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We investigate the properties of the cooperative decay modes of a cold atomic cloud, characterized by a
Gaussian distribution in three dimensions, initially excited by a laser in the linear regime. We study the properties
of the decay rate matrix S, whose dimension coincides with the number of atoms in the cloud, in order to
get a deeper insight into properties of cooperative photon emission. Since the atomic positions are random, S
is a Euclidean random matrix whose entries are a function of the atom distances. We show that in the limit
of a large number of atoms in the cloud, the eigenvalue distribution of S depends on a single parameter b0,
called the cooperativeness parameter, which can be viewed as a quantifier of the number of atoms that are
coherently involved in an emission process. For very small values of b0, we find that the limit eigenvalue density
is approximately triangular. We also study the nearest-neighbor spacing distribution and the eigenvector statistics,
finding that although the decay rate matrices are Euclidean, the bulk of their spectra mostly behaves according
to the expectations of classical random matrix theory. In particular, in the bulk, there is level repulsion and the
eigenvectors are delocalized, therefore exhibiting the universal behavior of chaotic quantum systems.
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I. INTRODUCTION

The study of cooperative effects in atom-photon interac-
tions has attracted great attention in recent decades since the
seminal article by Dicke [1]. A system consisting of two or
more atoms interacting with the electromagnetic field behaves
very differently compared to a single isolated atom. An exam-
ple of cooperative effect is the modification of the decay rate
of a cold atomic cloud, which is enhanced or suppressed with
respect to the decay rate � of an isolated atom, giving rise to
the phenomena of superradiance and subradiance [2–9]. Also
the atomic transition frequency is affected by the presence
of other atoms in the cloud, leading to the collective Lamb
shift [10,11]. Overall, the interaction of photons with atomic
ensembles gives rise to a variety of cooperative effects [12],
which can be explained only in terms of a collective behavior
rather than the individual (independent) components of the
system.

Besides the theoretical interest in comprehending the phys-
ical processes underlying cooperative effects, the study of
light-matter interfaces [13] is currently the focus of intense
experimental research due to its applications, ranging from
quantum optics and photonics to quantum information and
communication. For instance, superradiance can be exploited
in the development of an ultra-narrow linewidth superradiant
laser [14] or for fast writing and reading of quantum infor-
mation, while subradiance is particularly useful for quantum
memory devices [15–17].

In this article, we investigate the properties of the coop-
erative decay modes of a cold atomic cloud, characterized

by a Gaussian distribution in three dimensions, initially ex-
cited by a laser in the linear regime. Atomic positions are
random and the natural formulation of such a problem is
in terms of random decay rate matrices, whose dimension
coincides with the number of atoms in the cloud. Since the
entries of such matrices depend on the distances between
pairs of atoms, they fall in the category of Euclidean random
matrices. The main objective of our work is to determine
the asymptotic properties of the decay rate matrices spectra.
In tackling this problem, it is worth noticing that it is not
trivial even to determine the relevant physical parameter(s)
on which the asymptotic regime depends. We remark that
the Gaussian distribution considered in this article represents
a realistic approximation of the experimental situations. A
similar system has been experimentally studied, for example,
in Refs. [2–4,7,8,18], while a theoretical investigation of the
associated random matrices can be found in Refs. [19,20].

The article is organized as follows. In Sec. II, we intro-
duce the physical system and set up notation, formulating the
problem in terms of Euclidean random matrices (ERMs). The
spectrum of the ERMs of interest is introduced in Sec. III,
where we discuss various asymptotics regimes. The main
scaling limit is analyzed in Sec. IV for small values of
the so-called cooperativeness parameter, which quantifies the
number of atoms that coherently take part in the emission
process. In Sec. V, we first review some relevant microscopic
statistics used in random matrix theory. Then, we present the
results of our numerical study of the local eigenvalue statistics
and the delocalization properties of the eigenvectors of the
ERMs of interest. We conclude in Sec. VI with a summary
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FIG. 1. Sketch of the investigated system. A Gaussian cloud of
two-level atoms with transition frequency ωa is illuminated by a laser
with wave vector k0, electric field E0, and detuning �0. In the weak
excitation limit, the cloud can absorb and emit, at most, one photon
at a time.

of the results and some discussion. Some technical results are
reported in Appendices A–C.

II. PHYSICAL SETTING

We consider a system of N atoms with the same internal
structure, at positions r j , j = 1, . . . , N . Each atom is approx-
imated as a two-level system with transition frequency ωa.
The atomic cloud is illuminated by a laser which is described
classically by a monochromatic plane wave with wave vec-
tor k0, and electric field E0. The laser frequency ω0 = c|k0|
differs from the atomic transition frequency by the detuning
�0 = ω0 − ωa. The system under consideration is depicted in
Fig. 1.

We assume that the N atoms in the cloud interact with the
electric field according to the dipole model in the rotating
wave approximation. We will work in the scalar approxima-
tion [21,22] (for the vectorial case, see [23]) and in the weak
excitation limit, i.e., the linear regime, such that the atom-
field states can have, at most, one excited atom or one emitted
photon. Furthermore, we assume that the atoms are fixed
throughout the whole system evolution, which is a reason-
able approximation in the case of large atomic mass and
sufficiently low temperature (see Ref. [24] for a study of the
robustness of lifetimes against thermal decoherence).

Under these assumptions, denoting by β j (t ) the excitation
probability amplitude of the jth atom ( j = 1, . . . , N), one
obtains the following set of coupled equations [3,18,25]:

dβ j (t )

dt
= −�

2
β j (t ) − �

2

∑
m �= j

eikar jm

ikar jm
βm(t )

− i�0

2
eik0·r j e−i�0t , (1)

where �0 = −E0 · deg/h̄ is the Rabi frequency, proportional
to the atom dipole moment deg, � = |deg|2ω3

a/2π h̄c3ε0 is
the linewidth of the atomic transition, r jm = ‖r j − rm‖ is the

distance between the jth and the mth atom, and

ka = ωa

c
. (2)

We will focus on the evolution equation of the total excita-
tion probability P(t ) = β†(t )β(t ), where

β = (β1, β2, . . . , βN )T . (3)

If �0 = 0, i.e., when the laser is switched off, by using Eq. (1)
we get

Ṗ(t ) = β̇
†
(t )β(t ) + β†(t )β̇(t )

= −�β†(t )Sβ(t ), (4)

where the decay rate matrix S, encoding information on the
dissipative part of the atom cloud dynamics, is the N × N
matrix with entries

Si j = sinc(ka‖ri − r j‖), i, j = 1, . . . , N. (5)

Hereafter, sinc(x) = (sin x)/x for x �= 0, and sinc(0) = 1.
The matrix S defined in Eq. (5) is real symmetric (Si j =

S ji) and with fixed trace (Sii = 1),

Tr S = N. (6)

It is also possible to show that S is positive semidefinite;
see Appendix A. Therefore, the eigenvalues λ1, . . . , λN of
S satisfy 0 � λi � N , and (1/N )

∑
i λi = 1. In particular,

λ = 1 coincides with the decay rate � of an isolated atom,
while 0 � λ < 1 are associated with subradiant modes char-
acterized by a slower decay rate, and 1 < λ � N correspond
to superradiant modes, decaying with a rate larger than
� [26].

As a model of the atomic cloud, we assume that the
random positions ri of the N atoms are independent and
identically distributed according to a three-dimensional Gaus-
sian probability density function with zero mean and variance
σ 2 > 0. Under this assumption, the matrix S in (5) is a Eu-
clidean random matrix (ERM): the matrix entries are given
by a deterministic function f (‖ri − r j‖) = sinc(ka‖ri − r j‖)
of the Euclidean distances between the random points ri. See
Refs. [19,27–29] and references therein. The matrix S of this
paper (with different distribution on the positions ri) was also
studied in [20]. It is worth noticing that the Gaussian shape
provides a good model of a cold atomic cloud in the case
of harmonic trapping at finite temperature and low density.
Moreover, in many experiments, atoms are released from the
trap in order to be probed, and the Gaussian velocity distribu-
tion transforms into a Gaussian spatial distribution after some
time of flight.

The general problem of ERM theory is to understand the
statistical properties of the eigenvalues and the corresponding
eigenvectors in the large-N limit. This is certainly a very
rich and challenging problem. Many interesting results on
the eigenvalue distributions are given in Refs. [19,20,26]. In
the present work, we will start by characterizing the spec-
trum and then focus on the microscopic statistics, analyzing
level spacing and eigenvector properties. Note that the set of
N × N real symmetric matrices is a linear space of dimen-
sion N (N + 1)/2. The matrix S is instead specified by the
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3N coordinates of the N atoms, and 3N � N (N + 1)/2 for
large N .

III. SPECTRUM OF THE DECAY RATE MATRIX S

A. General aspects

The main goal of our analysis is to determine the proper-
ties of the random matrix S in the large-N limit, i.e., in the
asymptotic regime of large number of atoms (N ≈ 109 atoms
in experiments [2,3]). It is convenient to write the positions of
the atoms as ri = σxi, where x1, . . . , xN are independent ran-
dom variables distributed according to the three-dimensional
standard Gaussian density,

pX (x) = 1

(2π )3/2
e−x2/2, x ∈ R3, x = ‖x‖. (7)

The average density of the atomic cloud is

ρ = N

σ 3
, (8)

and, in terms of the dimensionless variables xi, the matrix S is

Si j = sinc(
√

M‖xi − x j‖), i, j = 1, . . . , N, (9)

where

M = (kaσ )2 (10)

is a dimensionless parameter that plays a key role in the
large-N limit since it represents an estimate of the number of
independent transverse optical modes in the cloud.

We stress that the entries of the random matrix S are not in-
dependent, but Euclidean correlated. The diagonal entries are
nonrandom Sii = 1, while the off-diagonal entries are random
variables 0 � |Si j | � 1.

If xi, x j are two independent standard Gaussian points, the
probability density of their distance R = ‖xi − x j‖, i �= j, is

pR(r) = 1√
4π

r2e−r2/4, r � 0. (11)

If xi, x j, xk, xl are distinct, then the distances Ri j = ‖xi −
x j‖ and Rkl = ‖xk − xl‖ are independent. Therefore, the ma-
trix entries Si j and Skl are independent unless they share one
index, while entries of S that share at least one index (e.g.,
entries on the same column or row) are Euclidean correlated.
For instance, Si j and Sil , with i, j, l all distinct, depend on
the interatomic distances R = ‖xi − x j‖ and R′ = ‖xi − xl‖
whose joint density is not factorized and reads

pR,R′ (r, r′) = 2√
3π

re− r2

3 r′e− r′2
3 sinh

(
rr′

3

)
, r, r′ � 0.

(12)
For a proof of (11) and (12), see Appendix B.

One of the most peculiar features of the matrix S in
(9) is that its eigenvalues strongly depend on the parameter
M = (kaσ )2. This dependence originates from the nonlinear-
ity of the sinc function. This can be anticipated by looking
at the statistical properties of the off-diagonal entries of
S. Using the interatomic distance density function (11), we
can compute the moments of Si j , i �= j, and their large-M

asymptotics,

〈Si j〉 = e−M ,
〈
S2

i j

〉 = e−2M sinh(2M )

2M
∼ 1

4M
, (13)

where the average 〈·〉 is taken according to the distribution
(7). On the other hand, all moments for m � 3 scale as
〈Sm

i j〉∼amM−3/2, for large M, where the am are explicit con-
stants (see Appendix C). Using the joint density (12), we find
instead that for i, j, l distinct,

〈Si jSil〉 = e−2M sinh(M )

M
∼ e−M

2M
. (14)

Following previous literature [2–4], we introduce the
cooperativeness parameter,

b0 = N

M
= N

(kaσ )2
, (15)

that can be thought of, in the large-N limit and for a large
number of modes in the cloud, as the number of atoms that
can coherently interact to produce cooperative decay.

B. Limiting cases for fixed N

For fixed size N , we have that when M → ∞ (small co-
operativeness parameter b0 � 1), the matrix elements tend to
Si j → δi j . Hence, the matrix S tends to the N × N identity
matrix I . In this limit, the atoms are too far apart to cooperate
in photon emission and decay independently with the rate �

of an isolated atom.
On the other hand, the limit M → 0 (large cooperativeness

parameter b0 � 1) describes N atoms separated by a small
distance compared to the emission wavelength. This is the
Dicke limit [1], with N − 1 subradiant modes and only one
superradiant symmetric state. This behavior immediately fol-
lows from the limit Si j → 1, as M → 0. Equivalently, the
matrix S tend to the N × N rank-1 matrix with all ones,
whose only nonvanishing eigenvalue λ = N corresponds to
the superradiant mode, β = (1/

√
N )(1, 1, . . . , 1)T , namely,

the symmetric combination of atomic excitations,

|ψ+〉 = 1√
N

N∑
j=1

| j〉 . (16)

The (N − 1)-degenerate subradiant eigenspace corresponding
to the zero eigenvalue is composed of states in the form

|ψ−〉 =
N∑

j=1

β j | j〉 with
N∑

j=1

β j = 0, (17)

orthogonal to the superradiant mode, where the excitation
amplitudes are combined in such a way to produce destructive
interference of the emitted photon, thus hindering decay.

C. Large-N limit with fixed M

Suppose now that we wish to analyze the spectrum of
the random matrix S as N → ∞ with M fixed. This limit
is well understood mathematically. From general results [30,
Theorem 1], it follows that all but a negligible fraction of
the eigenvalues of S converge to 0, almost surely. In this
limit, most of the eigenvalues are close to zero. However,
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since Tr S = N , it is natural to ask whether by centering and
rescaling the eigenvalues of S one can get a nontrivial limit.
Indeed, this is the case and a finer analysis [31, Theorem 3.1]
shows that the spectrum of (S − I )/N is asymptotically close,
as N → ∞, to the spectrum of the integral operator S defined
by the formula

Sg(y) =
∫
R3

sinc(
√

M‖x − y‖)g(x)pX (x)dx, (18)

where pX is defined in Eq. (7). The (nonrandom) operator
S is Hilbert-Schmidt and self-adjoint. Hence, its nonzero
eigenvalues have finite multiplicities and form a real sequence
convergent to 0. Notice that the condition N → ∞, with M
fixed, is a high-density limit ρ ∼ N .

D. Large-N, M limit with fixed cooperativeness parameter

In order to describe the spectral properties of S, we con-
sider the normalized (mean) eigenvalue density,

p(λ) =
〈

1

N

∑
i

δ(λ − λi)

〉
, (19)

where λ1, . . . , λN are the eigenvalues of S. The moments of
p(λ) are given by

〈λm〉 =
∫ +∞

0
λm p(λ)dλ = 1

N
〈Tr Sm〉. (20)

When m = 1, from the identity 1
N Tr S = 1 we get that p(λ)

has mean 〈λ〉 = 1 for all values of N, M.
Using (13), we find, for the second moment,

〈λ2〉 = 1

N
〈Tr S2〉 = 1

N

∑
i, j

〈
S2

i j

〉

= 1 + (N − 1)e−2M sinh(2M )

2M
N,M→∞∼ 1 + N

4M
. (21)

We see that if we want to let N → ∞ and keep the second
moment finite, we must take M → ∞ with b0 = N/M fixed,
so that

〈λ2〉 → 1 + b0

4
. (22)

Remarkably, b0 is also the relevant parameter from a physical
point of view; see Eq. (15) and Refs. [2–4]. In principle, all
moments of the eigenvalue density p(λ) can be computed with
this kind of approach, although the combinatorics is rather
difficult.

For a numerical demonstration of the correctness of this
asymptotic regime N, M → ∞, with N/M = b0 fixed, we in-
vite the reader to have a glance at Fig. 2 where we compare the
eigenvalue distribution obtained by numerical diagonalization
of samples of S of size N = 300, 1000, 10 000, with b0 = 1.
We see that the histograms overlap, thus confirming the con-
vergence of the eigenvalue density in the chosen scaling limit.

In the following, we will study the spectral properties of
the ERM S, by focusing on this most interesting asymptotic
regime obtained by the simultaneous limit N, M → ∞, with

FIG. 2. Eigenvalue density of S with b0 = 1 fixed for different
matrix sizes N .

the ratio

b0 = N

M
(23)

kept fixed. In other words, we set
√

M = √
N/b0 in (9),

namely,

Si j = sinc

⎛
⎝

√
N

b0
‖xi − x j‖

⎞
⎠, i, j = 1, . . . , N, (24)

and investigate the limit N → ∞ for various values of b0.
It is worth noticing that condition (23) amounts to say that

σ = M1/2/ka ∼ N1/2, so that the density ρ in Eq. (8) scales as
N−1/2, which is a low-density limit. This should be compared
with the standard thermodynamic limit N → ∞ at fixed den-
sity, which would instead require a stronger confinement of
the atomic cloud, with σ ∼ N1/3.

IV. THE ASYMPTOTIC EIGENVALUE DENSITY

In what follows, we study the spectral properties of S as the
cooperativeness parameter b0 varies in order to unveil cooper-
ative effects in different regimes. We will find that large values
of b0 enhance the super- and subradiant part of the spectrum of
S, whereas when b0 → 0, the spectrum concentrates at λ = 1.
This is in accord with physical intuition.

For some representative values of the cooperativeness pa-
rameter b0, we have sampled random matrices S with size
N = 10 000. For each value of b0, we performed 20 real-
izations. The mean eigenvalue density p(λ) is estimated by
the histogram of the eigenvalues of S obtained by numerical
diagonalization; see Fig. 3. All histograms are normalized and
have unit mean.

Figure 3(a) shows that for small values of the cooperative-
ness parameter b0, the spectrum is strongly peaked around
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FIG. 3. Top: Histograms of the eigenvalue density p(λ) obtained from 20 samplings of the matrix S defined in Eq. (24) for different values
of the cooperativeness parameter b0. In all simulations, N = 10 000. Bottom: Best-fit parameters q and r of the Wigner-like surmise for the
spacings, p(q, r; s) = asq e−bsr

defined in (43), obtained for different regions of the spectrum containing 1000 eigenvalues [600 eigenvalues for
b0 = 10 in Fig. 3(h)] centered around λ. Notice that q � 1 in the bulk, corresponding to level repulsion.

λ = 1. Figures 3(b)–3(d) show that as b0 increases, the spec-
trum of S broadens as expected: cooperative effects kick
in and cause deviations from the isolated-atom decay rate.
Since the eigenvalues are non-negative and have unit mean,
it follows that as b0 increases, the shape of the spectrum
becomes increasingly asymmetrical due to the accumulation
of eigenvalues in the subradiant sector λ < 1. Figure 3(d)
clearly shows that the fundamental features of the spectrum
for large values of b0 are the accumulation of the eigenval-
ues close to zero and the presence of few large superradiant
eigenvalues.

As noted above, most of the techniques developed in ran-
dom matrix theory for matrices with independent entries or
unitarily invariant distributions are not directly applicable to
Euclidean random matrices. Therefore, computing the large-N
limit of the mean eigenvalue density of S for generic values of
b0 is a challenging open problem.

We now analyze the eigenvalue density p(λ) of S in (24)
for b0 � 1,

lim
b0→0

lim
N→∞

p(λ). (25)

We stress the fact that the two limits do not commute. The
precise description of (25) is somewhat lengthy and goes
beyond the scope of this paper. We found, however, a simpler
and neat approximation that we now present. The shape of the
histograms for small values of b0 (see Fig. 4) suggests that the
spectrum could be described by a triangular density around
the single-atom emission peak at λ = 1.

Indeed, for small b0, one can imagine that S in (24) can be
approximated by a direct sum of 2 × 2 matrices of the form(

1 sinc(
√

N/b0‖x − x′‖)
sinc(

√
N/b0‖x′ − x‖) 1

)
. (26)

Each 2 × 2 block has eigenvalues of the form 1 ±
sinc(

√
N/b0‖x′ − x‖) (see Ref. [20] for an analogous

approach). If the blocks were independent, the eigenvalues
of S would take the form λ = 1 + ξ , where ξ = c+ + c− is
the sum of two independent random variables c+ and c− uni-
formly distributed in [0, a] and [−a, 0], respectively, with a
proportional to

√
b0. The corresponding distribution would be

a normalized symmetric triangular density a−1 p�[(x − 1)/a],
centered at λ = 1 and with base [1 − a, 1 + a], where

p�(x) =
{

1 − |x| if x ∈ [−1, 1]
0 otherwise ,

(27)

namely,

1

a
p�

(
x − 1

a

)
=

{
a−|x−1|

a2 if x ∈ [1 − a, 1 + a]
0 otherwise .

(28)

The value of a can be chosen by imposing the matching
condition of the second moment of (28),∫

x2

a
p�

(
x − 1

a

)
dx = 1 + a2

6
, (29)

with the limiting second moments (22) of p(λ). This gives

a =
√

3b0

2
. (30)
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FIG. 4. Top: Histogram of the normalized eigenvalue distribution
p(λ) obtained from 20 samplings of the matrix S in Eq. (24), with
N = 10 000 and b0 = 0.005 (notice that there are few eigenvalues
outside the range of the horizontal axis that have not been plotted).
The histogram has been fitted with the one-parameter family of
triangular distributions (28), yielding best-fit parameter a = 0.086 ±
0.005 (blue line). The error of a has been set equal to the bin size
of the histogram. Bottom: Parameter a of the triangular distribution
(28) as a function of

√
b0.

Equation (30) relates the support of the eigenvalue density
and b0, for b0 � 1. We checked numerically that indeed a
scales linearly with

√
b0, for small values of b0; see Fig. 4.

The (weighted) linear fit yields an offset (2.096 ± 1.672) ×
10−5, compatible with zero, and a slope 1.2161 ± 0.0012,

to be compared with the theoretical value
√

3/2 ≈ 1.2247 in
Eq. (30).

The agreement between the triangular density in Eq. (28)
and p(λ) for b0 � 1 is surprisingly good, given the simple
assumptions underlying the derivation. However, it is possible
to show that the triangular density is only an approximation,
and

lim
b0→0

lim
N→∞

p(λ) �= 1

a
p�

(
λ − 1

a

)
. (31)

In order to simplify the analysis that follows, it is convenient
to center and rescale the matrix S in (24) as

Q =
√

2

3b0
(S − I ). (32)

Notice that the matrix Q has vanishing elements on the di-
agonal. We should compare the eigenvalue density of Q for
N → +∞ and small values of b0 with the centered triangular
density p�(x) of Eq. (27). We have that

lim
b0→0

lim
N→∞

1

N
〈Tr Qm〉 =

∫
λm p�(λ), (33)

for m = 0, 1, 2. We also verified the identity for m = 3. We
now show that the matching condition fails for the fourth mo-
ment, m = 4. The fourth moment of the triangular distribution
is ∫

λ4 p�(λ)dλ = 1

15
= 0.0667 . . . . (34)

On the other hand, the fourth moment of Q is

1

N
〈Tr Q4〉 = 1

N

∑
i jkl

〈Qi jQjkQklQli〉

= 1

N

(
2

3b0

)2∑
i jkl

′〈Si jS jkSklSli〉, (35)

where
∑′ denotes a sum over distinct consecutive indices

i �= j �= k �= l �= i. There are three possibilities for the indices
i, j, k, l:

(i) there are two pairs of equal indices (i.e., i = k and
j = l);

(ii) there is one pair of equal indices (this contribution has
multiplicity 2);

(iii) all indices are different.
Therefore, taking into account the symmetries of S,

Eq. (35) can be written as the sum of three contributions,

〈Tr Q4〉
N

= 4

9b2
0N

[
N (N − 1)

〈
S4

i j

〉
+ 2N (N − 1)(N − 2)

〈
S2

i jS
2
il

〉
+ N (N − 1)(N − 2)(N − 3)〈Si jS jkSkl Sli〉

]
.

(36)

The expectation values in Eq. (36) are difficult to compute for
fixed N and b0, but the calculations become simpler in the
large-N limit. Indeed, from (11), we have〈

S4
i j

〉 = O[(b0/N )3/2], (37)
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so that the first term in Eq. (36) vanishes asymptotically.
Furthermore, it can be shown numerically that 〈Si jS jkSkl Sli〉
scales like b3

0/N3, so that the third term in Eq. (36) in the large-
N limit scales as b0, and hence vanishes in the case b0 → 0
under consideration. As a consequence, Eq. (36) reduces to

1

N
〈Tr Q4〉 ∼ 8N2

9b2
0

〈
S2

i jS
2
il

〉
. (38)

In order to compute the above expectation value, we use the
joint probability density function (12) and we get

lim
b0→0

lim
N→∞

1

N
〈Tr Q4〉 ∼ 8

9

2

π
√

3

+∞∑
j=0

1

(2 j + 1)! 32 j+1

×
(

1

2

∫ +∞

0
r2 j e−r2/3dr

)2

= π

27
√

3
= 0.0672 . . . . (39)

This value should be compared with the fourth moment (34)
of the triangular density. The discrepancy between Eqs. (39)
and (34) is quite small, approximately 0.7%, corroborating
(and correcting at the same time) the triangular approxima-
tion for N → +∞ and b0 → 0. Considering the simplicity of
the triangular density, the approximation is useful as a quick
benchmark against numerical data.

V. MICROSCOPIC STATISTICS

In the statistical approach, to complex deterministic quan-
tum systems, the guiding idea is that some central quantum
features (energy levels, decay rates, etc.) are so erratic and
irregular that their precise values are inconsequential. It is
only their statistical properties that hold significance [32]. As
matrices are intrinsic to quantum mechanics, random matrices
are of paramount importance in the application of statistics to
quantum problems.

In the field of quantum chaos, it was soon realized that the
statistics of the microscopic behavior of the energy levels of
a quantum system could help discriminating between systems
whose classical counterpart is integrable or chaotic.

For generic integrable models, the energy levels follow the
distribution of eigenvalues of diagonal matrices with inde-
pendent identically distributed (i.i.d.) diagonal entries. This
implies that their correlation functions, after unfolding, coin-
cide with the ones of a Poisson process. This is the celebrated
Berry-Tabor conjecture [33,34].

On the other hand, according to the Bohigas-Giannoni-
Schmit conjecture [35], it is expected that the energy level
statistics of generic chaotic systems follow the eigenvalues
of standard random matrix ensembles (full, with independent
entries) dependent only on system symmetries, whose corre-
lation functions are explicitly known.

However, different random matrix models have different
eigenvalue densities, and a meaningful comparison between
microscopic statistics requires a transformation called unfold-
ing [36]. The unfolded eigenvalues λunf

i and the true levels
λi are related via λunf

i = N (λi ), where N (x) = ∫ x
ρ(y)dy is

the mean number of eigenvalues less than x. The unfolded
spectrum has mean level spacing equal to 1.

A. Nearest-neighbor spacing distribution

The universality classes are characterized by the N →
∞ behavior of microscopic statistics, such as the nearest-
neighbor spacing density (NNSD) p(s), which represents the
probability density of two eigenvalues being separated by a
distance s and no other eigenvalues in between,

si = λunf
i+1 − λunf

i , (40)

where λunf
1 � λunf

2 � · · · � λunf
N (the unfolding preserves the

order of the eigenvalues). For Poisson statistics,

pP(s) = e−s, (41)

which is the asymptotic distribution of the spacings between
i.i.d. random variables with unit mean spacing. Conversely,
standard real random matrices display level repulsion and the
NNSD is described by the Wigner surmise,

pW(s) = πs

2
e−πs2/4 , (42)

also known as Wigner-Dyson distribution.
The Berry-Tabor and the Bohigas-Giannoni-Schmit con-

jectures form a cornerstone of quantum chaos and have been
effectively employed in various problems ranging from nu-
clear physics to number theory. However, they do not account
for all possible types of models. Several physical systems
show a behavior that deviates from the dichotomy “integrable
vs chaotic.”

Since S is a Euclidean random matrix, it is not clear a priori
whether it falls into one of the standard random matrix univer-
sality classes. In fact, we show below that at least locally, in
some regions of the spectrum, the NNSD can be described by
a suitable two-parameter family of Wigner-like distributions,

p(q, r; s) = asq e−bsr
, q > −1, r > 0. (43)

The constants a and b are determined from the normalization
conditions∫ ∞

0
p(q, r; s)ds = 1,

∫ ∞

0
sp(q, r; s)ds = 1, (44)

namely, a = r[�( q+2
r )]q+1/[�( q+1

r )]q+2 and b = [�( q+2
r )/

�( q+1
r )]r .

Notice that the exponent q accounts for the level repulsion,
while the exponent r governs the tail for large spacings. In par-
ticular, if q = 0 and r = 1, Eq. (43) coincides with the Poisson
distribution (41), while for q = 1 and r = 2, it reduces to the
Wigner-Dyson distribution (42).

For r = q + 1, one obtains the one-parameter family of
Brody distributions [37] interpolating between Wigner-Dyson
and Poisson, and originally proposed to describe systems
characterized by a transition between the integrable and
chaotic regime and by the coexistence of regions with regular
and ergodic motion [38–40]. The parameter q can be inter-
preted as a measure of the degree of chaoticity of the system
under consideration.

Setting r = 1 in (43), we get another widely used
one-parameter family of spacing distribution, associated to
quantum systems whose classical counterpart is pseudo-
integrable. In those cases, the NNSD (43) is the spacing
distribution of the so-called intermediate statistics [41–43],
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proposed to describe quantum systems with multifractal wave
functions, i.e., with an intermediate behavior between local-
ized and fully extended eigenstates.

B. Eigenvector statistics

The microscopic spectral statistics can be associated with
the support of the corresponding eigenvectors,

|�〉 =
N∑

j=1

� j | j〉 . (45)

More precisely, corresponding to Poisson statistics, one ex-
pects the eigenvectors to be localized. Indeed, a random
matrix diagonal in a basis {| j〉} with i.i.d. diagonal entries
yields |� j |2 = δ j� for some �. On the other hand, standard
real random matrices, described by a Wigner-Dyson NNSD
(42), have generically delocalized eigenvectors [44,45]. For
example, a generic eigenvector of a Gaussian orthogonal ma-
trix is uniformly distributed on the sphere in N dimensions,
and hence its coefficients yield, for large-N , the so-called
Porter-Thomas (PT) distribution [46],

pPT(u) = 1√
2π

e−u2/2, (46)

where u = √
N� j with � j being the jth (real) component of

|�〉. We choose a distribution of real amplitudes since the
eigenvectors of S, which is real and symmetric, can always
be chosen real. Notice that the vectors |�〉 are normalized
on average, and the deviations from normalization for a given
sample become irrelevant in the large-N regime.

A widespread indicator of the (de)localization of the nor-
malized eigenvectors is the participation ratio (PR),

�(|�〉) = 1∑N
j=1 |� j |4

. (47)

It is related to the effective number of nonvanishing compo-
nents of the vector |�〉. In particular, a localized eigenvector
with |� j |2 = δ jk for some k has participation ratio 1, while
for a uniform eigenvector, such that |� j |2 = 1/N for all j,
�(|�〉) = N is maximum.

Finer information is encoded in the large-N asymptotics of
the moments of the eigenvectors [43,47],

Mq =
〈

N∑
j=1

|� j |2q

〉
∼ CqN−τ (q) as N → ∞. (48)

Notice that M1 = 1 due to the normalization of the eigen-
vectors, while the second moment M2 coincides with the
inverse of the participation ratio � in (47). The exponent
τ (q) defines the fractal dimension: Dq = τ (q)

q−1 . Dq determines
the fraction of nonzero components of the eigenvectors at a
certain scale. For fully extended eigenvectors, Dq = 1 and for
localized eigenvectors, Dq = 0. The case when Dq depends on
q corresponds to multifractal eigenvectors.

One can explicitly compute the large-N scaling of the
moments in Eq. (48) under the assumption that a delocalized

FIG. 5. Histogram of the spacing distribution in the region cor-
responding to eigenvalues λ ∈ [1.067, 1.225] for b0 = 1, fitted with
the two-parameter NNSD (43). Notice the best-fit values of the
parameters q � 1 and r � 2, which correspond to Wigner-Dyson and
hence to delocalized states.

eigenvector follows the PT distribution (46),

Mq ∼ N
∫ +∞

−∞
�

2q
j

√
N

2π
e− N

2 �2
j d� j = (2q − 1)!!

Nq−1
. (49)

This equation not only reproduces the expected scaling law
for delocalized states 1/Mq ∼ Nq−1 discussed above (in this
case Dq = 1 for all q), but also provides the explicit value
of the constants Cq = (2q − 1)!! that can be compared with
the results of numerical simulations. For instance, for the
participation ratio, we get

� = 1

M2
= N

C2
= N

3
. (50)

C. Numerical results

We studied the NNSD of the matrix S defined in Eq. (24),
in the limit N → ∞, for different values of the cooperative-
ness parameter b0. The following analysis has been performed
by sampling matrices S of size N = 104 for four representative
values of the cooperativeness parameter: b0 = 0.1, 1, 3, 10.
The eigenvalues of S have been used to compute the spacings
si ∀i = 1, . . . , N − 1 according to Eq. (40).

To study the local NNSD of the matrix S with b0 =
0.1, 1, 3, we considered several intervals of the spectrum con-
taining 1000 eigenvalues. For b0 = 10, instead, we restricted
our attention to regions containing 600 eigenvalues since the
spectrum is much broader [as can be seen comparing Fig. 3(d)
with Figs. 3(a)–3(c)] and hence too large a fraction of the
eigenvalues would mix different regimes. For each region
of the spectrum, we compared the spacings of the unfolded
eigenvalues with the two-parameter NNSD (43). An example
is reported in Fig. 5, which shows the spacing distribution for
b0 = 1 in the region λ ∈ [1.067, 1.225].

Our findings are displayed in Figs. 3(e)–3(h) and can be
summarized as follows. For each value of b0, there is a
central region of the spectrum around λ = 1 (which corre-
sponds to the decay rate of an isolated atom) whose NNSD
is described by the Wigner-like surmise (43) with parameters
q � 1 and r � 2, which corresponds to the Wigner-Dyson
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FIG. 6. Participation ratio � divided by N as a function of the corresponding eigenvalue for b0 = 0.1, 1, 3, 10. For each value of b0, we
show the plots of �/N corresponding to N = 200, 1000, 10 000. Notice that for all values of b0, the participation ratio of the most subradiant
state is (very) close to 2 and that in the central region of the spectrum, the states are delocalized with a participation ratio � N/3, in accord
with Eq. (50).

distribution (42). Moving towards the edges of this region,
we approach a subradiant and a superradiant region of the
spectrum for which the spacing distribution is still described
by (43), but the best-fit values of q and r deviate from the
Wigner-Dyson case. Finally, the NNSD at the tails of the
spectrum (the extreme sub- and superradiant regions) is not
described by (43) (except for the extreme subradiant region
for b0 = 3). This is not surprising since, in general, the bulk
and the tails of the spectrum of random matrices behave very
differently.

The numerical analysis shows that the full spacing dis-
tribution of S in the bulk of the spectrum is difficult to
characterize, even if one considers a two-parameter Wigner-
like surmise (43). Rather than trying to fit the full distribution
p(s), we therefore set ourselves the task of verifying whether
at least the level repulsion is a generic property in the
bulk. This amounts to analyzing the small s → 0 behavior
of p(s). To this purpose, we have studied the cumulative
probability distribution for small spacings, i.e., P(s � s0)
as s0 → 0. Therefore, for several values of b0 and differ-
ent subregion of the bulk of the spectrum, we computed
N (s0) = P(s � s0) as a function of s0. We found numerically
(data not shown) that N (s0) ∼ sq+1

0 , with q � 1, so that the
NNSD in the bulk vanishes at small spacings as p(s) ∼ s.
According to the statistical approach to quantum chaos (see
Sec. V), these findings suggest that the bulk of the spec-
trum of the ERM S displays level repulsion and is associated
with quantum phenomena whose classical counterparts are
chaotic.

As explained in Sec. V B, since we found that the NNSD
in the bulk of the spectrum is described by the Wigner-Dyson
distribution (42), we expect the corresponding eigenvectors
to be delocalized. Therefore, to complete this analysis, we
looked at the statistics of the eigenvectors in the bulk of the
spectrum. First, we computed the PR of the eigenvectors of
S for the same representative values of the cooperativeness
parameter b0 = 0.1, 1, 3, 10, and N = 200, 1000, 10 000; see
Fig. 6. We found that the average PR scales with N , as ex-
pected for delocalized states. In particular, the plots in Fig. 6
show that the average of �/N converges for large N , and we
verified that the fluctuations of �/N are of the order of N−1/2.
We note that the average PR has two maxima, corresponding

to eigenvalues in the subradiant and superradiant regions of
the spectrum, respectively, and that � in the central region
of the spectrum is of the order of N/3, as predicted by the
PT distribution; see Eq. (50). A further evidence of the de-
localization of eigenvectors corresponding to the bulk of the
spectrum comes from Fig. 7, which shows the distribution of
u = √

N� j , where � j is the jth component of the eigenvector
|�〉 of S corresponding to the sub- and superradiant eigen-
values for which the PR is maximum. As can be seen, the
distribution p(u) is Porter-Thomas (46), expected for random
delocalized eigenvectors.

Moreover, we checked that for all values of b0, the par-
ticipation ratio of the most subradiant states is (very) close
to 2, indicating that the lowest emission rates are associated
with excitations shared between a pair of atoms, with antisym-
metric excitation amplitudes [see the limiting case (17)]. Let
us note that the participation ratio becomes more asymmetric
as b0 grows (see Fig. 6), as expected from the increasing
asymmetry of the spectrum. Moreover, for all values of b0,
the PR drops near λ = 1. We offer no explanation for this

FIG. 7. Distribution of u = √
N� j , where � j is the jth compo-

nent of the eigenvector |�〉 of the matrix S with b0 = 0.1, 1, 3, 10.
The solid line is the Porter-Thomas distribution (46), expected for
random delocalized eigenvectors. (a) Eigenvector |�〉 corresponding
to the subradiant eigenvalue for which the participation ratio �

has a maximum (see Fig. 6). (b) Eigenvector |�〉 corresponding to
the superradiant eigenvalue for which the participation ratio has a
maximum (see Fig. 6). For b0 = 10, the PT distribution is no longer
valid in the subradiant part and is not displayed in the figure.
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FIG. 8. Log-log plot of the mean inverse moment 1/Mq with
q = 2, 3, 4, 5, as a function of N in the region near the superradiant
maximum λ = 1.41 for b0 = 1. For the second moment q = 2, we
obtain a best-fit line (red) with slope τ (2) = 0.999 ± 0.002, indicat-
ing that the participation ratio scales linearly with N as expected for
delocalized states. Similarly, the blue, green, and black lines corre-
sponding to the third, fourth, and fifth moment have best-fit slope
τ (3) = 1.98 ± 0.01, τ (4) = 2.91 ± 0.03, and τ (5) = 3.81 ± 0.05,
respectively. These results corroborate the expected scaling 1/Mq ∼
Nq−1 for random delocalized states. See Eq. (49).

behavior. A similar behavior was also observed in Ref. [48]
for a related matrix.

We also numerically computed the higher moments (48)
for the eigenvectors in the central part of the spectrum, and
extracted the value of the fractal dimension Dq; see Fig. 8. We
found

D2 � 0.998, D3 � 0.985,

D4 � 0.967, D5 � 0.950. (51)

The deviation from the maximum value 1 increases very
slightly for increasing values of q, practically ruling out mul-
tifractality.

All these results lead to the conclusion that the eigenvectors
of the matrix S corresponding to the bulk of the spectrum are
delocalized, as already suggested by the study of the NNSD.
Hence the bulk of S shows the typical features of chaotic
quantum systems, which can be successfully described us-
ing the universal statistical properties of classical random
matrices.

VI. CONCLUSIONS

We characterized the bulk spectral properties of the de-
cay rate matrix S, defined in (9), related to the existence of
subradiant and superradiant decay modes of a random cold
atomic cloud. We identified a precise low-density scaling (24)
in which S has a limit eigenvalue density parametrized by
the cooperativeness parameter b0. It is worth remarking that
such a parameter has an intuitive physical relevance, as the
number of atoms that coherently cooperate in photon emis-
sion. We corroborate this intuitive view with analytic and
(strong) numerical evidences that b0, regardless of its specific
value, is the only relevant parameter that determines the eigen-
value distribution in the limit of a large number of atoms.
For small values of b0, we found that the asymptotic eigen-
value density can be approximated by the triangular density

in Eqs. (28) and (30). Then we studied the nearest-neighbor
spacing distribution of the eigenvalues for several values of
b0 using a two-parameter family of Wigner-like distributions
(43). We found that although S is a Euclidean random matrix,
in the bulk of the spectrum of S there is level repulsion. The
eigenvector statistics (participation ratio and higher moments)
confirms that the eigenvectors in the bulk are delocalized.

We conclude with some possible directions worth explor-
ing and further food for thought. For the physical implications
of the considered model, it would be interesting to study
the microscopic statistics at the edges of the spectrum of S,
which are physically related to strong subradiance and super-
radiance. Preliminary numerical calculations seem to indicate
that the edges of S do not fall into the Kardar-Parisi-Zhang
universality class [49–51] of standard random matrices char-
acterized by the Tracy-Widom distribution. A relevant point,
beyond the scope of the present study, would be to investi-
gate the interplay between the purely dissipative dynamics,
described by S, and the full Hamiltonian dynamics, entailed
by the coherent energy shifts and transitions induced by cou-
pling with the field. It should also be possible to explicitly
compute the limiting moments of S for all values of b0, thus
extending what we have presented here for the approximate
triangular density at b0 → 0. Moreover, it could be useful to
study similar cooperative effects and the associated ERMs in
dimension d �= 3 [52,53], in view of alternative experimental
implementations.
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APPENDIX A: POSITIVE DEFINITENESS
OF THE MATRIX S

The N × N matrix S with entries

Si j = sinc(ka‖ri − r j‖) (A1)
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is non-negative definite for every r1, . . . , rN . Indeed, setting
f (r − r′) = sinc(ka‖r − r′‖), we have

〈ψ, Sψ〉 =
N∑

i, j=1

f (ri − r j )ψiψ j

=
N∑

i, j=1

1

(2π )
3
2

∫
R3

f̂ (k)eik·(ri−r j )ψiψ j

= 1

(2π )
3
2

∫
R3

f̂ (k)

∣∣∣∣∣∣
N∑

j=1

eik·r j ψ j

∣∣∣∣∣∣
2

� 0,

where the last line follows from

f̂ (k) =
√

π

2

δ(ka − ‖k‖)

k2
a

� 0. (A2)

This calculation shows that in analyzing the eigenvalue distri-
bution of the ERM, S, the idea of replacing S with a simpler
random matrix whose entries are sinc ξi j with ξi j = ξ ji in-
dependent with the same distribution of ka‖ri − r j‖ cannot
work. The resulting random matrix will not be non-negative
definite, in general. In fact, one expects the mean eigenvalue
density to be semicircular in this case.

APPENDIX B: JOINT DISTRIBUTION
OF THE INTERATOMIC DISTANCES

The distributions of interatomic distance (11) and (12) are
specializations of the following interesting formula:

Lemma 1. Let X 0, X 1, . . . , X k be independent standard
Gaussian vectors in R3. The joint density of the Eu-
clidean lengths X0 := ‖X 0‖, R01 := ‖X 1 − X 0‖, . . . , R0k =
‖X k − X 0‖ is

p(x0, r1, . . . , rk ) =
(

2

π

) k+1
2

x2−k
0 e− 1

2 (k+1)x2
0

×
k∏

i=1

rie
− 1

2 r2
i sinh(x0ri ). (B1)

Proof. The joint density of the k + 1 vectors
X 0, X 1, . . . , X k is

p(x0, x1, . . . , xk ) = 1

(2π )
3
2 (k+1)

e− 1
2

∑k
i=0 ‖xi‖2

.

Hence, the vectors X 0, R01 = X 1 − X 0, R02 = X 2 − X 0, etc.
are jointly Gaussian with density

p(x0, r1, . . . , rk ) = e− 1
2 (k+1)‖x0‖2− 1

2

∑k
i=1 (‖ri‖2+2x0·ri )

(2π )
3
2 (k+1)

.

The joint density of the Euclidean lengths X0, R01, . . . , R0k is
obtained by integrating over the angles,

p(x0, r1, . . . , rk ) = x2
0r2

1 · · · r2
k

(2π )
3
2 (k+1)

e− 1
2 (k+1)x2

0− 1
2

∑k
i=1 r2

i

× 4π

k∏
j=1

2π

∫ π

0
dθ j sin θ je

x0r j cos θ j .

After performing the elementary angular integrations, we get
the claimed formula. �

APPENDIX C: MOMENTS OF THE ENTRIES OF S

The moments of the off-diagonal entries of S are

〈
Sm

i j

〉 =
∫ ∞

0

(
sin

√
Mr√

Mr

)m

pR(r)dr, (C1)

where the density (11) of R = ‖xi − x j‖, i �= j, is

pR(r) = 1√
4π

r2e− r2

4 , r � 0.

It is possible to compute the first three moments,

〈Si j〉 = e−M , (C2)

〈
S2

i j

〉 = 1 − e−4M

4M
, (C3)

〈
S3

i j

〉 =
√

π

2

2 − Erfc(
√

M ) + Erfc(3
√

M )

8M
3
2

, (C4)

and get the large-M asymptotics,

〈Si j〉 ∼ 0,
〈
S2

i j

〉 ∼ 1

4M
,

〈
S3

i j

〉 ∼
√

π

8M
3
2

. (C5)

For m � 4, it is difficult to exactly perform the integral (C1).
However, we can extract its precise large-M asymptotics. In-
deed, for m � 4,

〈
Sm

i j

〉 =
∫

1√
M

pR

(
r√
M

)(
sin r

r

)m

dr

∼ 1

M
3
2

[
1√
4π

∫ +∞

0
r2

(
sin r

r

)m

dr

]
, (C6)

by dominated convergence, as M → ∞. Note that all mo-
ments for m � 3 scale as 〈Sm

i j〉 ∼ amM−3/2 for large M.
The constants

am = 1√
4π

∫ +∞

0
r2

(
sin r

r

)m

dr (C7)

can be computed using a method of Michell and Hardy [54].
The explicit result is

am =
√

π
∑� m

2 �
k=0 (−1)k+1

(m
k

)
(m − 2k)m−3

2m+1(m − 3)!
. (C8)
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