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Electromagnetically induced transparency in many-emitter waveguide quantum electrodynamics:
Linear versus nonlinear waveguide dispersions
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We study single-photon-induced electromagnetically induced transparency (EIT) in many-emitter waveguide
quantum electrodynamics (wQED) with linear, nonlinear, and quasilinear waveguide dispersion relations. In the
single-emitter problem, in addition to the robustness of the EIT spectral features in the overcoupled regime of
wQED, we find that the nonlinear dispersion results in the appearance of a side peak for frequencies smaller
than the resonant EIT frequency, which turns into a plateau as the nonlinearity is reduced. The quasilinear case
produces a similar spectrum to the purely linear scenario with a small observable difference in the far-detuned
regime. Consequently, for many-emitter scenarios, our results indicate the formation of band structure for purely
linear cases, which, for smaller values of nonlinearity, leads to a narrow band-gap-like structure compared to the
corresponding linear and quasilinear dispersion cases. Long-distance quantum networking aided with quantum
memories can serve as one of the targeted applications of this work.
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I. INTRODUCTION

Electromagnetically induced transparency or EIT is a co-
herent optical phenomenon where, under the right conditions
of resonant transitions and atomic decay rates, a weak probe
light beam, in the presence of a strong pump field, can
pass through a three-level atomic medium with 100% trans-
mission rate [1,2]. In addition to providing this remarkable
transparency feature, EIT also allows the manipulation of
dispersion properties of the probe field, leading to fascinating
effects such as slow, stopped, and fast light [3–5]. These two
features combined, EIT in the last two decades has witnessed
a range of applications from quantum information storage
[6,7] to magnetometry [8] to the development of more precise
atomic clocks [9].

In this work, we study EIT in waveguide quantum elec-
trodynamics or wQED: quantum emitters (natural or artificial
atoms, quantum dots, or qubits) coupled to optical fields
guided by one-dimensional (1D) bosonic fibers or waveguides
[10–12]. In its simplest setting, a wQED setup consists of a
single two-level quantum emitter coupled with a bidirectional
waveguide with linear dispersive properties [13]. However,
for EIT’s observation, one must utilize a three-level quantum
emitter in which two atomic transitions, initiated from two dif-
ferent energy levels, are guided to a common final state [14].

To date, the literature on the topic of EIT in wQED has
remained limited to either the case in which a chain of three-
level atoms coupled to a waveguide with linear dispersion
[14–16] or to a single three-level atom coupled to a nonlinear
waveguide [17,18]. Relevant to this are also the studies in
which single or many but two-level quantum emitters inter-
act with a nonlinear dispersive waveguide [19–23] or strong
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interaction at the few-photon level has been established in a
waveguide with a nonlinear medium [24,25]. However, none
of the previous works studied EIT in the case of an array of
three-level emitters coupled to a 1D waveguide with nonlinear
and quasilinear dispersion relations. In this paper, we address
this problem, keeping in view the rich many-body physics of a
one-dimensional periodic lattice of quantum emitters coupled
to guided photonic modes [26–28].

As for some key results, we find that, for single-emitter
problems, the nonlinear dispersion relation can result in an
additional side peak at smaller frequencies (compared to the
EIT peak frequency), which forms the shape of a trans-
mission plateau for weaker nonlinear dispersion relations.
The quasilinear case shows spectral features similar to the
purely linear case for the single quantum emitter problem.
For many-emitter lattices, we utilized the transfer matrices
framework [29,30]. Therein, we observe that due to quantum
interference, the photon transmission properties exhibit band
structure for linear dispersion whose gap tends to elevate with
reduced nonlinear dispersion. The quasilinear dispersion ex-
hibited band gap behavior more similar to the nonlinear case.
Our results indicate that the nonlinear and quasilinear disper-
sion of the waveguide allows novel ways of controlling the
single-photon propagation in three-level wQED chains with
potential applications in long-distance quantum networking
and communications [31].

The paper is structured as follows. In Sec. II, we begin by
recapping the problem of single-photon transport through a
three-level wQED setup with linear dispersion [14,32]. Next,
in Sec. III, we examine the same problem for nonlinear disper-
sive waveguides. We devote Sec. IV to discussing quasilinear
dispersion (where both linear and quadratic nonlinear disper-
sion can coexist) and in Sec. V we discuss the novel problem
of periodic chains of three-level quantum emitters while com-
paring the transmission spectra and dispersion curves for the
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FIG. 1. (a) Setup: A bidirectional waveguide with linear, nonlinear, or quasilinear dispersion is side coupled to a chain of three-level
quantum emitters, with left (right) emitter-waveguide coupling strength VL j (VR j ) for the jth quantum emitter (1 � j � N). For simplicity,
throughout this work, we will assume a symmetric coupling case in which VL j = VR j = V . Each quantum emitter is excited by a pump
field and an incoming single photon. (b) Energy-level diagram of the three-level quantum emitter: Emitter-waveguide coupling drives the
transition |1〉 ←→ |2〉 with coupling strength V while the transition |2〉 ←→ |3〉 is driven by a strong pump field with Rabi frequency � and
detuning �. � has been exaggerated for visual clarity. The decay rates are γ2 and γ3 from the states |2〉 and |3〉, respectively. (c) Nonlinear
waveguide model: Waveguide here consists of a 1D array of coupled resonators with an identical frequency ωc and a photon hopping rate J
between two consecutive resonators. Under the tight-binding approximation, such a setup is known to offer a cosine-like nonlinear dispersion.
(d) Approximations of the nonlinear dispersion: Quadratic and linear approximations of a cosine dispersion relation are shown. For simplicity,
the lattice constant has been set equal to unity.

linear, nonlinear, and quasilinear cases. Finally, we close with
the main conclusions in Sec. VI.

II. LINEAR DISPERSION CASE: SINGLE QUANTUM
EMITTER PROBLEM

As shown in Fig. 1(a), the Hamiltonian for the system
under study can be decomposed into three pieces

Ĥ = ĤW + ĤQE + ĤI , (1)

where ĤW , ĤQE , and ĤI represent the free waveguide, free
three-level quantum emitter, and interaction Hamiltonian, re-
spectively. We first focus on our three-level �-type quantum
emitter Hamiltonian [33]. As mentioned in Fig. 1(b), the
quantum emitter Hamiltonian ĤQE can be expressed as (with
h̄ = 1)

ĤQE = ω̃2|2〉〈2| + ω̃3|3〉〈3| + �

2
(|3〉〈2| + H.c.), (2)

where we adopt a short notation in which ω̃2 ≡ ω2 − iγ2

2 ,
ω̃3 ≡ ω2 − � − iγ3

2 , and H.c. abbreviates the Hermitian con-
jugate of the first term in the parentheses. In the real-space
formalism of quantum optics [34,35], the waveguide Hamilto-
nian in the linear dispersion regime takes the following form:

Ĥ(l )
W = ivg

∫
(ĉ†

L∂xĉL − ĉ†
R∂xĉR)dx, (3)

with vg being the group velocity of the photon in the waveg-
uide. Finally, under the rotating wave approximation, we write
the interaction Hamiltonian in the following fashion:

ĤI =
∑

d=L,R

∫
δ(x)V (ĉ†

d (x)|1〉〈2| + H.c.)dx. (4)

Here d = L (R) represents left (right) propagating photons
in the waveguide and ĉd represents annihilation operators
for the dth direction. The real-valued parameter V quantifies
the emitter-waveguide interaction strength for the transition
|1〉 ←→ |2〉 with the Dirac delta function specifying the

location of the quantum emitter. Next, in the single excitation
sector of the Hilbert space, we write the quantum state of the
system as

|	〉 =
⎡⎣ ∑

d=L,R

∫
ϕd (x)ĉ†

d dx +
∑
j=2,3

e j | j〉〈1|
⎤⎦|∅〉, (5)

where |∅〉 represents the ground state of the system (i.e.,
quantum emitter being unexcited and no photons in the
waveguide). By inserting Eqs. (1) and (5) into the time-
independent Schrödinger equation Ĥ|	〉 = h̄ω|	〉 we arrive
at the following coupled equations for the amplitudes:

−ivgϕR(x) + Ve2δ(x) = ωϕR(x), (6a)

ivgϕL(x) + Ve2δ(x) = ωϕL(x), (6b)

VRϕR(0) + V ϕL(0) + �

2
e3 = (ω − ω̃2)e2, (6c)

�

2
e2 = (ω − ω̃3)e3, (6d)

where h̄ω is the energy of the photon incident from the
left end of the waveguide. Our aim now is to calculate the
single-photon transmission and reflection probabilities, and
for that we assume the left and right field amplitudes obey
the following ansatzes:

ϕR(x) = eikx�(−x) + teikx�(x), (7a)

ϕL(x) = re−ikx�(−x). (7b)

Here t and r are the transmission and reflection coefficients
related to the transmission and reflection probabilities through
|t |2 = T and |r|2 = R. With this the amplitude equations for
ϕR/L(x) becomes

ivg(1 − t ) + Ve2 = 0, (8a)

−ivgr + Ve2 = 0, (8b)

V

2
(t + 1) + V

2
r + �

2
e3 = (ω − ω̃2)e2. (8c)
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FIG. 2. Single-photon T and R probability as a function of frequency ω for the single quantum emitter (N = 1) problem in the (a) linear
dispersion case with critical coupling regime � = γ2, undercoupled regime � = γ2/2, and overcoupled regime � = 4γ2. (b) Nonlinear case.
In all curves, we selected an overcoupled regime, which, for the nonlinear case, means V = √

0.2ω2 and varied values of J . (c) The derivative
of T with respect to photon frequency ω is used to examine the dependence of transmission around ω = ω2/4 region in the nonlinear case on
different values of J . The inset plot curves show the magnified version of ∂ωT in the region 0 � ω � ω2/2 again for different J values. The
common parameters used in all plots are � = 0.2ω2, γ2 = 0.1ω2, γ3 = 0, and � = 0.

The solution of this set of coupled equations yields the trans-
mission and reflection amplitudes for the linear (l) waveguide
dispersion case as given by

t (l ) = (ω − ω̃3)(ω − ω̃2) − �2/4

(ω − ω̃3)[(ω − ω̃2) + i�/2] − �2/4
, (9)

r (l ) = −i�/2(ω − ω̃3)

(ω − ω̃3)[(ω − ω̃2) + i�/2] − �2/4
, (10)

with � ≡ 2V 2

vg
being the emitter-waveguide coupling rate.

From this point onward, we will work in a unit system where,
for the sake of simplicity, the speed of light (either group or
phase velocity) has been set equal to 1. We point out that
these results were already reported for the single three-level
quantum emitter problem by Witthaut et al. and Mirza et al.
[14,17,32].

In Fig. 2(a) we plot the T (ω) and R(ω) for the linear disper-
sion case. By selecting the experimentally feasible parameters
inspired from Ref. [32] we consider three cases based on how
emitter-waveguide coupling rate � compares with the decay
rate γ2. We find that, in the overcoupled case (solid blue
curve), T exhibits closest to the perfect EIT pattern where the
maximum transmission occurs at ω = ω2 and the linewidth of
the transparency window is controlled by the Rabi frequency
�. The emitter-waveguide coupling parameter � can also
manipulate the shallowness and width of the two side peaks
occurring at ω = ±�/2 under � = 0 and γ3 = 0 conditions.
These side peaks originate from the reflection and, therefore,
the interference of photons. Finally, we indicate that in the
overcoupling regime, four points exist where T and R curves
intersect, allowing the preparation of single-photon quantum
superposition states of transmission and reflection (see, for
instance, Refs. [13,28] for a similar behavior for the two-level
quantum emitter wQED).

III. NONLINEAR DISPERSION CASE: SINGLE
QUANTUM EMITTER PROBLEM

We now turn our attention to the corresponding nonlinear
dispersion regime for the single quantum emitter case. To this
end, we consider a waveguide model consisting of a one-
dimensional array of coupled Fabry-Perót cavities [as shown
in Fig. 1(c)]. Under the tight-binding approximation, such a

model is known to generate a cosine dispersion relation of the
form ω(k) = ωJ − 2J cos(kL) [19,36] [see Fig. 1(d)], where
ωJ represents the average ωk value in the cosine curve. As
derived in the Appendix, in comparison to the linear case,
we describe the free waveguide Hamiltonian in Eq. (3) in the
nonlinear (nl) case as

Ĥ(nl )
W = −2J

∑
d=L,R

∫
ĉ†

d (x)

⎛⎝ ∞∑
j=0

∂
2 j
x

(2 j)!

⎞⎠ĉd (x)dx, (11)

where we set ωJ = 0. As discussed by Zhou et al. [19] and
others (see, for example, Ref. [23]), under the low-energy
limit, i.e., when the wavelength λ 	 L, such a cosine dis-
persion is known to produce a quadratic dependence of the
form ω(k) ∼ Jk2 (here k is treated dimensionless). Whereas,
at the so-called matching condition of λ = 4L, the same dis-
persion can also offer linear dispersion with ω(k) ∼ −2Jk.
This section restricts our discussion to the low-energy regime,
where the dispersion relation will be purely quadratic. A
more general treatment of quasilinear dispersion [37] (where
linear and quadratic terms coexist) is presented in Sec. IV.
Thus, proceeding further, we truncate the cosine dispersion
to the quadratic level [as shown in Fig. 1(d)]. Following the
same calculations, we arrive at four coupled equations. Only
Eqs. (6a) and (6b) change and take the new form as

−J∂2
x ϕd (x) + Ve2δ(x) = ωϕd (x). (12)

We note that the prefactors of ivg appearing in the linear
case with opposite signs for the left and right directions
[see Eqs. (6a) and (6b)] have now been swapped with the
second-order derivative term times the hopping rate with the
same negative sign for both d = L and d = R. Next, we
integrate the above equation over the interval [0 − ε, 0 + ε]
with ε being a small positive number. This yields the follow-
ing jump condition on the derivative of ϕd (x):

J
[
∂xϕd (x)

∣∣x=+ε

x=−ε

]
= Ve2, ∀d = L, R.

Next, we use the ansatz mentioned in Eq. (7). We thus arrive
at the following set of equations in terms of t and r as

−iJk(t − 1) + Ve2 = 0, and − iJkr + VLe2 = 0. (13)
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Solving for the transmission and reflection coefficients in the
nonlinear (nl) regime yields

t (nl ) = k[(ω − ω̃2)(ω − ω̃3) − �2/4]

(ω − ω̃3)[k(ω − ω̃2) + iV 2/J] − k�2/4
, (14a)

r (nl ) = iV 2(ω − ω̃3)/J

(ω − ω̃3)[k(ω − ω̃2) + iV 2/J] − k�2/4
, (14b)

where for the nonlinear case k = √
2 + ω/J [note that the

positive momentum (or h̄k) values are selected for the sake
of simplicity]. In Fig. 2(b), we plot the transmission T and
reflection R probability as a function of ω for the nonlinear
problem under the overcoupling regime. We find that the
overall T shape remains intact, indicating the robustness of
EIT in the overcoupling regime. Second, as we decrease the
nonlinearity (J value), a side peak emerges around the ω ∼
ω2/4 point. Interestingly, this peak forms an almost plateau
shape as we approach the nonlinearity value of J = 0.05ω2.
As shown in Fig. 2(c), the behavior of this plateau can be
analyzed by considering the derivative ∂ωT (a mathematical
expression not reported here due to complexity). We find that,
around ω = ω2/4, this derivative function remains nonposi-
tive for higher values of J (see, for example, the blue solid
curve corresponding to J = 0.25ω2). However, as we begin to
decrease the value of J and consider the cases of J = 0.1ω2 or
J = 0.05ω2, the slope of T (ω) changes sign around ω = ω2/4
which provides numerical evidence of the dependence of this
additional peak formation on the J value. At this point, we
would like to highlight that this low-frequency spectral feature
is peculiar to the nonlinear case (with no counterpart in the lin-
ear case) and can be used to manipulate the photon transport
properties in novel ways without disturbing the advantages of
the EIT spectrum.

IV. QUASILINEAR DISPERSION REGIME

The presence of a purely quadratic dispersion considered
in the previous section may only be present in the low-energy
approximation of the special cosine dispersion encountered in
a coupled cavity array model of the waveguide [19,23,36]. In a
general situation (discussed in this section), a photon launched
into a waveguide with momentum k0 would experience a
dispersion of the form

ω(k) = ω(k0) + (k − k0)
∂ω

∂k

∣∣∣∣∣
k=k0

+ 1

2!
(k − k0)2 ∂2ω

∂k2

∣∣∣∣∣
k=k0

+ · · · . (15)

By calling ∂ω
∂k |k=k0

= vg and ∂2ω
∂k2 |k=k0

= ξ , in the following we
work under the assumption |ξ/vg| < 1 (with L = 1) which
allows us to truncate the aforementioned Taylor expansion at
the quadratic level. Furthermore, we set k0 and ω(k0) as the
reference wave number or momentum and angular frequency.
We thus arrive at the following quasilinear (ql) dispersion
relation [37]:

ω(k) ≈ ηvgk + 1
2ξk2, (16)

where η = {−1, 1} depending on the left and right directions
in the waveguide. Such a dispersion relation produces the
following modified bidirectional waveguide Hamiltonian as
compared to the linear case

Ĥ(ql )
W =

∫ (
ĉ†

L(x)

[
ivg∂x − 1

2
ξ∂2

x

]
ĉL(x)

− ĉ†
R(x)

[
ivg∂x + 1

2
ξ∂2

x

]
ĉR

)
dx. (17)

Following the same lines of calculations as before, we
obtain the transmission and reflection coefficients for the
quasilinear case as

t (ql ) = [(ω − ω̃2)(ω − ω̃3) − �2/4]̃k

[(ω − ω̃2)(ω − ω̃3) − �2/4]̃k + 2iV 2(ω − ω̃3)
,

(18a)

r (ql ) = −2iV 2(ω − ω̃3)

[(ω − ω̃2)(ω − ω̃3) − �2/4]̃k + 2iV 2(ω − ω̃3)
,

(18b)

where k̃ ≡ (kξ + 2vg) which has the units of frequency (as k
is dimensionless).

V. EXTENSION TO MANY-EMITTER
CASE: PHOTONIC BANDS

We now extend our single quantum emitter setup to the
scenario in which a periodic chain of identical three-level
quantum emitters is coupled with bidirectional waveguide
fields. For the single photon problem, it is well known that
t and r coefficients between consecutive atoms can be ad-
equately linked in terms of transfer matrices [30]. Such a
transfer matrix consists of two parts, namely, a part repre-
senting the response of a quantum emitter (MQE ) and a part
showing the free propagation of the photon in the waveguide
between two consecutive atoms (MF ). Under time-reversal
symmetry restrictions MQE and MF can be generically written
as [19,30]

MQE =
[

1/t∗ −r∗/t∗
−r/t 1/t

]
, and MF =

[
eikL 0
0 e−ikL

]
,

(19)

where t and r can be transmission and reflection coeffi-
cients for linear k = ω/vg or nonlinear k = √

2 + ω/J or k̃ ≡
(kξ + 2vg) for quasilinear problems. The free propagation
introduces time delays in the problem necessary to distin-
guish between Markovian and non-Markovian regimes of
wQED [38]. Moving forward, we concentrate on the Marko-
vian regime and divide the many quantum emitter problem
into N segments or blocks where each block consists of a
single quantum emitter and a free propagating region lead-
ing to the form of the transfer matrix of a single block
as MB = MQE × MF .

For a chain of identical quantum emitters, by applying
Chebyshev’s identity [39], we can arrive at an expression for
the net transmission TN for the resonant mode q under the
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FIG. 3. Single-photon transport properties for a periodic chain
consisting of (a) one, (b) two, (c) five, and (d) ten identical quan-
tum emitters coupled with the bidirectional waveguide. Linear (solid
orange curve), nonlinear or quadratic (dashed purple curve), and
quasilinear regime (dotted-dashed magenta curve) are plotted for
comparison in each plot. In all plots, we select an overcoupling
regime with � = 4γ2 in the linear case, a weak nonlinearity of J =
0.05ω2 in the nonlinear case, and ξ = vg/4 for the quasilinear case.
Both in nonlinear and quasilinear cases, V = √

0.2ω2 is selected. The
lattice constant L is set equal to unity. The rest of the parameters are
the same as in Fig. 2.

no-loss scenario as

TN =
(

1 + |r2|
|t2|

sin2(NqL)

sin2(qL)

)−1

. (20)

In Fig. 3, we plot the net TN (ω) for a chain of up to N = 10
quantum emitters coupled with a waveguide with linear, non-
linear dispersion, and quasilinear dispersion. In all plots, we
observe the robustness of EIT in the overcoupling regime.
For the single quantum emitter problem, we observe that the
quasilinear dispersion produces a transmission behavior very
similar to the linear case with the slight departure of the
trend observed in the detuned regime [for instance, around
ω = 1.5ω2 point in Fig. 3(a)].

For a large number of quantum emitters, we find the
formation of photonic bands most visible in the linear dis-
persion case. In the multiemitter nonlinear case, we observe
the emergence of a pattern consisting of consecutive peaks,
which seems to indicate the partial formation of bands due
to interference. The difference between the purely linear
and nonlinear dispersion cases is most pronounced around
ω ∼ 0.25ω2 and 1.25ω2 � ω � 2ω2 regions for the N = 10
emitter chain. It is known that such bands are formed due
to interference between transmitted and reflected amplitudes
from each quantum emitter boundary, which for a large quan-
tum emitter number reduces to a sharper frequency combs
pattern with applications in atomic clocks, spectroscopy, and
metrology [40]. As the number of quantum emitters increases,
the quasilinear case begins to exhibit spectral features dis-
parate from the purely linear or purely nonlinear or quadratic
case. For example, similar to the linear case, T (ql ) takes higher
values as we move away from the resonance (ω = ω2). Still,

unlike the linear case, besides a null transmission region
around the EIT peak, T (ql ) fails to form distinct band gaps
for detuned frequencies.

Next, to examine the photon’s dispersion characteristics,
we consider an infinitely long quantum emitter chain with
lattice constant L. Applying the Bloch theorem [41] with K
being the Bloch vector we obtain

cos(KL) = 1

2
tr{MB} = Re

[
e−ikL

t

]
. (21)

Inserting the transmission coefficients t (l ) and t (nl ) in the last
equation, we arrive at the following dispersion relations for
linear and nonlinear cases as

(l ) : cos(KL) = cos(kL) + sin(kL)

{
�δ3

2�2

}
, (22a)

(nl ) : cos(KL) = cos(kL) + sin(kL)

{
V 2δ3

�2kJ

}
, (22b)

where �2 = δ2δ3 − �2/4 with δ j = ω − ω j , ∀ j = 2, 3. The
expression of the dispersion relation for the quasilinear case
turns out to be mathematically involved and thus not reported
here. In Fig. 4, we plot the dispersion curves for the linear,
nonlinear, and quasilinear cases. For simplicity, we select
γ2 = γ3 = 0 in all plots and J = 0.05ω2 for the nonlinear
case. Furthermore, we chose L to be much smaller than the
characteristic wavelength λ0 (corresponding to the transition
|1〉 ←→ |2〉) to make the forbidden bands more visible. As
one of the main results, we observe that nonlinearity can be
used to drastically control the forbidden bands’ width. For
instance, a weak nonlinearity of J = 0.05ω2 can increase the
width of the forbidden band (green shaded region) by a factor
of ∼3 compared to the corresponding linear case.

The difference in the width of the photonic band gap in-
troduced by the nonlinearity can be quantified through the
function �ω

(nl )
B , where �ω

(nl )
B is the difference between the ω

value at which the band gap ends and ω/ω2 = 1.064. Through
numerical evidence, we find that the following linear relation-
ship can approximate such a band gap, �ω

(nl )
B (J )/ω2 ≈ mJ +

b [see inset of Fig. 4(b)]. For the case of L = 0.045λ0, the
slope m = −0.552 and the intercept b = 2.396 suffice. This
approximate behavior shows that the difference in the band
gap grows as one decreases J , again indicating the control on
the band structure provided by the weak nonlinearity.

Finally, in Fig. 4(c), we plot the dispersion curve for the
quasilinear case. Interestingly, we note a resemblance in the
band-gap structure between purely nonlinear and quasilin-
ear cases [compare Fig. 4(b) with Fig. 4(c)], which includes
more significant band gaps and the absence of a higher ω-
value dispersion branch for L = 0.0112λ0 case [see Fig. 4(a)
where this branch originates at ω = 3ω2 in the linear case].
The behavior suggests that, with a periodic chain with in-
finitely many emitters (as considered in plotting dispersion
curves), the nonlinear contribution in the quasilinear case
begins to match the purely weakly nonlinear case.

VI. SUMMARY AND CONCLUSION

In this work, we examined the single-photon transport
properties in three-level quantum emitter chains coupled with
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FIG. 4. Dispersion curves for a (a) linear, (b) nonlinear, and (c) quasilinear waveguide QED setup. In each plot, two closely spaced
interatomic separations are selected. The inset in (b) indicates the difference between band gap �ωB for linear and nonlinear cases plotted
against the nonlinearity parameter J (red dots are points indicating the difference in the width of the band gaps at specific J values while the
blue curve is a linear fit as discussed in the text). The rest of the parameters are as used in Fig. 2.

1D waveguides with linear, nonlinear, and quasilinear dis-
persions. In the single-emitter case, we found that linearly
dispersive waveguides lead to the standard EIT spectrum
in the overcoupling regime. In the nonlinear case, at the
quadratic level, we found that the EIT profile prevails as we
decrease the strength of the nonlinearity parameter of dis-
persion. However, for smaller frequencies, we observed the
formation of a plateau-like shape in the transmission spec-
trum. The quasilinear case showed transmission, which was
quite similar to the linear case.

In the many-emitter overcoupling case, we noticed the for-
mation of band structures where EIT spectral features remain
intact. Again, the difference between the linear and nonlinear
dispersions was most pronounced for smaller nonlinearity.
Finally, the photonic band gaps were investigated using the
Bloch theorem, where we mainly found the broadening of
band gaps for decreased values of nonlinearity for smaller
interemitter separations. The same trend of more significant
band gaps was observed for the quasilinear dispersions. Our
results revealed that nonlinear or quadratic and quasilinear
wQED provide new ways of controlling the transport prop-
erties of single photons with possible applications in quantum
memory-enabled long-distance quantum communication pro-
tocols.
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APPENDIX : DERIVATION OF H(nl )
W

The derivation of the free waveguide Hamiltonian for the
nonlinear case begins with the multimode quantum harmonic
oscillator model of the waveguide, which, for the right direc-
tion, takes the form∑

k

ωkR â†
kR

âkR = − J

π

∫∫∫
ĉ†

R(x)ĉR(x′)

× cos(kR)eikR (x−x′ )dxdx′dkR. (A1)

Utilizing the Taylor series expansion of the cosine function,

i.e., cos(kR) = ∑∞
j=0

(−1) j k2 j
R

(2 j)! , the term under the integral reads
as

cos(kR)eikR (x−x′ ) =
⎡⎣ ∞∑

j=0

∂
2 j
x

(2 j)!

⎤⎦eikR (x−x′ ). (A2)

Similar to the main paper, we set the lattice constant L = 1.
Taking the expansion of the cosine as defined in the last
equation and inserting it into the right-hand side of Eq. (A1),
resulting in the following integral:

− J

π

∫∫∫
ĉ†

R(x)ĉR(x′)

⎡⎣ ∞∑
j=0

∂
2 j
x

(2 j)!

⎤⎦eikR (x−x′ )dxdx′dkR, (A3)

where integrating over kR and x′ and going through a similar
calculation for the left direction will then result in the H(nl )

W as
expressed in Eq. (11).
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