulated the study on the
quantum states in such a hybrid system. A series of the-
oretical proposals have been provided to explore quantum
effects in the system, such as magnon blockade [52–57],
continuous-variable [58,59] and discrete-variable [60–64]
magnon entanglement and steering, magnon cat states [65,66],
and so on. All of these indicate that the magnon-qubit system
is a promising system to prepare various magnonic quantum
states via manipulating the qubit.

Here, we show how to generate magnon squeezed states
in such a cavity-magnon-qubit system. To date, only a few
protocols have been offered in cavity magnonics to prepare
magnon squeezed states. They can be achieved by exploiting
the anisotropy or nonlinearities of the ferromagnet [67,68],
the mechanism of the ponderomotivelike squeezing [69], the
reservoir-engineering technique [70], or the squeezed exter-
nal drive fields [24,71]. Our approach differs from all the
above mechanisms and is realized via two-tone driving of
the superconducting qubit. It is akin to that used to produce
squeezed light by two-tone driving of an atom [72]. The
system is operating in the regime where the microwave cavity
is far detuned from the magnon-qubit system and can thus be
adiabatically eliminated. The qubit is simultaneously driven
by two microwave fields. We show that by properly choosing
the drive frequencies and strengths, the effective parametric
amplification Hamiltonian can be obtained for the magnon
mode, which leads to a two-magnon process and thus the
squeezing of the magnon mode.

The paper is organized as follows. In Sec. II, we de-
scribe the system and derive the effective Hamiltonian for
the magnon mode, which gives rise to magnon quadrature
squeezing. In Sec. III, we present the numerical results of the
magnon squeezing, check the validity of our derived approxi-
mate model, provide the optimal drive conditions, and analyze
the dissipation and thermal noise effects on the squeezing.
Lastly, we draw the conclusions in Sec. IV.

II. THE SYSTEM AND EFFECTIVE HAMILTONIAN

The hybrid cavity-magnon-superconducting-qubit system,
as depicted in Fig. 1(a), consists of a YIG sphere (e.g., with a
diameter of 1 mm [51]) and a transmon-type superconducting

FIG. 1. (a) Schematic of the cavity-magnon-superconducting-
qubit system. A microwave cavity couples to both a magnon mode
of a macroscopic YIG sphere, which is placed in a uniform bias
magnetic field Bz (z direction), and a superconducting qubit, which
is driven by two microwave fields. The magnon mode and the qubit
get effectively coupled via the mediation of the microwave cavity.
(b) Frequency spectrum of the system. The cavity with frequency ω0

is far detuned from the magnon mode (ωm) and the qubit (ωq). The
effective qubit transition frequency ωQ is resonant with the drive field
at frequency ω1, but is detuned by δ1 and δ2, respectively, from the
effective magnon frequency ωM and the drive field at frequency ω2.

qubit that are placed inside a microwave cavity. The YIG
sphere supports a magnon mode (collective motion of a large
number of spins), which couples to the microwave cavity via
the magnetic-dipole interaction and the latter further couples
to the qubit via the electric-dipole interaction. The Hamilto-
nian of this tripartite system reads (h̄ = 1)

H = ω0a†a + 1
2ωqσz + ωmm†m

+ g1(aσ+ + a†σ−) + g2(am† + a†m), (1)

where a (a†) and m (m†) are the annihilation (creation)
operators of the microwave cavity and the magnon mode, re-
spectively, and ω0 and ωm are their resonance frequencies. We
limit the subspace of the transmon-type qubit to the ground
state |g〉 and the first-excited state |e〉, and the Pauli matrix
σz = |e〉〈e| − |g〉〈g|, and σ− = |g〉〈e| and σ+ = |e〉〈g| are the
ladder operators of the qubit with transition frequency ωq.
The coupling strengths g1 and g2 are of the cavity-qubit and
cavity-magnon systems, respectively.

For simplicity, we consider the situation where the qubit
and the magnon are resonant, ωq = ωm ≡ ω, and far detuned
from the microwave cavity, i.e., � = ω0 − ω � g1, g2. This
allows us to adiabatically eliminate the cavity mode and ob-
tain the effective Jaynes-Cummings-type Hamiltonian of the
magnon-qubit system [15], which is given by

Heff = 1
2ωQσz + ωMm†m + G(σ+m + σ−m†), (2)
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where ωQ = ω + g2
1

�
and ωM = ω + g2

2
�

correspond to the
effective frequencies of the qubit and the magnon mode, re-
spectively [cf. Fig. 1(b)], and G = g1g2

�
denotes the effective

magnon-qubit coupling. Such an effective Hamiltonian has
been adopted in the experiments [47–51].

We then apply two microwave fields to drive the qubit and
the drive frequencies are ω1 = ωQ and ω2, and the correspond-
ing driving strengths are �1 and �2. The Hamiltonian, in
the interaction picture with respect to ω1( 1

2σz + m†m), can be
written as

H1 = −δ1m†m + (Gσ+m + �1σ
+ + �2eiδ2tσ+ + H.c.),

(3)

where δ1 = ω1 − ωM and δ2 = ω1 − ω2. Without loss of gen-
erality, �1 and �2 are assumed to be real. To express the
physics more straightforwardly, we adopt the qubit repre-
sentation dressed by the drive field (of frequency ω1). By
diagonalizing the driving Hamiltonian V1 = �1(σ+ + σ−),
the dressed states are expressed as

|+〉 = 1√
2

(|e〉 + |g〉),

|−〉 = 1√
2

(|e〉 − |g〉). (4)

Rewriting the Hamiltonian H1 in terms of the dressed states,
we obtain

H2 = − δ1m†m + �1(σ++ − σ−−)

+ 1
2 [(Gm + �2eiδ2t )(σ++−σ+−+σ−+−σ−−)

+ (Gm† + �2e−iδ2t )(σ++−σ−++σ+−−σ−−)], (5)

where we define σ jk = | j〉〈k| ( j, k = +,−). Working in the
interaction picture with respect to −δ1m†m + �1(σ++ − σ−−)
and taking �1 = − 1

2δ2, the Hamiltonian becomes

H3 = 1
2 Gm[(σ++−σ−−)eiδ1t − σ+−e−i(δ2−δ1 )t + σ−+ei(δ2+δ1 )t ]

+ 1
2�2[(σ++−σ−−)eiδ2t − σ+− + σ−+ei2δ2t ] + H.c.

(6)

Under the conditions of |δ2| � G
2 , �2

2 , |δ1|, we can take the
rotating-wave approximation and obtain the following Hamil-
tonian,

H4 = 1
2 G(meiδ1t+m†e−iδ1t )(σ++−σ−−)− 1

2�2(σ+−+σ−+).

(7)

The second term V2 = − 1
2�2(σ+− + σ−+) corresponds to the

driving Hamiltonian associated with the second drive for
the qubit. By diagonalizing V2, we find that its eigenstates
(|+〉 ± |−〉)/

√
2 are exactly the bare qubit states |e〉 and |g〉.

Therefore, the Hamiltonian (7) can be expressed in the initial
qubit-state basis {|e〉, |g〉} as

H5 = − 1
2�2σz + 1

2 G(meiδ1t + m†e−iδ1t )(σ+ + σ−). (8)

The Hamiltonian above in the interaction picture with respect
to − 1

2�2σz then becomes

H6 = 1
2 Gm[σ+ei(δ1−�2 )t + σ−ei(δ1+�2 )t ] + H.c. (9)

Note that for |δ1| � �2, δ1 − �2 < 0 and δ1 + �2 > 0. Ac-
cording to the effective Hamiltonian theory [73], when the

condition |δ1 ± �2| � G
2 is satisfied, the effective Hamilto-

nian is given by

Heff = −iH6(t )
∫

H6(t ′)dt ′. (10)

Substituting Eq. (9) into Eq. (10) and ignoring the fast oscilla-
tion terms, we can obtain the following effective Hamiltonian,

H7 = G2

4

[
1

δ1−�2
(m†mσz+σ+σ−)

+ 1

δ1+�2
(−m†mσz + σ−σ+)

+ 1

�2
m2σze

i2δ1t + 1

�2
m†2σze

−i2δ1t

]
. (11)

For the case of the qubit being initially prepared in the state
|e〉 (similarly, for the ground state |g〉), we obtain the para-
metric amplification Hamiltonian for the magnon mode in the
interaction picture, i.e.,

H8 = χ

[
m2e

i
(

2δ1− �2G2

(δ2
1−�2

2 )

)
t + m†2e

−i
(

2δ1− �2G2

(δ2
1−�2

2 )

)
t

]
, (12)

where χ = G2/(4�2). This Hamiltonian describes a two-
magnon process and can generate a magnon squeezed vacuum
state. The squeezing direction in the phase space rotates due
to the time dependence of the Hamiltonian. By appropriately
choosing the parameters to have δ1 = �2G2

2(δ2
1−�2

2 )
, i.e., 2��2= −

g2
1g2

2/(g2
1−g2

2), the Hamiltonian (12) can be time independent,
which yields the normal parametric amplification Hamiltonian
of χ (m2 + m†2).

III. RESULTS OF MAGNON QUADRATURE SQUEEZING

In Sec. II, we prove analytically that our mechanism can
generate squeezing of the magnon mode and the derivation is
performed without considering any dissipation of the system.
In this section, we present the numerical results of the magnon
squeezing by including dissipations of the system and using
experimentally feasible parameters. We calculate the magnon
squeezing by using the effective Hamiltonian (12), and com-
pare it with that obtained using the original (full) Hamiltonian
(3), where no approximation is made. This allows us to check
the validity of our model and determine the parameter regime
where the effective Hamiltonian is a good approximation.

The squeezing denotes that the variance of the general
quadrature of the magnon mode, X = cos θX1 + sin θX2, is
below that of the vacuum noise, where X1 = (m + m†)/

√
2

and X2 = i(m† − m)/
√

2 are the magnon amplitude and phase
quadratures. In fact, the minimum variance of the quadrature
X , i.e., Vmin(X ), can be obtained analytically using the time-
independent parametric amplification Hamiltonian (12) under
precisely chosen parameters. Here, to be generic, we calcu-
late the variance using the time-dependent Hamiltonian (12).
The time dependence leads to the time-dependent optimal
squeezing angle θopt, corresponding to the minimum variance
and thus the maximum squeezing. However, Vmin(X ) can still
be achieved by computing the minimum eigenvalue of the
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FIG. 2. Minimum variance Vmin(X ) of the magnon quadrature
as a function of time t for (a) �1 = 10�2 = 102G and (b) �1 =
10�2 = 50G. See text for the other parameters.

covariance matrix (CM) σ of the two magnon quadratures
X1,2, i.e.,

Vmin(X ) = min{eig[σ ]}. (13)

The CM σ is defined as

σ =
(

σ11 σ12

σ21 σ22

)
, (14)

where σ jk = Tr[ρ(XjXk + XkXj )/2] − Tr[ρXj]Tr[ρXk]
( j, k = 1, 2), and ρ ≡ ρ(t ) is the density matrix of the
system at time t . The optimal squeezing angle θopt can be
obtained from the CM σ , which is θopt = 1

2 arctan 2σ12
σ11−σ22

− π
2 .

In Fig. 2(a), we plot the minimum variance Vmin(X ) as a
function of time t , where the solid (dashed) line corresponds
to the result obtained using the full (effective) Hamilto-
nian (3) [(12)]. We use experimentally feasible parameters
[48–51]: ω0/2π = 7.5 GHz, ω/2π = 7.2 GHz, g1/2π =
36 MHz, g2/2π = 36.6 MHz (corresponding to G = g1g2

�
=

2π × 4.4 MHz), and �1 = 10�2 = 102G. We assume that the
qubit is initially in the excited state |e〉 and the magnon mode
is in the vacuum state, which is the case of low bath temper-
ature, e.g., of tens of mK. Clearly, magnon squeezed states
can be achieved and the two results [using the Hamiltonians
(3) and (12)] agree well with each other, indicating that our
derived effective Hamiltonian is a very good approximation.
In Fig. 2(b), a smaller value of �2 = 5G is used, which just
satisfies the condition |�2| � G

2 for deriving the Hamiltonian

FIG. 3. (a) Minimum variance Vmin(X ) of the magnon quadrature
vs t with κ/2π = 1 MHz and γ /2π = 20 kHz for �1 = 10�2 =
102G (blue dashed line) and for �1 = 10�2 = 50G (orange solid
line). (b) Wigner function of the magnon mode corresponding to the
orange line in (a) at t = 300 ns. The other parameters are the same
as in Fig. 2.

(12). The deviation of the two curves becomes larger espe-
cially for a longer evolution time. Nevertheless, the effective
Hamiltonian is still a good approximation once the conditions
listed in Sec. II are fulfilled.

Figure 2 is obtained without considering any dissipation of
the system. Therefore, the variance Vmin(X ) → 0 when t →
∞. In what follows, we analyze the effect of the magnon and
qubit dissipations on the degree of the squeezing. We adopt
the Lindblad master equation [74,75]

d

dt
ρ = − i[H, ρ] + κ (n̄m + 1)Lmρ + κ n̄mLm†ρ

+ γ (n̄q + 1)Lσ−ρ + γ n̄qLσ+ρ, (15)

where

Loρ = (
oρo† − 1

2 o†oρ − 1
2ρo†o

)
(16)

represents the Lindblad term for an arbitrary operator o (o =
m, m†, σ−, σ+). κ (γ ) is the dissipation rate of the magnon
mode (the qubit), n̄m (n̄q) is the mean thermal occupation num-
ber, and n̄ j � [exp(h̄ω/kBT ) − 1]−1 ( j = m, q) with T being
the bath temperature. In Fig. 3(a), Vmin(X ) is plotted with the
dissipation rates κ/2π = 1 MHz and γ /2π = 20 kHz and at
temperature T = 10 mK [51] for two sets of drive conditions,
which correspond to those used in Figs. 2(a) and 2(b), re-
spectively. Compared with the no-dissipation case of Fig. 2,
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FIG. 4. The degree of squeezing S (dB) vs driving strength �2

for different values of �1. The inset shows S (dB) vs �1 for a fixed
�2 = 3G. The other parameters are the same as in Fig. 3.

it is evident that the dissipations can significantly reduce the
degree of the squeezing. Moreover, there is an optimal time for
achieving the maximum squeezing, after which more noises
enter the system through the dissipation channels and degrade
the squeezing. To vividly show the magnon squeezing, we
plot the Wigner function of the magnon mode in Fig. 3(b),
corresponding to the point at t = 300 ns in the orange curve
of Fig. 3(a) and the minimum variance of 0.31.

We now analyze the optimal drive conditions for obtain-
ing the magnon squeezing. Summarizing the conditions used
for deriving the desired parametric amplification Hamiltonian
(12), we have |δ2| = 2�1 � �2

2 � G
4 . Once the frequency

of the second drive is determined (i.e., δ2 and �1 = |δ2|
2 are

fixed), it puts an upper limit on the driving strength �2 to
get the optimal squeezing. A smaller �2 is preferred since
the degree of squeezing is proportional to χ = G2

4�2
. How-

ever, �2 cannot be too small because of the lower limit of
�2 � G

2 . This further sets an upper limit on the maximum
squeezing that can be achieved in our protocol since χ � G

2 .
The presence of an optimal �2 is confirmed by Fig. 4, in
which we have evaluated the degree of squeezing in units
of dB, which is defined as S = −10 log10[Vmin(X )/Vvac(X )],
where Vvac(X ) = 1

2 corresponds to the vacuum fluctuation,
and Vmin(X ) is obtained at the optimal time and at temperature
T = 10 mK. The dissipation rates considered in Fig. 4 are the
same as in Fig. 3.

In the inset of Fig. 4, we plot the degree of squeezing versus
�1 for a fixed �2 = 3G. It shows that there is also an optimal
driving strength �1. This is because, on the one hand, the
driving strength must be strong enough to satisfy �1 � �2

4 ,
while on the other hand, it cannot be too strong as a large
�1 corresponds to a large detuning |δ2| = 2�1, which reduces
the drive efficiency associated with the second drive and thus
the degree of squeezing. It should be noted that the drive
frequencies ω1,2 are determined by ωQ and �1, so according to
Fig. 4, the optimal drive frequencies can also be determined.

The squeezing is robust against dissipations of the system
and bath temperature, as shown in Fig. 5. We plot in Fig. 5(a)
the degree of squeezing S (dB) versus two dissipation rates κ

and γ at low temperature T = 10 mK. Clearly, the squeezing
is present for a wide range of both κ and γ . In Fig. 5(b), we

FIG. 5. The degree of squeezing S (dB) vs (a) magnon and
qubit dissipation rates κ and γ at T = 10 mK; (b) temperature T
for κ/2π = 1 MHz and γ /2π = 20 kHz. We take �1 = 10G and
�2 = 3G. The other parameters are the same as in Fig. 2.

plot S vs T for κ/2π = 1 MHz and γ /2π = 20 kHz [51]. It
shows that the squeezing is still present for the temperature up
to ∼330 mK.

IV. CONCLUSIONS

We present a scheme for preparing magnon squeezed states
in a hybrid cavity-magnon-qubit system. The qubit is simulta-
neously driven by two microwave fields. By properly selecting
the drive frequencies and strengths, an effective parametric
amplification Hamiltonian is obtained for the magnon mode,
which yields magnon quadrature squeezing. We provide the
optimal drive conditions and analyze the validity of the model.
The magnon squeezing is robust against dissipations and bath
temperature, and the numerical results indicate that moderate
squeezing can be achieved using fully realistic parameters
from recent experiments [48–51]. The squeezed state, with the
noise below vacuum fluctuation, is of a magnon mode consist-
ing of more than 1018 spins for a 1-mm-diameter YIG sphere
and thus represents a macroscopic quantum state. This work
may find potential applications in the study of macroscopic
quantum phenomena, as well as in high-precision measure-
ments based on magnons.
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