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Signatures of superfluid-like behavior have recently been observed experimentally in a nonlinear optical mesh
lattice, where the arrival time of optical pulses propagating in a pair of coupled optical fiber loops is interpreted
as a synthetic spatial dimension. Here we develop a general theory of the fluid of light in such optical mesh
lattices. On the one hand, this theory provides a solid framework for an analytical and numerical interpretation
of the experimental observations. On the other hand, it anticipates new physical effects stemming from the
specific spatiotemporally periodic geometry of our setup. Our work opens the way towards the full exploitation
of optical mesh lattices system as a promising platform for studies of hydrodynamics phenomena in fluids of
light in novel configurations.
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I. INTRODUCTION

In recent years, there has been significant growth in the
field of “fluids of light,” which aims to bring ideas from
quantum gases into nonlinear optics [1]. Although histori-
cally based on analogies between paraxial light propagation
in nonlinear systems and the Gross-Pitaevskii equation (GPE)
of weakly interacting atomic gases [2–6], experiments in
this field expanded dramatically in the mid-2000s due to
the observation of exciton-polariton condensates in semi-
conductor microcavities [7]. This led to rapid progress in
observing superfluidity effects and topological excitations of
exciton-polariton fluids [8–10] and has fueled wider interest
in hydrodynamic effects in light [11]. This interest has also
grown even further over the last decade, due to developments
in artificial magnetic fields for light [12] and cavity-less prop-
agating geometries [13–16].

Building on previous experiments with a focus on
quantum-optical effects [17,18], we have recently shown that
fluids of light can also be studied in a so-called optical mesh
lattice [19]. The central idea of this setup is to exploit the
arrival time of classical optical pulses propagating in coupled
optical fiber loops to encode one (or more [20,21]) discrete
synthetic spatial dimensions [17,18,22]. In contrast to more
traditional platforms for fluids of light [1,14–16], the flex-
ibility of our setup allows for the observation of the full
light-field dynamics for long propagation times; the engineer-
ing of arbitrary dynamical potentials, such as both stationary
and moving defects; and the control of the effective nonlinear-
ity in a wide range with standard optoelectronic components.
Previously, these advantages have been exploited in studies
of, e.g., PT -symmetric physics [18,21–25] and topological
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effects [26–29]. In our recent experiment [19], we observed
several key qualitative signatures of superfluid-like behavior,
including a nonzero speed of sound due to nonlinear effects
and the breakdown of apparent superfluidity above a critical-
velocity threshold.

In the present paper, we develop a general and complete
theory for fluids of light in optical mesh lattices, and we
present its application to our experimental setup. The full
development of this theory requires a detailed study of a
number of features that are specific to our platform, namely,
the effect of the peculiar connectivity of the optical mesh
lattice and the Floquet nature of the evolution given by the
repeated propagation of the light pulses around the fiber loops.
In addition to providing a solid interpretation of the experi-
mental observations in [19], we describe alternative superfluid
hydrodynamics effects which will directly follow from the
features of our platform. These include a more complex de-
pendence of the speed of sound on the density, the onset of
dynamical instabilities of the superfluid at high densities, and
a weakened superfluidity by Umklapp processes due to the
spatial periodicity.

The structure of the article is built with two types of read-
ers in mind. Firstly, researchers interested in reproducing the
experiment and/or understanding all details of its theoreti-
cal interpretation will find that the full article is a reference
summarizing all important aspects of optical mesh lattices for
hydrodynamic experiments. Secondly, readers that are inter-
ested in the general physics of fluids of light in optical mesh
lattices can focus on the general theory and discussion of
analogies and differences with other platforms for fluids of
light, but may skip those subsections that are mostly devoted
to the details of realistic experimental set-ups. Specifically,
in Sec. II we present an in-depth analysis of the evolution
equations for the nonlinear optical mesh lattice. Building atop
the known theory, we present a complete theory of photonic
bands in the linear regime and of the Bogoliubov collective
excitations in a weakly interacting fluid of light. Analogies
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with relativistic Dirac-type superfluids are also drawn. In
Sec. III we numerically demonstrate how to accurately mea-
sure the corresponding speed of sound from the effects of a
stationary defect in a realistic optical mesh lattice experiment.
While Sec. III A is of general interest, the following Secs. III B
and III C address all those details that are of crucial interest
for experiments. This provides a comprehensive theoretical
framework to the results previously presented in the main
text and the Supplemental Material of Ref. [19]. In Sec. IV
we numerically investigate the effective critical velocity for
superfluidity and, in particular, the impact of Umklapp pro-
cesses due to the periodicity of the optical mesh lattice. To
this purpose, we explore a restricted Landau criterion, and
we identify the apparent threshold for the emission of col-
lective excitations by a moving defect. Once again, the first
Secs. IV A and IV B are of general interest, with specific
experimental details being discussed in Sec. IV C. Finally, we
draw conclusions in Sec. V.

II. NONLINEAR OPTICAL MESH LATTICES

In this section we shall begin by introducing light evolution
in nonlinear optical mesh lattices. We then review the deriva-
tion of the Bogoliubov dispersion for weak perturbations
propagating on top of a stationary and uniform optical field.
As we show, this predicts a speed of sound for low-wavelength
and low-energy excitations, which tends to zero in the limit
of vanishing nonlinearity. As we discuss, this system shares
many features with a Dirac-type relativistic superfluid, such
as the existence of an instability for high defocusing nonlin-
earity and a maximum speed of sound. The nonlinear optical
mesh lattice therefore opens the way towards the experimental
investigation of nonlinear and relativistic effects.

A. Evolution in a nonlinear optical mesh lattice

The discrete time evolution of light moving in a one-
dimensional optical mesh lattice is realized via a time-
multiplexing scheme, based on two coupled optical fiber loops
[17,18,22], as shown in Fig. 1(a). In the basic setup, a light
pulse is injected into one loop, and it then propagates around
the loop until it is split by the (50-50) beamsplitter into two
pulses, one circulating in each loop. When these pulses again
reach the beamsplitter, they are each split into two more pulses
and so on. A detector in one of the loops then observes a train
of pulses over time, as shown in the example in Fig. 1(b).

The time-multiplexing scheme relies on choosing the
lengths of the loops, L1 and L2, such that there is a small
but nonzero length difference, �L = L1 − L2, as well as a
long average length L̃ = (L1 + L2)/2, with L̃ � �L. This
guarantees that there is a clear separation of timescales be-
tween the average round-trip time, T̃ = (T1 + T2)/2 and the
relative time delay, �T = T1 − T2, where T1 (T2) are the times
taken for a light pulse to travel around the long (short) loop.
Provided that the pulse width is narrower than the minimum
pulse separation �T , the arrival time of the pulses from each
loop (before they are combined) at the beamsplitter can be
expressed as T = mT̃ + n�T/2, where m and n are two
integers. Physically, the integer m counts the total number
of round trips, while n counts how many more round trips

each pulse made in the long instead of the short loop. This
identification is unambiguous provided that all the pulses from
each round-trip fit in the time window T2 set by propagation
around the shorter loop; this typically allows for evolutions
over several hundred round trips depending on the length
of the fiber loops chosen. At longer times, the identification
of individual pulses may not be possible as a pulse with a
large positive value of n after m round trips may overlap with
a pulse with a large negative value of n after m + 1 round
trips. However, experimentally the evolution of the light field
can be confined to small |n| values through the control, e.g.,
of additional amplitude modulators thus realizing absorbing
boundary conditions, in which case it is possible to propagate
for an even larger number of round trips [19,31–33].

To reinterpret the evolution in terms of lattice dynamics,
we note that, as the light propagates, the integer m always
increases for each successive round trip, while the integer n
can either increase or decrease by one depending on whether
the short or long loop is traversed. Guided by this, the integer
m can be interpreted as a discrete time step, while n is a
discrete position index along a “synthetic spatial dimension.”
This leads to the effective (1 + 1)D optical mesh lattice shown
schematically in Fig. 1(c). Using this mapping, we can then
replot the measured pulse intensities extracted from a time
trace [Fig. 1(b)], to reveal the light dynamics in the synthetic
optical mesh lattice [see Fig. 1(d)].

In all experiments pulses were long enough and the loop
lengths similar enough that dispersion effects do not play a
significant role for the experimentally realized propagation
length: the pulses emerging after each round trip have an
almost identical shape independently of their previous path
along short and long loops, which guarantees their perfect
overlap at the beamsplitter. Under these assumptions, each
pulse can be characterized by a single complex amplitude
only, as further discussed, e.g., in Refs. [23,31]. The pulse
distribution at step m + 1 is then described by the evolution
equations [23,30,34]:

um+1
n = 1√

2

(
um

n+1ei�|um
n+1|2 + ivm

n+1ei�|vm
n+1|2)eiϕm

n , (1)

vm+1
n = 1√

2

(
vm

n−1ei�|vm
n−1|2 + ium

n−1ei�|um
n−1|2)eiφm

n , (2)

where the two components um
n and vm

n of the wave function
denote the pulse amplitude entering the beamsplitter from the
short and long loop, respectively. The relative phase shift of
π/2 for light that couples from one loop to the other loop is
a consequence of energy conservation at the symmetric 50-50
beamsplitter. Note that an unusual feature of the optical mesh
lattice is its diamond connectivity over time, as physically,
light travels through either the short loop (n → n − 1) or the
long loop (n → n + 1).

To reach the nonlinear optical regime, dispersion com-
pensating optical fibers can be used for the fiber loops, as
these have a significantly higher nonlinearity and suppress the
growth of modulational instabilities inside the pulses when the
light propagates over long distances with high intensity [35].
In our formalism, the coefficient � accounts for the effective
nonlinear action accumulated within a single round trip and
is taken to be the same for both loops. Note that a positive �
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(a) (c)
(d)

(b)

FIG. 1. (a) Optical pulses propagate around a long and a short fiber loop, coupled by a 50-50 beamsplitter. (b) To illustrate the basic
operation of this setup, we plot the time-dependent light intensity signal (upper blue line) measured in the short loop in a simple example of a
“Light Walk” experiment, where a single optical pulse is initially injected into one loop of a linear system [30,31]. Over time a train of pulses
is observed, and the average pulse height of each pulse is extracted (lower orange line). Amplifiers are present in both loops to compensate
for losses during the experiment. As can be seen, a distinct group of pulses appears after each time period T̄ , corresponding to the average
round-trip time. (In this example, T̄ ≈ 5200 ns as the average loop length was roughly 1 km.) When we zoom in, we see that pulses within
a group are further separated by multiples of �T (here �T ≈ 35.4 ns) corresponding to the time delay for a pulse to travel around the long
rather than the short loop. Due to a clear separation of the timescales T̄ and �T , we can label each pulse by (m, n), where these are integers
counting, respectively, the total number of round trips and the excess number of round trips in the long compared to the short loop. Note that,
as can be seen in the inset, for the present “Light Walk” experiment there is destructive interference between the different optical paths to
(m, n) = (3, 0), so that the central peak is absent. (c) A schematic showing the reinterpretation of the two integers, n and m, as, respectively,
the discrete position in a 1D lattice, n, and the discrete time step, m. Under this mapping, completing a round trip in the short or long loop
in (a) corresponds respectively to traveling from northeast or northwest to the southwest or southeast in the diamond lattice sketched in (c).
(d) The average pulse heights extracted from the example in (b) can be replotted in terms of m and n to reveal the time evolution of the light
field in the optical mesh lattice. For this example, the light spreads out with the characteristic distribution of a “Light Walk,” with interference
effects clearly being visible. Note that due to the intrinsic diamond connectivity, only either even or odd lattice sites are physically accessible
at each time step. Panels (b) and (d) are reproduced from Ref. [19].

(as describes usual dispersion-compensating fibers) actually
corresponds to having a negative interaction energy in the
language of quantum fluids.

The phase shifts ϕm
n and φm

n are controlled by phase modu-
lators inserted in each loop. As these modulators can respond
faster than the minimum pulse separation, �T , the imposed
phase shifts can be designed with an arbitrary dependence
on both pulse indices, m and n. For particles moving in
a lattice, this is analogous to adding an effective potential,
which varies both with position and time step, and which
can moreover be different for the two components um

n , vm
n of

the wave function. This provides a versatile way to control
the properties of optical mesh lattices; for example, previous

experiments have utilized specially designed phase together
with amplitude modulations as a tool to create and investigate
PT -symmetric optical mesh lattices [18,24,25,36], to investi-
gate optical diametric drive acceleration [23], to engineer and
map out the Berry curvature of the optical band-structure [37],
and to confine (i.e., trap) the optical field around a desired
position, n [19]. In this work we use the phase shifts as a way
to imprint defects on the light field in Secs. III and IV.

B. Photonic band structure

In order to physically understand the behavior of the mesh
lattice, the first step of our study is to look for the band
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(a) (b) (c)

(d) (e) (f)

FIG. 2. (a) Optical mesh lattice (redrawn from Fig. 1), with a red dashed box indicating double steps in time and space, as used in
Calculation Method 1. (b) The extended mesh lattice used in Calculation Method 2, with auxiliary sites (red squares) as well as physical sites
(white circles). In the extended lattice, auxiliary sites and physical sites are always decoupled due to the diamond connectivity (dotted and
solid lines). (c) The optical mesh lattice as viewed in a moving frame in Calculation Method 3, with l = n − m. (d–f) Plots of the Floquet
quasi-energy dispersion in a uniform φm

n = ϕm
n = 0 and linear � = 0 optical mesh lattice, as calculated using pictures (a)–(c), respectively. Note

that (f) shows the quasi-energy in the moving frame θ ′ (for the laboratory frame; see Fig. 3). While these methods all give physically consistent
results, each has its own subtleties (see discussion). In brief, the varying scales of the axes indicate the different sizes of the first Floquet-Bloch
Brillouin zone for each method. At the Floquet-Bloch Brillouin zone boundary, corresponding states are indicated by yellow circles and blue
stars, showing significant differences between each method. First, for Method 1 in (d), the two bands cross at the zone boundaries, indicating
a missed symmetry. Second, for Method 2 in (e), the bands are nondegenerate and do not touch, but the total number of states has doubled as
auxiliary degrees of freedom have been included beyond the physical ones. Third, for Method 3 in (f), the upper-band (lower-band) state at
Q = −π/2 is continuously connected to the lower-band (upper-band) state at Q = π/2, indicating an unusual boundary condition (see Fig. 3).

structure for vanishing nonlinearity � = 0 and vanishing
phases ϕm

n = φm
n = 0. However, there are important subtleties

in this derivation stemming from the unusual diamond con-
nectivity of the lattice with respect to the discrete time step
[Fig. 1(b)]. To illustrate this, we shall now discuss, in turn,
three distinct theoretical approaches, based on introducing, re-
spectively (1) double steps in time and space, (2) an extended
lattice with auxiliary lattice sites, and (3) a moving frame.
Each of these approaches gives physically equivalent results,
but with subtleties that need to be taken into account.

Calculation method 1: Double steps

Given the diamond connectivity shown in Fig. 1(c), the
simplest approach is to anticipate that the optical mesh lat-
tice is periodic under double steps in the discrete time step
m → m + 2 and the position n → n + 2. The linear evolution
equations for a double time step from (1) and (2) are

um+2
n = 1

2

(
um

n+2 + ivm
n+2 + ivm

n − um
n

)
, (3)

vm+2
n = 1

2

(
vm

n−2 + ium
n−2 + ium

n − vm
n

)
, (4)

where we have set � = 0 and ϕm
n = φm

n = 0. One can then
look for plane-wave solutions of the form [18,22](

um
n

vm
n

)
=

(
ū(Q)
v̄(Q)

)
eiQn e−iϑm, (5)

with wavevector Q and Floquet quasi-energy ϑ . Insertion of
this Floquet-Bloch ansatz into the double-step equations leads

to the characteristic equation for the band structure

e−2iϑ

(
ū

v̄

)
= 1

2

(
e2iQ − 1 i(e2iQ + 1)

i(e−2iQ + 1) e−2iQ − 1

)(
ū
v̄

)
, (6)

which can be solved to give the dispersion relation [22]:

cos ϑ j = 1√
2

cos Q, (7)

where j = ±1 is the band index and the wave vector Q
and Floquet quasi-energy ϑ are defined within the Floquet-
Brillouin zone −π/2 � Q, ϑ < π/2, reflecting that we are
considering double steps in both position and time. This
dispersion is plotted in Fig. 2(d); however, as can be seen,
there is a band crossing (indicated by yellow circles) at the
Floquet-Brillouin zone boundary (i.e., at |Q| = |ϑ | = π/2),
which hints at some missed symmetry in this method. This
remaining symmetry can be broken and the band degeneracy
is lifted if we impose explicit double-step modulations in the
evolution, for example, through the phases, ϕm

n , φm
n . In such

cases, an even cleaner approach can be used to redefine m as
the number of double round trips, such that the light evolution
is described by a set of four coupled equations (instead of
two). However, as we do not consider explicit double-step
modulations in this paper, we will focus on other calculation
approaches, which do not give these spurious band crossings.
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Calculation method 2: Auxiliary lattice

The second method we will discuss is to artificially ex-
tend the lattice by adding in auxiliary sites (red squares) at
odd (even) positions at even (odd) time steps, as shown in
Fig. 2(b). When taken together with the physical lattice sites
(white circles), this means that we have a full square lattice
(in terms of discrete time-position space), except with only
diagonal connectivity (dotted and solid lines). Due to this
connectivity, a physical field which is initialized at m = 0 with
a nonvanishing amplitude only in the physical even sites will
continue to only be nonzero on physical even (odd) sites at all
even (resp. odd) time steps m.

Since the system of physical plus auxiliary sites is a square
lattice, we can apply the ansatz (5) to the single-step evolution
equations (1) and (2), taking � = 0 and ϕm

n = φm
n = 0. The

corresponding characteristic equation for the band structure is

e−iϑ

(
ū j (Q)
v̄ j (Q)

)
= 1√

2

(
eiQ ieiQ

ie−iQ e−iQ

)(
ū j (Q)
v̄ j (Q)

)
, (8)

which gives the same form for the dispersion as Eq. (7), except
now defined within −π � ϑ, Q < π as plotted in Fig. 2(e).
Note that the periodicity of the dispersion in the Bloch mo-
mentum and the Floquet quasi-energy is now consistent with
the unit step periodicity of the lattice in both spatial and
temporal directions and there are no spurious band crossings.

However, as we still find the same form for the dispersion
despite having doubled the domain of Q (from −π/2 � Q <

π/2 in Method 1 to −π � Q < π in Method 2), we have
actually found twice as many states as before. This can be
understood by remembering that we artificially doubled our
degrees of freedom by adding in the nonphysical auxiliary
lattice sites. Therefore, while the dispersion relation for this
extended lattice appears to be simple, the condition that the
field is nonzero only on the physical sites (while vanishing on
the auxiliary sites) must be reflected in the momentum-space
picture in a subtle way. In fact, it is not encoded in the band
dispersion (or in the selection of a particular branch), but
rather it can be expressed in terms of a restriction on the
amplitude of the field in the different Bloch modes of the ex-
tended lattice. To see this, we note from Eq. (8) that the
eigenmodes satisfy the symmetry condition(

ū j (Q)
v̄ j (Q)

)
=

(
ū− j (Q + π )
v̄− j (Q + π )

)
. (9)

It is then easy to verify that the momentum-space field ampli-
tudes of a generic physical initial state must satisfy

α j (Q) = α− j (Q + π ), (10)

in order that the field vanishes on the auxiliary sites, which
were introduced only for mathematical convenience. The
relation θ− j (Q + π ) = θ j (Q) + π between the Floquet quasi-
energies of the two bands guarantees that the condition (10)
remains fulfilled at arbitrary even time steps m during the
time evolution. At odd time steps, instead, this same condition
guarantees that the field amplitude is nonvanishing only at odd
sites (i.e., the physical lattice sites).

As Eq. (10) implies, any physical state must contain pairs
of Bloch eigenstate of the extended lattice, and any generic
physical state will contain several Floquet quasi-energies.

This pairing of states removes the unphysical auxiliary de-
grees of freedom, making the state counting for physical
states consistent again with that in Method 1. As an explicit
example of this state pairing, let us consider the concrete
example of a field that is uniform throughout the whole phys-
ical 1D lattice (i.e., that at, an even time step, has an equal
amplitude at all even positions and zero amplitude at all odd
positions). In terms of the Bloch eigenstates of the extended
lattice, this corresponds to the superposition of the two states
Q = 0, j = 1 and Q = π , j = −1 for the upper band or
of the two states Q = 0, j = −1 and Q = π , j = 1 for the
lower band.

Introducing auxiliary lattice sites is therefore a useful and
simple method for carrying out calculations, but care is re-
quired when interpreting the results, as we shall return to
again when discussing Bogoliubov calculations in the next
section. We also note that as the specific connectivity of the
extended lattice keeps the physical and unphysical auxiliary
sectors totally disconnected, there is no practical problem in
restricting our attention to one of the two components only
and keeping in mind only at the end that the physical field has
to contain an implicit multiplication by mod(n + m, 2).

Calculation method 3: A moving frame

The final approach we shall discuss is to carry out the
calculation in a quasimoving frame [see Fig. 2(c)]. Here we
fix the position zero to multiples of the round trip time of the
long loop T1 and not to the average round-trip time T̃ as was
done before. This avoids the difficulties of the two previous
methods but introduces a new subtlety. To transform into this
quasimoving frame, we redraw the lattice and change the co-
ordinate system to (m, l ) where l = n − m. In this frame, the
nonlinear equations [Eqs. (1) and (2)] with vanishing phases
ϕm

n = φm
n = 0 become

um+1
l = 1√

2

(
um

l+2ei�|um
l+2|2 + ivm

l+2ei�|vm
l+2|2), (11)

vm+1
l = 1√

2

(
vm

l ei�|vm
l |2 + ium

l ei�|um
l |2), (12)

and so we need to consider only even values of l in our
lattice. Considering the linear case (� = 0), we can solve
these equations by using the Floquet-Bloch ansatz (5), making
the replacement ϑ → ϑ ′, as we are now solving for the quasi-
energy ϑ ′ in the moving frame. The characteristic equation for
the band structure is then

e−iϑ ′
(

ūl (Q)
v̄l (Q)

)
= 1√

2

(
e2iQ ie2iQ

i 1

)(
ūl (Q)
v̄l (Q)

)
,

which leads to the dispersion

cos(ϑ ′
j + Q) = 1√

2
cos Q, (13)

as plotted in Fig. 2(f). Note now −π/2 � Q < π/2 and
−π � ϑ ′ < π , as our Eqs. (11) and (12) describe two steps
along l and one step along m. As can be seen, the dispersion
has two slanted bands as it is in a moving frame.

To transform back into the laboratory frame, we can make
use of a Galilean transform ϑ = ϑ ′ + Q where the moving
frame is moving at a speed of one site per time step, as can
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FIG. 3. (a) Floquet quasi-energy dispersion obtained after trans-
forming the dispersion in Fig. 2(f) for the moving lattice (Method
3) back into the laboratory frame via the Galilean transform θ =
θ ′ + Q. The blue stars and yellow circles indicate the correspondence
between states identified in Fig. 2(f). (b) Applying these boundary
conditions, we can construct the dispersion in an extended zone be-
tween −π � Q < π with the first Brillouin zone marked by vertical
gray dotted lines. This is fully equivalent to the dispersion obtained
via Method 2, shown in Fig. 2(c), and the colors of the curves can
be seen as representing the symmetry condition noted in (9). With
respect to this larger momentum range, the dispersion is periodic and
has normal boundary conditions at the zone boundaries (as indicated
by green diamonds and pink squares).

be seen from Fig. 2(c). Then from Eq. (13) we recover the
dispersion (7) found in Methods 1 and 2, except now with
the Bloch momentum defined over −π/2 � Q < π/2 and the
quasi-energy over −π � ϑ < π as shown in Fig. 3(a). This
confirms that Method 3 is physically consistent with other
methods, but with the advantage of avoiding the issues with
spurious band crossings and overcounting of states.

However, Method 3 does have its own important subtlety,
as there are now unusual boundary conditions at the Brillouin
zone boundary stemming from the Galilean transform. As
can be seen comparing Figs. 2(f) and 3(a), we must identify
the upper (lower) band eigenstate at Q = −π/2 with the
lower (upper) band eigenstate at Q = π/2. In fact, this is
the same symmetry condition as (9) and corresponds to a
shift of π in the quasi-energy when we match up opposite
edges of this Brillouin zone. This becomes crucial when we
use the laboratory-frame dispersion [Fig. 3(a)] to construct
the extended-zone dispersion in Fig. 3(b), corresponding to
the first two Brillouin zones. Here we see that by using the
unusual boundary conditions we recover the same dispersion
as in Method 2 [Fig. 2(e)]. An advantage of using Method
3 as compared to Method 2 is that the symmetry condition
on the eigenstates (9) is immediately clear from the coloring
of the bands. Note also that for this larger momentum range,
−π � Q < π , we recover normal boundary conditions, as
shown by green diamonds and pink squares in Fig. 3(b).

C. Bogoliubov dispersion

In order to derive the Bogoliubov dispersion of collective
excitations, one needs to consider the dynamics of small per-
turbations, δum

n and δvm
n , on top of a stationary and initially

unperturbed light field, i.e., such that um
n → um

n + δum
n and

vm
n → vm

n + δvm
n [38,39]. We shall now show how the Bogoli-

ubov dispersion can be obtained by extending either the above

Method 2 (of auxiliary lattice sites) or the above Method 3 (of
a moving frame).

1. Bogoliubov theory from Method 2

Continuing from Sec. II B, we assume the unperturbed
light field is at Q = 0 and is described by

(
um

n

vm
n

)
=

( √
I0

∓√
I0

)
e∓iπ/4mei�I0m, (14)

where I0 is the light intensity in each loop. The two signs
correspond to the eigenstates of the j = ±1 upper and lower
bands, and we have inserted the form of the corresponding
eigenstates and quasi-energies ϑ = ±π/4 at Q=0 (see Eq. 7)
[31]. At Q = 0, the group velocity of the linear dispersion
relation vanishes, and hence the light field is stationary, while
the effective mass, m∗ ∝ (∂2ϑ/∂Q2)−1, is maximal and of
opposite (positive or negative) sign in the two (upper or lower)
bands.

Note that this calculation considers a field that is nonva-
nishing at all sites and implicitly assumes that the physical
field is obtained after multiplying by mod(n + m, 2). If one
wished to restrict the field to the physical sites at all steps,
one would have to develop a Bogoliubov theory around a
time-dependent state involving two components at different
Floquet quasi-energy, which is a much more complicated task.
However, since the dynamics of the physical and auxiliary
sites are decoupled also at nonlinear level, we anticipate that
the Bogoliubov dispersion is not affected by the inclusion of
the auxiliary sites.

In the nonlinear regime, the sign of the effective mass
has important consequences on the stability of the system
[40]. In particular, if the nonlinearity, �, and the effective
mass, m∗, have the same sign, it corresponds to a focusing
nonlinearity which destabilizes the system, as for a BEC with
attractive interactions [38]. To avoid this instability, a defo-
cusing nonlinearity is required; when the nonlinearity � > 0
(� < 0), this can be achieved by exciting the lower (upper)
band eigenstate, for which the effective mass is negative (posi-
tive). From here on, we focus on the � > 0 case that is relevant
to the experiments [19], and so discuss only the lower-band
eigenstate in (14).

The small perturbations, δum
n and δvm

n , are described by a
temporally and spatially periodic ansatz [19]:

(
δum

n

δvm
n

)
=

(
Aue−i(θm−kn) + B∗

uei(θm−kn)

Ave−i(θm−kn) + B∗
vei(θm−kn)

)
, (15)

where Au, Av, Bu, Bv are constant coefficients and where θ

and k are now the “energy” and “Bloch momentum” of the
Bogoliubov excitations.

Inserting this ansatz into the nonlinear evolution equa-
tions (1) and (2) and linearizing in the small perturbation,
one gets the following matrix equation for the collective
eigenmodes:

e−iθ 
� = Lk 
�, (16)
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FIG. 4. Real (top panels) and imaginary (bottom panels) parts of the Bogoliubov dispersion for an unperturbed light field in the lower band
of the nonlinear optical mesh lattice [Eq. (17)], for different values of the nonlinearity parameter: �I0 = −0.1, 0, 0.2, 0.4, 0.5, 0.55 (left to
right). The phonon-like linear dispersions (Eq. 19) are marked by the blue dashed lines. The black, red, or green (in grayscale resp. black, gray,
or light gray) of each curve indicates the negative, positive, or zero value of the Bogoliubov norm of the band, respectively. For �I0 < 0 and
�I0 > 0.5, the bands develop a nonzero imaginary part, indicating dynamical instability.

with 
� = (Au, Av, Bu, Bv )T and the Bogoliubov matrix

Lk =

⎛
⎜⎜⎜⎜⎝

1+i�I0
1+i eik i−�I0

1+i eik i�I0
1+i eik −�I0

1+i eik

i−�I0
1+i e−ik 1+i�I0

1+i e−ik −�I0
1+i e−ik i�I0

1+i e−ik

−i�I0
1−i eik −�I0

1−i eik 1−i�I0
1−i eik −i−�I0

1−i eik

−�I0
1−i e−ik −i�I0

1−i e−ik −i−�I0
1−i e−ik 1−i�I0

1−i e−ik

⎞
⎟⎟⎟⎟⎠.

Solving this equation leads to the Bogoliubov dispersion
relation:

cos θ = 1
2�I0 cos k + 1

2 cos k

± 1
2

√(
�2I2

0 + 2�I0 + 1
)

cos2 k + 2 sin2 k − 4�I0,

(17)

which consists of four branches, within the Floquet-Brillouin
zone −π � k, θ < π . In Fig. 4 these branches are plotted
in black, red, and green depending on the negative, posi-
tive, and zero value, respectively, of the Bogoliubov norm
|Au|2 + |Av|2 − |Bu|2 − |Bv|2. As usual, branches are orga-
nized in pairs with opposite quasimomentum k and Floquet
quasi-energy and opposite norm. As a consequence of the
overall phase-rotation symmetry of the problem, a pair of
positive- and negative-norm branches must go through the
k = 0 and θ = 0 point according to Goldstone’s theorem, and
as can be seen here.

However, as we are implicitly adding auxiliary lattice sites
and working in the extended-lattice picture [see Fig. 2(b)],
we have again included unphysical degrees of freedom in this
calculation. Analogously to Sec. II B, there is a symmetry be-
tween states and quasi-energies, e.g., 
�− j,η(k + π ) = 
� j,η(k)
and θ− j,η(k + π ) = θ j,η(k) + π , where η is the sign of the Bo-
goliubov norm [such that the band labeling goes from bottom
to top in Fig. 4 as ( j, η) = (−1,−1), (−1, 1), (1,−1), (1, 1)].

Again, we can circumvent these complications by instead
carrying out the calculation in a moving frame.

2. Bogoliubov theory from Method 3

Now, following on from Sec. II B, we apply Bogoliubov
theory to the moving frame. As above, the unperturbed light
field is assumed to be at Q = 0 on the lower band and de-
scribed by (14). The small perturbations, δum

l and δvm
l , are also

again described by (15) when we rewrite θ → θ ′ to represent
the “energy” of the Bogoliubov excitations in the moving
frame. Inserting this ansatz into the evolution equations (11)
and (12) and linearizing in the small perturbation, one gets the
following Bogoliubov matrix:

Lk =

⎛
⎜⎜⎜⎜⎝

1+i�I0
1+i e2ik i−�I0

1+i e2ik i�I0
1+i e2ik −�I0

1+i e2ik

i−�I0
1+i

1+i�I0
1+i

−�I0
1+i

i�I0
1+i

−i�I0
1−i e2ik −�I0

1−i e2ik 1−i�I0
1−i e2ik −i−�I0

1−i e2ik

−�I0
1−i

−i�I0
1−i

−i−�I0
1−i

1−i�I0
1−i

⎞
⎟⎟⎟⎟⎠,

which leads to

cos(θ ′ + k)

= 1
2�I0 cos k + 1

2 cos k

± 1
2

√(
�2I2

0 + 2�I0 + 1
)

cos2 k + 2 sin2 k − 4�I0,

(18)

which describes four slanted Bogoliubov bands, as shown
in Fig. 5(a) for �I0 = 0.2. Again, this dispersion can be
transformed back to the laboratory frame by substituting θ =
θ ′ + k, recapturing Eq. (17) and as shown in Fig. 5(b). As
before, the major differences with Method 2 are that now
−π/2 � k < π/2 and −π � θ < π , meaning that Method 3
captures only the desired physical states, but with the price
of an unusual boundary condition that connects bands with
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(a) (b)

(c)

FIG. 5. (a) Bogoliubov quasi-energy dispersion (18) for �I0 =
0.2 in the moving frame. The continuous connection of the bands
across the first Brillouin zone boundaries with the unusual boundary
conditions of this Method (see also Fig. 3) are indicated by the
symbols; bands with ( j, η) = (−1, −1), (−1, 1), (1,−1), (1, 1) are
colored in pink, blue, black, and red, respectively (as ordered from
the bottom to the top at k = 0). (b) The dispersion of (a) Galilean
transformed back into the laboratory frame via θ = θ ′ + k. (c) The
extended zone scheme between −π � k < π constructed from
(b) (with the first Brillouin zone marked by vertical gray dotted
lines). This is fully equivalent to the Bogoliubov dispersion obtained
via Method 2, shown in Fig. 4, with the colors of the curves now also
showing the symmetry condition on the states. With respect to this
larger momentum range, the dispersion is periodic and has normal
boundary conditions (as indicated by open gray symbols).

opposite j (and the same Bogoliubov norm η) across the
Brillouin zone boundary (as shown by symbols in Fig. 5).

Enforcing this boundary condition when plotting an
extended-zone scheme in Fig. 5(c) then exactly recovers the
curves obtained via Method 2 in Fig. 4. The symmetry that
relates eigenstates in different branches can also be clearly vi-
sualized in Fig. 5(c) through the matching colors of the curves.
Within this extended-zone scheme (corresponding to the first
two Brillouin zones of the physical lattice), the Bogoliubov
dispersion is periodic in the usual sense, as shown by open
gray symbols in Fig. 5(c). For this reason, hereafter, we shall
focus on the Bogoliubov dispersion between −π � k < π .

Through this extended theoretical discussion, we have
therefore established the basis for a Bogoliubov description of
fluids of light in optical mesh lattices; hereafter we will focus
on the physical implications of these results, without further
detailed discussion of the underlying subtleties.

D. Bogoliubov instabilities and speed of sound

As can be seen in Fig. 4, for finite nonlinearities, the
Bogoliubov dispersion (17) can develop nonzero imaginary
parts, indicating parameters for which the system is unstable.

(a) (b) (c)

FIG. 6. Speed of sound as calculated for (a) the optical mesh
lattice, (b) the GPE equation, and (c) a Dirac-type relativistic model,
inspired by the optical mesh lattice. As can be seen, the speed of
sound in the optical mesh lattice and the Dirac-type model share the
same functional form and are limited by the stability of the field, in
contrast to the GPE result which increases without bound.

Firstly, this occurs when � < 0, corresponding to having a
focusing nonlinearity for the lower-band eigenstate with nega-
tive effective mass, as already discussed above. Secondly, and
more interestingly, the system is also unstable for a defocusing
nonlinearity when � > 0.5. This is a peculiar feature of our
two component model and is completely absent in the one-
component GPE. It arises due to level attraction between the
two opposite-norm Bogoliubov branches in the neighborhood
of the two points k = ±π/2, leading to exceptional points in
the Bogoliubov spectrum. We will numerically demonstrate
the occurrence of this instability in Sec. IV B; this has not
yet been observed experimentally as it requires a very high
nonlinearity and hence a very strong light intensity.

In the intermediate region 0 � �I0 � 0.5 of stability, the
Bogoliubov dispersion is purely real; still, the dispersion is
dramatically affected by the interactions. This can be seen
by noting that in the linear regime (� = 0), straightforward
trigonometric algebra shows that the positive-norm η > 0
components of the Bogoliubov dispersion (17) recover (mod-
ulo a shift by the Floquet quasi-energy of the unperturbed
state θ = −π/4) the band dispersion (7) in the absence of
nonlinearities. Hence, in the linear case, all branches have a
parabolic dispersion around k = 0, π .

However, in the nonlinear regime, in the vicinity of k = 0,
the upper (Goldstone) branch (i.e., with j = −1, η = 1 in the
notation introduce above) acquires a linear form:

θ (k) = −
√

�I0

1 − �I0
|k| + O(|k|3), (19)

indicating that the long-wavelength excitations of the system
are phonon-like, moving with a speed of sound:

vs =
√

�I0

1 − �I0
, (20)

as indicated by the blue dashed lines in Fig. 4 and as shown
in Fig. 6. Interestingly, this speed of sound appears to diverge
for �I0 → 1; however, the system is also unstable at such high
nonlinearities, and so, in practice, the speed of sound is bound
by its maximum value of vs → 1 that is reached for �I0 →
0.5. This is still twice as large as the maximum speed which
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linear excitations on the empty lattice can acquire. As we now
discuss, this is unlike the usual behavior of superfluids, but
instead can be viewed as a relativistic effect, stemming from
the form of the evolution equations.

E. Comparison with nonrelativistic
and relativistic quantum fluids

We now compare the above results, firstly, with the usual
nonrelativistic Gross-Pitaevskii equation (GPE) describing,
for example, weakly interacing cold atomic Bose-Einstein
condensates [38], and secondly, with a type of Dirac relativis-
tic system, which is motivated from the continuum limit of the
linear optical mesh lattice.

The GPE can be written as [38]

i
∂ψ

∂t
= − 1

2M

∂2ψ

∂x2
+ g|ψ |2ψ, (21)

where ψ is the wave function, M is the particle mass, g is
the mean-field interaction parameter, and we have set h̄ = 1.
Expanding with respect to small perturbations to the light field
as ψ = ψ0 + δψ , the well-known Bogoliubov dispersion for
a homogeneous system is found as [38,39]

ω = ±
√

gI0

M
p2 +

(
p2

2M

)2

, (22)

where I0 = |ψ0|2 is the unperturbed density, and ω and p are,
respectively, the frequency and momentum of the elementary
excitations. For small momenta, this dispersion can be ex-
panded as ω(p) = vGPE p, where the speed of sound is given
by

vGPE =
√

gI0/M,

as shown in Fig. 6. As in the optical mesh lattice, the system
is unstable if g < 0, corresponding to attractive interactions
between particles. However, unlike the optical mesh lattice,
there is no second instability in this dispersion when g > 0,
and vGPE simply increases as

√
g without either a maximum

or divergence at finite nonlinearity strength.
To find a system which is more similar to the optical

mesh lattice, we return first to the underlying evolution equa-
tions (1)-(2). In the absence of nonlinearities, � = 0, these
equations can be written, after some algebra and relabeling,
as [31]

√
2
(
um+1

n − um−1
n

) = (
um

n+1 − um
n−1

) + 2ivm
n ,

√
2
(
vm+1

n − vm−1
n

) = −(
vm

n+1 − vm
n−1

) + 2ium
n , (23)

where discretized derivatives with respect to the time step
and position are recognizable on the left- and right-hand side,
respectively. Taking the continuum limit, these equations can
be written compactly as

i
∂

∂t

(
ψ

χ

)
= iσz√

2

∂

∂x

(
ψ

χ

)
−

√
2σx

(
ψ

χ

)
, (24)

where we have taken �t = �x = 1, and where the two com-
ponents of the vector (ψ, χ )T reflect the short and long loop
degrees of freedom, (u, v)T . For compactness, we have intro-
duced the Pauli matrices σz and σx. From the first-order spatial

derivative on the right-hand side, this can be recognized as a
type of relativistic Dirac equation for a two-component spinor
wave function. In the nonlinear regime, such a simple direct
mapping is no longer possible. Nonetheless, motivated by this
analogy, we consider a nonlinear version of (24) as

i
∂

∂t

(
ψ

χ

)
=

[
icσz

∂

∂x
+ Mc2σx + α

(|ψ |2 0
0 |χ |2

)](
ψ

χ

)
,

(25)

where we have introduced a speed of light c = 1/
√

2 and a
mass M = −2

√
2. The parameter α = −�

√
2 quantifies the

strength of the nonlinearity, whose form is chosen such that
each component interacts with itself but not with the one in
the other loop. Note that we did not introduce units for time
and space in Eq. (24) and therefore the quantities introduced in
the Dirac equation lack a unit as well. Similar equations have
also been studied to describe cold atoms in a honeycomb
lattice [41,42].

As in Sec. II B we begin by checking the linear (α = 0)
dispersion by using a plane-wave ansatz:(

ψ (x, t )
χ (x, t )

)
=

(
ψ0

χ0

)
ei(Px−�t ), (26)

where P is the corresponding momentum and � is the fre-
quency. This leads to �2 = P2c2 + M2c4, as expected for a
relativistic Dirac model. As this is a continuum rather than a
lattice model, none of the sublattice issues discussed in detail
in Sec. II B are any longer relevant.

The Bogoliubov dispersion of collective excitations can
then be calculated, as before, by considering small pertur-
bation on top of a stationary and initially unperturbed field,
i.e., such that ψ → ψ0 + δψ and χ → χ0 + δχ . Similar to
Sec. II C, we assume the unperturbed light field to have a finite
power and to be at rest at P = 0, as described by(

ψ (x, t )
χ (x, t )

)
=

( √
I0

∓√
I0

)
e±iMc2t e−iαI0t , (27)

where the signs correspond to states with �(P = 0) =
∓Mc2 + αI0, respectively. Note that in terms of the mesh lat-
tice parameters introduced above, this corresponds to having
�(P = 0) = ±√

2 − √
2�I0.

As in the optical mesh lattice, our next step is to consider
weak perturbations on top of a uniform field at rest in the
lower band, i.e., at �(P = 0) = −√

2 − √
2�I0. The small

perturbations, δψ (x, t ) and δχ (x, t ), are described by a tem-
porally and spatially periodic ansatz,(

δψ (x, t )
δχ (x, t )

)
=

(
Aψe−i(ωt−px) + B∗

ψei(ωt−px)

Aχe−i(ωt−px) + B∗
χei(ωt−px)

)
, (28)

where Aψ, Aχ , Bψ, Bχ are constant coefficients and where
ω and p are the frequency and momentum of the Bogoli-
ubov excitations. Inserting this ansatz into the nonlinear
Dirac equation (24) and linearizing in the small perturba-
tions, one gets the following matrix equation for the collective
eigenmodes,

ω 
�D = Lp 
�D, (29)

063517-9



HANNAH M. PRICE et al. PHYSICAL REVIEW A 108, 063517 (2023)

FIG. 7. Real (top panels) and imaginary (bottom panels) parts of the Bogoliubov dispersion for the relativistic Dirac equation [Eq. (24)],
for different values of the nonlinearity parameter: αI0/Mc2 = −0.1, 0, 0.2, 0.4, 0.5, 0.55 (left to right). All other parameters M = −2

√
2,

c = 1/
√

2, I0 = 1 and α = −�
√

2 are chosen in analogy with the optical mesh lattice. The phonon-like linear dispersions [Eq. (30) are
marked by the blue dashed lines. The black, red, or green (in grayscale resp. black, gray, or light gray) of each curve indicates the negative,
positive, or zero value of the Bogoliubov norm of the band, respectively. For αI0/Mc2 < 0 and αI0/Mc2 > 0.5, the curves develop a nonzero
imaginary part, indicating dynamical instability. As can be seen, the low-momentum behavior is qualitatively very similar to that of the optical
mesh lattice (Fig. 4), while that at higher momenta deviates as the Dirac equation [Eq. (24)] describes a continuum model instead of a lattice.

with 
�D = (Aψ, Aχ , Bψ, Bχ )T and the Bogoliubov matrix

Lp =

⎛
⎜⎜⎜⎝

αI0 + cp − c2M c2M αI0 0

c2M αI0 − cp − c2M 0 αI0

−αI0 0 −αI0 + cp + c2M −c2M

0 −αI0 −c2M −αI0 − cp + c2M

⎞
⎟⎟⎟⎠.

Solving this equation leads to the Bogoliubov dispersion relation:

ω2/c2 = 2M2c2 − 2MαI0 + p2 ± 2
√

M4c4 − 2M3αI0c2 + (MαI0)2 + M p2(Mc2 − 2αI0).

As in the nonlinear optical mesh lattice [cf. Fig. 4], this has
two positive and two negative branches, which are plotted
in Fig. 7. These branches are plotted in black, red, or green
depending on the negative, positive, or zero value of the
Bogoliubov norm |Aψ |2 + |Aχ |2 − |Bψ |2 − |Bχ |2. As before,
branches are organized in pairs with opposite momentum p
and frequency ω and opposite norm, and one pair of these
branches goes through the p = 0 and ω = 0 point to sat-
isfy Goldstone’s theorem. As in the nonlinear optical mesh
lattice, the Bogoliubov dispersion becomes unstable when
αI0/Mc2 < 0 or αI0 > Mc2/2: the former instability stems
from the focusing nonlinearity, while the latter one arises from
a level attraction between pairs of opposite-norm Bogoliubov
branches.

The speed of sound for low momenta excitations is then

vD = c

√
αI0

Mc2 − αI0
, (30)

as also indicated in Fig. 7 and plotted in Fig. 6. This is
the same functional form as that of the speed of sound
for the nonlinear optical mesh lattice (20). As in that system,

the speed of sound diverges when αI0 → Mc2, but this
divergence is cut off by the instability at αI0 > Mc2/2, and so
instead there is a maximum speed of sound set by the speed
of light: vD → c as αI0 → Mc2/2, as shown in Fig. 6.

In summary, we have found that the Bogoliubov dispersion
for the Dirac model and the nonlinear optical mesh lattice are
qualitatively similar in all major respects at low momentum.
This means that the optical mesh lattice can provide an optical
setup to observe certain relativistic superfluid effects. How-
ever, differences naturally appear at high momentum as the
Dirac model describes a continuum system while the optical
mesh lattice is discrete; as a result, for the former, the fre-
quency and momentum can increase without bound, while for
the latter, the dispersion must be periodic (with the subtleties
discussed in Sec. II C).

III. MEASURING THE SPEED OF SOUND

In the previous section we laid down the general theory of
sound propagation in fluids of light in optical mesh lattices,
and we have characterized the different regimes. In this sec-
tion we discuss how the above predictions for the speed of
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sound can be experimentally verified by switching on and off
a defect at rest, and observing how the resulting perturbations
propagate in the fluid. We begin with numerical simulations
for the idealized case of a temporally long and spatially wide
defect in a uniform light field. We then bring this closer to
experiment by investigating more realistic defect profiles, and
asking what happens when such defects move in an expanding
rather than a uniform light field. In so doing, we demonstrate
that the underlying expansion speed has to be taken into ac-
count in order to accurately measure the local speed of sound.
This provides a theoretical framework and further numerical
support for the data analysis protocols that we applied in the
main text and the Supplemental Material of our work [19].
In the analysis of the experimental data, we were forced to
focus on qualitative signatures in measurements of the speed
of sound due to experimental uncertainties, such as in the
overall value of the experimental nonlinearity strength. In the
current work, instead, we provide a comprehensive theoretical
framework that sets the stage for future more quantitative
experimental measurements of the speed of sound.

To create a defect in the optical field, we use the time-
dependent phase shifts in (1) and (2) to imprint a Gaussian
defect phase shift in both loops, according to

ϕm
n = φm

n = ϕ0√
2πσ 2

n

e−(n−nd )2/2σ 2
n e−(m−md )2/2σ 2

m , (31)

where ϕ0 is the defect amplitude, σn (σm) is the standard
deviation of the defect profile with respect to position (time),
and nd (md ) is the location of the defect peak amplitude in
position (time). Throughout this section, we concentrate on
the simplest case of a defect that is stationary with respect to
the lattice, i.e., nd is a constant at all time steps, hereafter taken
to be nd = 0 unless otherwise specified; the case of a moving
defect will instead be studied in Sec. IV.

A. Idealized defects in uniform light fields

To verify the expected behavior of the speed of sound,
we begin by numerically studying the idealized case, where
the defect profile (31) is very wide and smoothly vary-
ing compared to the discrete position and time step, i.e.,
σn, σm � 1. In this regime, all but the lowest-energy exci-
tations are suppressed, leading to an emission dominated by
long-wavelength sound waves.

To further simplify the data analysis, we also consider
the simplest initial condition of a spatially uniform stationary
optical light field, with the form

u0
n = v0

n = √
I0 mod(n, 2), (32)

corresponding to exciting the lower-band eigenstate at Q =
0. Here I0 is the initial intensity in each loop, and the factor
of mod(n + m, 2) (with m = 0) highlights the connectivity of
the optical mesh lattice, as physically only either even or odd
lattice sites are occupied at any given time step (see Figs. 1
and 2).

The propagation of excitations can be visualized through
the normalized differential intensity:

�I = Ipert. − Iunpert.

2I0
, (33)

FIG. 8. (a) Spatiotemporal colorplot of the numerical differential
intensity [Eq. (33)] for a smoothly varying, weak defect at rest in
a uniform light field, with different values of the nonlinearity pa-
rameter �I0 = 0.1, 0.3, 0.5. The defect profile [Eq. (31) is indicated
by a solid black line, marking one standard deviation, σn = 10 and
σm = 50, from the defect peak amplitude of ϕ0 = 0.01 at md = 500
and nd = 0. This smooth defect profile predominantly excites long-
wavelength sound waves. (b) The numerical sound velocity (blue
circles) as a function of the nonlinearity, extracted by tracking the
propagation of sound waves in (a) via Eq. (34) with m1 = 800
and m2 = 1000. This shows excellent agreement with the analytical
speed of sound Eq. (20) (dashed black line).

where Ipert. = |um
n |2 + |vm

n |2 (or correspondingly Iunpert.) is the
local intensity when a defect is present (absent). The nu-
merical differential intensity, �I , is plotted in Fig. 8(a) as a
function of m, n for three values of the nonlinearity parameter
�I0 = 0.1, 0.3, 0.5. A small defect amplitude, ϕ0 = 0.01, and
large defect widths, σn = 10 and σm = 50, have been chosen
so as to create a wide, weak and slowly varying intensity
modulation in the uniform light field. As can be seen, turning
on the defect leads to the symmetric emission of propagating
intensity peaks from the defect position, while turning off
the defect generates propagating intensity dips; of course, the
order of the peaks and dips can be switched by changing the
sign of the defect amplitude.

As the nonlinearity parameter, �I0, is increased, we ob-
serve two important and related effects in the emission pattern
shown in Fig. 8(a). Firstly, the speed of sound [Eq. (20)]
increases with the nonlinearity, as evident from the increasing
angle at which the sound waves propagate in these plots of
time versus position. Secondly, the magnitude of the differen-
tial intensity decreases, indicating that the excitation of sound
waves is suppressed at stronger nonlinearities for a stationary
defect.

To calculate the speed of sound in the long-wavelength
regime, we can simply track the propagation of the emitted
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intensity peaks (or dips) to estimate

vnum.
sound = �n

�m
= nmax(m2) − nmax(m1)

m2 − m1
, (34)

where �n = nmax(m2) − nmax(m1) is the peak displacement
over the time step interval �m = m2 − m1. This is plotted in
Fig. 8(b), with m1 = 800, m2 = 1000, corresponding to late
times after the defect has been turned off. This numerically
estimated speed of sound shows excellent agreement with the
analytical expression from Bogoliubov theory [Eq. (20)].

B. Realistic defects in uniform light fields

While the above numerical results are encouraging, the
parameters required to reach the long-wavelength regime are
far beyond current experiments where propagation times are
typically limited to a few hundred time steps and the initial
optical field has a width only on the order of ten positions. As
a result, experimentally realistic defects with σn, σm � 1 will
significantly excite both sound waves and higher-momenta
Bogoliubov excitations. However, as we now show numeri-
cally, it is still possible to extract an accurate measurement of
the speed of sound by tracking the propagation of excitations
with the lowest group velocity.

For realistic defects, the oscillatory emission patterns can
be much richer than for idealized defects, as shown, for ex-
ample, in Fig. 9, where we progressively increase the spatial
width of a rapidly varying defect in a uniform light field. As
can be seen, for wide defects (right), the emission is domi-
nated by low-momentum sound waves, similar to Fig. 8, while
for narrow defects (left panel), there are many more peaks
and dips, moving with velocities greater than the speed of
sound. To understand this, we define the differential intensity
spectrum according to

�Im
k ≡ (∣∣um

k

∣∣2 + ∣∣vm
k

∣∣2)
pert. −

(∣∣um
k

∣∣2 + ∣∣vm
k

∣∣2)
unpert., (35)

where um
k and vm

k are the Fourier transforms with respect to the
1D synthetic lattice spanned by n of the short- and long-loop
amplitudes (respectively um

n and vm
n ) at a given time step m.

This is plotted in the bottom row of Fig. 9 for different defect
widths. As can be seen, decreasing the defect width in space,
increases the range of Fourier components excited, leading
to a significant population of higher-momentum states. These
perturbations with a much higher spatial frequency also prop-
agate with a higher velocity than the long wavelength sound
waves (see Fig. 4). Note that the spectrum is plotted here for
−π/2 � k < π/2 [see discussion in Sec. II C].

The dramatic nonlinearity-dependence of the spatial shape
of the excitation pattern emitted by a realistic defect is il-
lustrated in Fig. 10. In the linear regime (left panel), the
excitation pattern consists in a fan of fringes extending up
to an outer “light cone,” determined by the maximum group
velocity of the linear waves (dotted black line),

max
(
v0

g

) = max

(
∂ϑ

∂Q

)
= 1√

2
. (36)

For low nonlinearities (center-left panel), the excitation pat-
tern is bounded by an inner “sound cone” within which
excitations are significantly suppressed (dashed black line)
and whose position is set by the minimum group velocity

FIG. 9. (Top row) Spatiotemporal colorplot of the numerical
differential intensity [Eq. (33)] for a rapidly varying, weak defect
at rest in a uniform light field, with an increasing spatial width
σn for a nonlinearity �I0 = 0.1. The defect profile [Eq. (31)] is
indicated by a solid black line, marking one standard deviation,
σn and σm = 2, from the defect peak amplitude of ϕ0 = 0.01 at
md = 100 and nd = 0. For wide defects, the emission is dominated
by low-momentum sound waves, while for narrow defects, there is
significant emission of higher-momentum excitations beyond sound
waves. (Bottom row) Corresponding plots of the momentum-space
differential intensity spectrum �Ik = �Immax

k [Eq. (35)] numerically
calculated at mmax = 200 showing that as the defect width decreases,
the range of significant Fourier components increases, indicating the
importance of excitations at higher momenta. Note that the scale of
the y axis is chosen to highlight the spread of Fourier components,
but it artificially cuts off the dip in the spectrum at k = 0.

of the low-momentum Bogoliubov modes around θ ≈ 0, cor-
responding to the speed of sound waves (20). The visible
pattern then extends outwards from this inner limit because of
the higher group velocity of some higher momentum modes.
From the outside, the pattern for low nonlinearities is effec-
tively limited by an outer “light cone” (dotted black line),
determined by the maximum group velocity

max(vg) = max

(
∂θ

∂k

)
(37)

of the Bogoliubov dispersion. Note that due to the nonvan-
ishing width and duration of the defect, excitations are not
emitted from a single point in time and space. To take this into
account, we plot the inner “sound cone” in Fig. 10 starting
from the bottom-right corner of the defect profile, as this
approximately tracks emission from the defect at late times,
and the outer “light cone” starting from the top-right corner of
the defect, as this represents emission at earlier times.

The dependence of both the sound velocity and the maxi-
mum group velocity on the nonlinearity is shown in the right
panel of Fig. 11. On the one hand, increasing the nonlinear-
ity increases the speed of sound, shifting the inner “sound
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FIG. 10. Spatiotemporal colorplot of the differential intensity [Eq. (33)] for a rapidly varying, weak defect at rest in a uniform light field,
for different values of the nonlinearity parameter �I0 = 0, 0.2, 0.4, 0.5. The defect profile [Eq. (31)] is indicated by a solid green line, marking
one standard deviation, σn = 1 and σm = 2, from the defect peak amplitude of ϕ0 = 0.01 at md = 10 and nd = 0. The analytical speed of
sound [Eq. (20)] and the maximum group velocity [Eq. (37); see Fig. 11] are marked with dashed and dotted black lines emanating from
the bottom-right and top-right corners of the defect profile, respectively. At low nonlinearities, the emission is effectively bounded between
the dashed and dotted lines, while at high nonlinearities, the emission is dominated by sound waves, which move with the maximum group
velocity of all Bogoliubov excitations.

cone” outwards. On the other hand, at low nonlinearities,
the maximum group velocity of the Bogoliubov modes re-
mains well approximated by its value in the linear regime,
max(v0

g ) = 1/
√

2, such that that the outer “light cone” does
not significantly change, and so the oscillating emission pat-
tern is confined within a narrower region.

At high enough nonlinearities (�I0 � 1/3, center-right and
right panels in Fig. 10), the speed of sound exceeds the maxi-
mum value of the group velocity in the linear regime as shown
in Fig. 11, and the inner and outer bounds merge; in this limit,
sound waves dominate, and the emission pattern resembles the
one of long and wide defects shown in Fig. 8. Interestingly,
the defect could also excite slowly propagating modes either
from the upper Bogoliubov band or from around k = ±π

(see Fig. 4), which would appear within the inner sound
cone; however, the amplitudes of excitations within this region
are hardly visible for the defect parameters considered in
Fig. 10.

The more complicated oscillatory emission pattern for
realistic defect profiles shown in Fig. 10 requires a more
careful approach to quantitatively extract the speed of sound,
as compared to the simple estimate provided by Eq. (34).
Guided by the identification of the inner “sound cone” in this
regime, we ask whether sound waves can be identified with the
innermost large and smooth feature of the emission pattern.
To ascertain this, we extract the speed of these features, and
show that this indeed exactly matches the analytical speed of
sound.

(a)

(b)

(c)

θ/
π

FIG. 11. (a) Bogoliubov dispersion for the optical mesh lattice [Eq. (17)], for the different values of the nonlinearity parameter �I0 =
0, 0.2, 0.4, 0.5 considered in Fig. 10, as previously shown in Fig. 4. The blue dashed lines indicate the phonon-like linear dispersions with
the speed of sound given by Eq. (19). (b) The absolute value of the group velocity, |vg| = |∂θ/∂k|, for the same values of the nonlinearity
used in (a), shown with a solid blue (dark gray in grayscale) line for the two middle Bogoliubov bands [i.e., those meeting at θ = 0 in (a)]
and shown with a solid purple (light gray in grayscale) line for the other two outer bands. Note that in the linear regime, for �I0 = 0, the
blue and purple lines are identical. In each plot the analytical speed of sound [Eq. (20)] and the maximum group velocity in the linear regime
(max(v0

g ) = 1/
√

2) are marked with, respectively, dashed and dotted black lines. (c) Plot of the maximum group velocity extracted from (b) as
a function of the nonlinearity parameter �I0 (solid blue line). The black lines indicate the speed of sound (dashed) and the maximum group
velocity in the linear regime (dotted).
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(a)

(b)

(c)

FIG. 12. (a) Example cut of the normalized differential intensity
at the final time step m = 150 for �I0 = 0.05. Blue points represent
the numerical data, and the black line is the fitting function (38).
Vertical dashed lines indicate the symmetric minima positions as ex-
tracted from the fitting function. The defect is chosen to have spatial
and temporal widths of σn = 2 and σm = 2 and a peak amplitude
of ϕ0 = 0.01, and to be centered at md = 11 and nd = 0. (b) The
extracted absolute positions of the innermost large minima over time
from the fits as in panel (a) for a range of different nonlinearities.
(c) The numerical estimate for the speed of the sound (red crosses)
as a function of the effective initial intensity as calculated from panel
(b) by applying a linear fitting function (39) from m = 65 onwards.
This is in excellent agreement with the analytical speed of sound
(20), plotted with a solid black line.

To measure the speed of the innermost large perturbations,
we fit the central region of the numerical data at each time step
with the ansatz:

f1(n) = [a1 + b1(n − c1)]e−(n−c1 )2/d2
1

+ [a1 − b1(n + c1)]e−(n+c1 )2/d2
1 , (38)

where a1, b1, c1, d1 are fitting parameters [19]. This func-
tion is chosen as it can reproduce the largest features of
the center of the perturbation pattern: namely, two innermost
minima (maxima) followed by two maxima (minima) for a
positive (negative) defect amplitude. An example fit is shown
in Fig. 12(a), where the fitting region extends between the two
innermost maxima. Using such fits, we numerically extract
the positions of the innermost large minima, as shown in
Fig. 12(b). As can be seen, the position steadily increases over

time corresponding to the excitations propagating outwards
from the center. To then measure the speed, we fit the minima
positions with the linear function:

f2(m) = a2m + b2, (39)

where a2 and b2 are fitting parameters. We can then asso-
ciate the value of a2 with the speed of sound as is plotted
in Fig. 12(c). As can be seen, these numerical results are in
excellent agreement with the analytical speed of sound (20),
suggesting that we can indeed identify these large minima
with sound waves.

C. Realistic defects in expanding light fields

A further complication comes from the fact that in the ex-
periments [19] the initial light field is not spatially uniform, as
we have assumed above, but is prepared with some localized
profile. In the absence of any other potentials, the light field
will therefore expand over time. This expansion is shown, for
example, in Fig. 13(a) for �I0 = 0.1, starting from an initially
Gaussian profile:

u0
n = v0

n = √
I0mod(n, 2)e−n2/2σ 2

G , (40)

where σG = 50 is the Gaussian width and the factor of
mod(n, 2) again accounts for the diamond connectivity of the
optical mesh lattice. As compared to the Light Walk shown
in Figs. 1(b) and 1(d), it displays an overall Gaussian inten-
sity profile and a spatially constant phase. Experimentally,
it can be created through a protocol described in detail in
Refs. [23,31]. Figure 13(b) then shows the numerical differ-
ential intensity resulting from the application of a realistic
narrow defect, with σn = 2, σm = 2, ϕ0 = 0.01, md = 11, and
nd = 0. As can be seen, this propagation pattern appears to
be similar to that on top of a uniform light field (see, e.g.,
Fig. 10), with excitations at large positions suppressed by the
drop-off in the intensity of the cloud.

Despite this apparent similarity, the expanding light field
does have two very important consequences for the propa-
gation of sound waves. Firstly, the light field expansion will
drag perturbations with it, artificially inflating the measured
excitation speed. Secondly, in the absence of gain or loss, the
local intensity of the light field will drop over time, causing
the effective local speed of sound to vary. We now show
that both of these effects can be accounted for by applying
a numerical procedure to estimate the local expansion speed
of the light field. We previously applied this procedure to
analyze the experimental data in [19], as well as associated
numerical simulations. As mentioned above, in that case the
experimental data could not be quantitatively compared to the
analytical speed of sound due to experimental uncertainties,
for example, in determining the value of the experimental
nonlinearity parameter. In what follows, we provide a general
theoretical framework for this physics.

As above, we first fit cuts of the differential intensity at
each time step using Eq. (38); this is shown, for example, for
m = 100 in Fig. 13(c), where the blue points are the numerical
data and the black curve is the fit. We extract the positions
of the innermost intensity minima by finding the minima of
the fits, with the results plotted in Fig. 13(d) as a function
of time. As we want to allow for the possibility that the
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(a) (b)

(c) (d)

(e) (f)

FIG. 13. (a) Expansion of a Gaussian optical field over time,
with �I0 = 0.1 and σG = 50. (b) Spatiotemporal colorplot of the
numerical differential intensity after applying a realistic narrow de-
fect, with σn = 2, σm = 2, ϕ0 = 0.01, md = 11, and nd = 0. (c) Fit
of a cut of (b) at m = 100: the blue points are the numerical data
and the black curve is the fitting function (38). (d) Position of the
innermost minimum of the fitting function at each time step. (e)
Plot of the numerically estimated drag speed vE (black dots), due to
the expansion of the condensate, and of the estimated instantaneous
speed of the intensity minimum vM (red dots) as obtained from a
moving linear fit (39), taken over 11 time steps centered around m.
There are big discrepancies between vM and the expected analytical
value v0

s of the speed of sound for the peak of the initial intensity
(blue dashed line). (f) Estimate vs = vM − vE for the speed of sound
(blue dots), which is now in excellent agreement with the analytical
speed of sound vs(nmin) using the local unperturbed intensity at the
position of the intensity minimum (solid black line).

speed of the intensity minima varies over time, we perform a
moving linear fit to the data, which gives us an estimate for the
instantaneous speed of the minimum, vM shown by red data
points in Fig. 13(e). Here we have chosen the moving fit for
a time step m to be taken over 11 time steps centered around
m. As can be seen, the estimated speed is (i) not a constant as
a function of time step m, and (ii) significantly larger than the
expected analytical speed of sound for the initial nonlinearity
(20), plotted in Fig. 13(e) with a blue dashed line. To explain
these observations, we need to take into account the expansion
of the light field over time.

As discussed in Ref. [19], our numerical practice protocol
for estimating the expansion speed of the light field is based

on a version of the 1D continuity equation:

dIA

dt
= −vE

I (A)

2
+ βIA, (41)

where vE is the drag speed, β is an overall linear amplification
factor, and IA = ∑

n∈A I (n) is the integrated local intensity,
I (n) = |un|2 + |vn|2, in the absence of the defect. The sum-
mation domain A is chosen as −∞ � n � A when A > 0 or
A � n � ∞ when A < 0; this ensures that the integral always
includes at least half of the light field to minimize the effects
of noise. Physically, Eq. (41) balances the rate of change of
the intensity within a selected region to the amount of light
flowing in and out and the net gain within that region. The
factor of 1/2 in the first term on the right-hand side of the
equation takes into account that the lattice spacing is 2 in
this system, and so that the local density of light is given by
I (A)/2. In the optical mesh lattice, time is discretized into
discrete time steps, and we can approximate this continuity
equation as

IA(m) − IA(m − �m)

�m
= −vE

I (A)

2
+ βIA(m), (42)

where we have included explicitly the dependence on the time
step. To determine the linear amplification factor β, we can
apply this equation to the summed intensity over the entire
system:

I∞(m) − I∞(m − �m)

�m
= βI∞(m). (43)

Numerically, we choose to set β = 0, but experimentally, β

can be nonzero due to intrinsic loss and gain in the system
[19]. Putting this back into (42), the numerically extracted
instantaneous drag speed, vE , at the position of the minimum,
nmin, can be calculated. The result for �m = 4 is shown as
black dots in Fig. 13(e). Note that nmin is obtained as the
minimum of a fitting function and so can take continuous
values, while the drag speed can be calculated only at the
available lattice sites of the optical mesh lattice, making this
an approximation of the speed. In any case, as expected, the
drag speed increases over time, corresponding to the intensity
minima moving outwards into faster-moving regions of the
light field.

Importantly, we see from Fig. 13(e) that the drag speed vE

accounts for a significant fraction of the observed speed of
the intensity minimum, vM . In Fig. 13(f) this is shown explic-
itly by plotting the estimated speed of sound vs = vM − vE ,
which turns out much lower than vM and which decreases
over time. This estimation for vs is also much lower than the
analytically expected result (20) for the initial nonlinearity,
�I0 = 0.1 [blue dashed line in (e)]. This is easily explained
in terms of the drop of the local intensity at the position of
the defect over time, which leads to a decreasing effective
speed of sound. For a quantitative analysis, we can extract
the average local intensity in each loop at the position of
the minimum I (nmin)/2 and use this value within a sort of
local density approximation to calculate a local instantaneous
speed of sound, vs(nmin) via (20). The result is plotted with
a solid black line in Fig. 13(f) and is indeed in excellent
agreement with the numerical data for all times of experimen-
tal interest. This provides a solid numerical confirmation of
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FIG. 14. (Left panel) Results from Fig. 13(f) now plotted for longer times, with red data points indicating vM ; blue data points indicating
the numerically extracted vs = vM − vE ; blue dotted-dashed line indicating the speed of sound v0

s corresponding to the initial nonlinearity; the
black solid line indicating the analytical prediction for the local speed of sound vs(nmin). As can be seen, there is excellent agreement between
the numerical estimate and the analytical prediction (blue vs black), except for the 250 � m � 400 interval. (Right panels) To understand this,
we plot the intensity of the unperturbed optical field Ĩ = (|un|2 + |vn|2)unpert. at different times as indicated in the left panel. The vertical dashed
lines indicate the positions of the minima at each time. As can be seen, the deviations visible in the left panel appear where the wave emanating
from the defect hits the shoulder of the intensity profile where the local intensity decreases sharply.

the protocol used to extract the speed of sound in the recent
experiment [19].

Differently from experiments, we can extend our numerical
analysis out to even later times as shown in Fig. 14. There we
see that marked deviations do occur between the numerical
and the analytical local instantaneous speed of sound around
250 � m � 400. To understand this feature, in the right panels
(A–D) we plot the corresponding spatial intensity profiles of
the optical field in the absence of the defect. Here vertical
dashed lines indicate the positions ±nmin of the innermost
minima in the intensity profiles in the presence of the defect.
From these plots, we infer that the deviations occur when the
sound waves move through the shoulder of the optical field,
where the intensity drops sharply as a function of position
and the local density approximation that implicitly underlies
vs(nmin) is no longer justified. On the other hand, agreement
between these estimates is excellent in all other cases where
the local intensity of the underlying optical field is sufficiently
slowly varying, even after the defect has passed through the
shoulder of the spatial intensity profile.

As further checks, we repeat the calculation for different
values of the initial nonlinearity parameter, �I0, as shown
in the top panels of Fig. 15. The numerical estimate of the
local speed of sound is again very accurate except when
the perturbation is crossing the sharp shoulder of the spatial
intensity profile. This shoulder is reached earlier for higher
nonlinearities due to the higher sound velocity, which leads to
an earlier onset of the deviations. We can also vary the initial
Gaussian width of the optical field, σG, as shown in the bottom
panels of Fig. 15. Decreasing the size of the initial field leads
again to an earlier onset of the deviation window, as less time
is needed for the defect to reach the shoulder of the spatial
intensity profile.

Note that in the recent experiment [19], the Gaussian width
and maximum time step were respectively σG = 8 and mmax =
110, due to the number of round trips required to generate
the initial Gaussian field before the start of the superfluid-
ity experiment [23,31]. Further numerical calculations with
these experimentally realistic parameters were analyzed in the
Supplemental Material of Ref. [19]. In the future, it would

be interesting to realize more round trips, which would leave
more time for the creation of the initial field and thus allow
for the creation of wider Gaussian light fields and hence more
accurate experimental measurements of the local speed of
sound.

IV. SUPERFLUIDITY PROPERTIES

The characterization of collective excitations and of their
propagation speed reported in the previous section is the nat-
ural starting point to investigate the superfluidity properties
of the fluid of light in a nonlinear optical mesh lattice. In
this section we summarize our advances in this direction,
based on an extension of the Landau criterion for superfluidity
[1,38,39] to our specific spatiotemporally periodic geometry.

The Landau criterion, in its simplest formulation, provides
a general and intuitive way to predict the breakdown of super-
fluid behavior when a fluid system is traversed by a uniformly
moving impurity at sufficiently large speed. This simple crite-
rion amounts to deriving a critical velocity:

vc = mink

(
θ (k)

k

)
, (44)

below which a weak moving perturbation is not able to gen-
erate collective excitations in the fluid, which then behaves as
a frictionless superfluid. Above this critical velocity collective
excitations start being generated in the fluid and dissipations
sets in.

For the simple case of a three-dimensional, homogeneous
BEC with short-range interactions described by the GPE [see
Eq. (22)], it can be shown that the critical velocity is directly
given by the speed of sound: vc = vGPE = √

gI0/M [38,39].
This means that the breakdown of superfluidity is associated
with the emission of long-wavelength (k → 0) sound waves,
and that superfluidity vanishes altogether in the limit of a non-
interacting Bose gas, where vc = vGPE = 0. In other systems,
the emergence of additional features in the Bogoliubov disper-
sion significantly affects the superfluid response; for example,
the Bogoliubov dispersions of superfluid helium or a dipolar
BEC can both exhibit a so-called “roton” minimum at a finite
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FIG. 15. (Top row) Plot of the different speeds as in Fig. 14
(a) but for two different values of the nonlinearity parameter �I0 =
0.05 and 0.15 (instead of 0.1). Again there is very good agreement
between the numerically estimated speed of sound (blue dots) and
the analytical prediction for the local speed of sound vs(nmin) (black
line). The deviation between these two again occurs over an interval
where the defect hits the shoulder of the spatial intensity profile
[as in Fig. 14(b)]; as the expansion rate of the optical field grows
with the nonlinearity, the time at which the discrepancy occurs cor-
respondingly decreases. (Bottom row) The same plot for �I0 = 0.1
but narrower initial Gaussian profile widths σG = 30 and 10 (instead
of 50). As the initial width of the optical field decreases, the defect
hits the shoulder of the intensity profile at an earlier time, leading
to an earlier deviation between the estimated and local speed of
sound. For very narrow clouds, noise in the numerical estimates
is more apparent as the defect quickly leaves the central region of
high intensity and the very concept of local speed of sound becomes
inaccurate. Nevertheless, a good qualitative agreement can still be
observed.

momentum which then sets the critical velocity to a lower
value than the speed of sound [38]. In polariton light fields,
there can also be important nonequilibrium effects, leading to
the emergence of novel scattering regimes [43].

In this section we explore the effect of a moving defect in
an optical mesh lattice, firstly by considering suitable gener-
alizations of the Landau criterion in Sec. IV A, and secondly
from numerical simulations in Sec. IV B. As a main result of
our study, we find that for any lattice, a strict application of the
Landau criterion would predict a vanishing critical velocity,
so that a moving defect would always excite the light field
[19]. However, in practice, this prediction is strongly modified
when the spatial defect width is increased, so as to reduce
scattering at higher momentum. In this regime, we observe
in fact that the response of the optical field is effectively
“superfluid-like”: a characteristic threshold for the onset of
dissipation is apparent, which depends on the nonlinearity
as expected from a restricted Landau criterion, and which

observably drops below the speed of sound for high enough
nonlinearities.

A. Umklapp processes

The Landau criterion applies the principles of energy and
momentum conservation to the Bogoliubov excitation spec-
trum of a system [38,39]. For example, if we have a defect
moving at a constant speed, s [as realized, e.g., by taking an
m-dependent nd = s(m − md ) in Eq. (31)], then a simple way
to visualize the Landau criterion is by drawing on top of the
excitation spectrum a straight line passing through the origin
with a slope s. In continuous space and time, the excitation
processes that are allowed by energy and momentum con-
servation correspond to the intersections of this line with the
Bogoliubov dispersion [44]. In particular, the critical velocity,
vc, is then read off as the speed at which the straight line first
touches the Bogoliubov bands from below. If the system is a
superfluid, then vc �= 0, and for s < vc, there are no resonant
excitations and, thus, no dissipation.

The situation is slightly more complicated in our spatially
and temporally periodic optical mesh lattice configuration, as
illustrated schematically in Figs. 16(a) and 16(b). Given the
discrete spatial and temporal periodicities, one needs in fact
to work in the extended-zone scheme and include replicas of
the straight line according to these periodicities. As a result,
a direct application of the Landau criterion leads to a striking
conclusion: the critical velocity is always zero. This can be
seen immediately from the above geometric argument by re-
alising that the aforementioned straight lines always intersects
with the Bogoliubov dispersion of the optical mesh lattice
in some Brillouin zone; see, e.g., Figs. 16(a) and 16(b). On
this basis, one may expect that a lattice system can never
respond like a true superfluid to a moving defect, as the
defect always leads to dissipation. This notwithstanding, we
note that such systems can still display other typical features
of superfluidity, for example, for what concerns the robust-
ness of a superflow to dynamical and energetic instabilities
[45–48] or the rigidity of the system under “twisted boundary
conditions” [49].

Furthermore, the above argument based on the Landau
criterion does not take into account the momentum selectivity
of the excitation process due to the width of the defect, σn.
In practice, excitations at higher momenta k � 1/σn are sup-
pressed in the case of a wide defect. To see this, let us consider
a general lattice defect potential moving at a constant speed
with the form V (n − sm, m) = β(m)α(n − sm), where α(n −
sm) corresponds to the moving spatial profile of the defect
and β(m) to the temporal profile. For example, a stationary
defect of the form Eq. (31) with an m-independent position nd

is captured by this functional form with Gaussian-shaped α(n)
and β(m) and s = 0. Imposing periodic boundary conditions,
the discrete Fourier transform of the moving defect potential
can be defined as

Ṽ (k, θ ) ≡
M−1∑
m=0

N−1∑
n=0

V (n − sm, m)ei 2π
M εme−i 2π

N qn

=
M−1∑
m=0

β(m)ei 2π
M εm

N−1∑
n=0

α(n − sm)e−i 2π
N qn, (45)
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 16. (a), (b) Bogoliubov dispersion for �I0 = 0.25 in an extended Floquet-Bloch zone scheme, with the range shown in Fig. 4 outlined
by a green dashed box. Also plotted are the straight lines (blue points) corresponding to a defect moving at (a) s = 1.5vsound and (b) s =
0.5vsound. Due to the spatial and temporal periodicities of the optical mesh lattice, there are an infinite number of replicas of the defect
straight lines. However, as discussed in the paper, for a sufficiently slowly varying defect, the corresponding Fourier-space defect potential is
highly peaked around certain momenta for each line and becomes small elsewhere; this relative importance is schematically represented by an
increased size of the blue points, with the largest weight being concentrated around k = 0 and equivalent points in the extended Floquet-Bloch
scheme. (c, d) The dispersion as in (a) and (b) respectively, but only with the fundamental r = r′ = 0 defect line (now unadjusted for the
relative defect weight), in order to highlight the first intersections between these lines and the Bogoliubov bands as labeled by numbers and
letters, respectively. (e, f) The logarithm of the absolute value of the differential intensity spectra [Eq. (35)], as calculated at the late time step
m = 900 for a defect with spatial width σn = 0.25 (black line) and σn = 0.75 (red line) moving through a uniform light field with �I0 = 0.25
at the speed values (e) s = 1.5vsound and (f) s = 0.5vsound. The defect parameters are σm = 100, md = 500 and ϕ0 = 0.01. Labeled arrows
indicate the momenta of the lowest intersections shown in (c) and (d) back-folded into the range −π/2 � k < π/2.

where N denotes the number of sites along n, and M that
along m, with ε and q being integers that run from zero up
to M − 1 and N − 1, respectively, and which are related to
a (discretized) energy and momentum as θ = (2π/M )ε and
k = (2π/N )q, respectively. Continuum variables are recov-
ered in the limit that M and N tend to ∞.

To isolate the dependence on m in the second part of the
equation, we can apply Poisson’s summation formula

∞∑
n=−∞

f (n) =
∞∑

r=−∞
f̄ (2πr), (46)

where f̄ (k) = ∫ ∞
−∞ dx f (x) e−ikx is the standard continuous

Fourier transform of f (x), to the second part of the equation.
This gives

∞∑
n=−∞

α(n − sm) e−i 2π
N qn

=
∞∑

r=−∞
ᾱ

(
2π

N
q + 2πr

)
e−i( 2π

N q+2πr)sm, (47)

where ᾱ(k) is the continuous Fourier transform of α( j).
Substituting this formula back into the full expression (45)

where the sums have been extended to infinity to account for

the N, M → ∞ limit, we obtain

Ṽ (k, θ ) =
∞∑

m,r=−∞
β(m)ei 2π

N m( N
M ε−(q+Nr)s) α̃(k + 2πr)

=
∞∑

r=−∞
β̃(θ − 2πrs − ks)ᾱ(k + 2πr)

=
∞∑

r,r′=−∞
β̄(θ − 2πrs − ks − 2πr′)ᾱ(k + 2πr),

(48)

where β̃(θ ) and β̄(θ ) = ∫ ∞
−∞ dt β(t ) eiθt are the discrete and

continuous Fourier transforms of β(m), respectively.
The r′ �= 0 replicas separated by �θ = 2π stem from the

effective Floquet periodicity of our configuration. The r �= 0
replicas separated by �k = 2π correspond to the Bragg mo-
mentum of the lattice: in the time domain, the corresponding
frequency side bands can be physically understood as the mo-
tion of the defect making the effective potential periodically
either overlap with some site or fall in the void between sites,
with temporal frequency �θ = 2πs.

For slowly varying potentials σm � 1, the Fourier-space
defect potential Ṽ (k, θ ) is concentrated along an infinite
series of parallel straight lines θ = (k + 2πr)s + 2πr′

063517-18



THEORY OF HYDRODYNAMIC PHENOMENA IN OPTICAL … PHYSICAL REVIEW A 108, 063517 (2023)

corresponding to the usual defect dispersion and its replicas,
as displayed in Figs. 16(a) and 16(b) [50]. For a given r, r′
line, the defect weight will also be controlled by ᾱ(k + 2πr),
which reaches a maximum when k = −2πr. This maximal
weight is indicated schematically in Figs. 16(a) and 16(b)
by increasing the size of the markers (which compose the
straight lines) around k ≈ −2πr. As can be seen, the defect
weight is most significant around the center of the green
dashed box, and, due to the replicas, around equivalent points
in the extended Floquet-Bloch zone.

As the argument, |k + 2πr|, quickly becomes large for
Umklapp excitations, such components will be visible only
for sufficiently narrow defects such that the Fourier transform
of the defect potential has a significant weight at these large
argument values. For wide-enough defects with 2πσn � 1, the
Landau criterion restricted to a small momentum or frequency
range at the center of the Brillouin zone −π < k, θ < π can
instead be expected to provide a good description of the
system behavior. We can verify the validity of this argument
numerically, by simulating the constant motion of spatially
narrow defects [taking nd = s(m − md ) in Eq. (31)] across
a uniform light field. To minimize additional effects arising
from turning on and off the defect, we choose a large tem-
poral defect width σm = 100 and a small defect amplitude
ϕ0 = 0.01. In order to identify the excitation of higher Bo-
goliubov bands, we first replot in Figs. 16(c) and 16(d) the
dispersion from Figs. 16(a) and 16(b), but now showing only
the corresponding fundamental r = r′ = 0 line so that we can
clearly indicate, with numbers and letters, respectively, the
first expected intersections between the defect dispersion and
the Bogoliubov bands. We then plot in Figs. 16(e) and 16(f)
the logarithm of the absolute value of the differential intensity
spectrum (35) as a function of the momentum with respect to
the effective 1D lattice; this is calculated numerically in each
case for a spatial width of σn = 0.25 (black line) and σn =
0.75 (red line) at the late time step m = 900 with md = 500.
As can be seen, the largest peak occurs at k = 0, signifying
the depletion of the light field into Bogoliubov quasiparticles
and the residual excitation of low-momenta sound waves.
The momenta of the next largest peaks in the spectra are
all in excellent agreement with the positions of the lowest
intersection points highlighted in Figs. 16(c) and 16(d), and
indicated in Figs. 16(e) and 16(f) by labeled arrows. These
higher Floquet-Umklapp excitations are much weaker than the
low-energy excitations at k = 0, and they get suppressed when
the spatial width of the defect σn is increased.

As Umklapp excitations are therefore effectively strongly
suppressed for wide-enough defects, we may expect that re-
stricting the Landau criterion to a limited momentum range
may well describe the system behavior. In Fig. 17 we plot
the critical velocity that would be predicted by applying the
Landau criterion to the Bogoliubov dispersion within a re-
stricted region −kc � k � kc. In the linear regime, the critical
velocity is always vanishing independently of the cutoff kc,
as superfluidity is a nonlinear phenomenon. For kc = 2π or
larger (i.e., for a restricted region equal to twice the Brillouin
zone shown in Fig. 4 or larger), the critical velocity also van-
ishes for all stable nonlinearities, indicating that the system is
never a true superfluid. However, for lower values of kc, the
critical velocity is nonzero in the presence of a nonlinearity,

FIG. 17. Critical velocity as calculated from the Bogoliubov dis-
persion within a region −kc � k � kc. For kc = 2π or larger, vc = 0
for all stable nonlinearities, indicating that the system is not super-
fluid. However, for lower values of kc, a nonvanishing vc �= 0 is found
in the presence of a finite nonlinearity, indicating that “superfluid-
like” behavior may be observed for sufficiently wide defects.

with vc → vs as kc → 0, as it happens in simple BECs. This
means that the system may appear to be “superfluid-like” with
a relative suppression of dissipation.

To confirm that such behavior can be indeed observed in
practice, we now numerically simulate the motion of moving
defects in a nonlinear optical mesh lattice first for uniform and
then for expanding light fields, comparing our results with the
restricted Landau criterion.

B. Superfluid-like response of uniform light fields

We first investigate the superfluid-like response of a sta-
tionary and uniform optical field. To this purpose, we again
apply a Gaussian phase defect, as discussed in Sec. III, but we
now move the defect by changing the peak defect position, nd

as a function of the time step m at a constant speed, s, across
the uniform optical field, according to nd = s(m − md ). We
shall then measure how much the defect excites the system as
a function of the defect speed.

1. Narrow defect

In Fig. 18 we start with the case of a spatially very nar-
row defect. Such a defect is able to excite higher-momentum
perturbations. The numerically computed spatiotemporal dif-
ferential intensity is plotted in Fig. 18(a) for three different
values of the defect speed. As can be seen, the excitation
pattern is very complicated. To quantify the total intensity of
the emission from the defect, it is then useful to introduce the
observable:

Ĩ = 1

j

mmax∑
m=mmax− j+1

[∑
n

|�I (n, m)|
]
, (49)

which temporally averages the spatially integrated differential
intensity over the last j time steps of the propagation.

If we plot the total emission intensity (49) as a function
of the speed s and the nonlinearity �I0, then a clear structure
is observed as significant emission only occurs within certain
ranges of defect speeds [Fig. 18(b)], as would be expected for
a standard superfluid. Outside this range of s, the defect cannot
efficiently excite any perturbations in the first (i.e., innermost)
Bogoliubov band, as all resonant excitations happen to be at
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(a)

(b)

(c)

FIG. 18. (a) Spatiotemporal colorplot of the numerical differen-
tial intensity [Eq. (33)] for a temporally smoothly varying, spatially
narrow, and very weak defect (σm = 200, σn = 1, ϕ0 = 0.00001,
md = 500, nd = 0), moving at speeds s = {1, 1.5, 2}vsound as indi-
cated by the black parallelogram across a uniform light field, with
nonlinearity �I0 = 0.1. (b) The total emission intensity [Eq. (49)]
plotted as function of the defect velocity and nonlinearity for mmax =
1000 and j = 101. As a guide to the eye, we have marked the speed
of sound (black dashed line); lower and upper critical velocities for
the first Bogoliubov band (red dotted line and blue dashed line,
respectively); the lower critical velocity for the second Bogoliubov
band (yellow dashed line) within −π � k, θ < π . (c) The fraction
of states [Eq. (50)] in the Bogoliubov bands which approximately
satisfy the restricted Landau criterion as calculated with NT = 15000
and δθ = 0.001. Other marked lines are the same as in panel (b).

too large momenta even for the narrow defect considered here:
only excitations within −π � k < π are significant, and all
emission lies within the window predicted by applying the
Landau criterion over this limited momentum range.

The thickness of the orange stripe in Fig. 18(b), indicat-
ing a sizable total emission, depends on the curvature of the
lowest Bogoliubov band, which is positive for small �I0,
then negative at large �I0. As a guide to the eye, we have
indicated the speed of sound (black dashed line), the lower
and upper critical velocities for the first Bogoliubov band

(red dotted line and blue dashed line respectively). As can be
seen, at low nonlinearities, the speed of sound and the lower
critical velocity of the first band coincide, and the emission is
concentrated between this and the upper critical velocity. The
relatively flat distribution of the emission intensity within the
stripe is related to the velocity independence of the friction
force in one-dimensional superfluids above the critical speed
[51]. In contrast, at higher nonlinearities, the speed of sound
coincides with the upper critical velocity of the first band,
and so emission from the first band is concentrated below this
speed. For the sake of completeness, the lower critical velocity
for the second Bogoliubov band has been shown in Fig. 18(b)
as a yellow dashed line: except for a small region at high
nonlinearities �I0 � 0.5, emission into this band is suppressed
by the small value of the excitation matrix element.

Further insight on this physics can be obtained by com-
paring the total emission intensity shown in Fig. 18(b) to a
numerical estimate for how many Bogoliubov states approxi-
mately satisfy our restricted Landau criterion as a function of
the optical nonlinearity and defect speed. As discussed above,
a simple way to visualize the restricted Landau criterion is
to ask where the defect dispersion θ = ks intersects with the
Bogoliubov bands with k < kc = π . To numerically estimate
what fraction of available states may satisfy this criterion, we
discretize the momentum, k, into NT equally spaced values
over the range k ∈ [0, π ], and then calculate the associated
set of discrete Bogoliubov energies �(k) for the two bands
assuming 0 � θ < π in Eq. (17). We then define the fraction
of these states which approximately satisfy the restricted Lan-
dau criterion as

ξ =
∑
k<kc

N[|�(k) − ks| < δθ ]

2NT
, (50)

where the factor of 2 in the denominator occurs because here
we consider the two lowest-energy Bogoliubov bands and
where N[|�(k) − ks| < δθ ] denotes the number of discrete
Bogoliubov states for which the energy lies within a small
energy window ±δθ of the defect dispersion. The small pa-
rameter δθ helps compensate for the discretization, but is also
physically motivated by the finite energy width expected for a
defect switched on for a finite time [cf. Eq. (48)].

In Fig. 18(c) we plot Eq. 50 for NT = 15000 and δθ =
0.001 (which is on the order of the energy width expected for a
Gaussian defect with σm = 200), with the same marked lines
as shown in Fig. 18(b). As can be seen, the largest fraction
of available Bogoliubov states is around the speed of sound
(black dashed line), where strong emission is also observed
numerically in Fig. 18(b). Note that the fraction of states in
Eq. (50) also predicts other features like a significant emission
around the upper critical velocity for the first Bogoliubov
band (blue dashed line), which are not observed numerically
in Fig. 18(b); this is because Eq. (50) does not take into
account other effects, such as the finite spatial width of the
defect which suppresses larger-momentum excitations nor the
k dependence of the matrix elements.

2. Wide defect

We then move to the case of a wide and smoothly vary-
ing defect. The resulting spatiotemporal differential intensity
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FIG. 19. (a) Spatiotemporal colorplot of the numerical differ-
ential intensity [Eq. (33)] for a smoothly varying, weak, and wide
defect, moving at speeds s = {0.5, 1, 1.5}vsound across a uniform light
field, with nonlinearity �I0 = 0.25, and with all other parameters as
in Fig. 8(a). The smooth defect profile (indicated by the black par-
allelogram) predominantly excites sound waves, with the strongest
emission of radiation for s = vsound. (b) The total emission intensity
[Eq. (49)], plotted as function of the defect velocity and nonlinearity
for mmax = 1000 and j = 101. Excitations are mostly suppressed
when the defect moves slower than the speed of sound [Eq. (20),
dashed black line). Note that little emission is also observed for
defect speeds above the speed of sound, as then the defect is most
resonant with higher-momenta excitations which remain relatively
suppressed for wide defects [cf. Eq. (48)].

is shown in Fig. 19(a) for three different defect speeds; as
the defect is very wide and slowly varying [with the same
parameters as in Fig. 8(a)], we are in the regime where the
defect predominantly excites sound waves. The strength of
emission is then strongest when the defect moves at the speed
of sound, such that these excitations are resonant. This is
clearly visible in Fig. 19(b), which shows how the total emis-
sion (49) is indeed peaked around the speed of sound (dashed
black line).

Interestingly, by increasing the defect amplitude, we can
also clearly observe the onset of the instability discussed
in Sec. II C for a defocusing nonlinearity. This is shown in
Figs. 20(a) and 20(b), where we compare the propagation of
a weak and strong defect through a uniform light field at a
high nonlinearity �I0 = 0.45. As can be seen, both defects
emit sound waves; however, in the case of the strong defect,
the system becomes unstable, leading to a cascade of emitted
excitations. We note that the instability does not appear to
be triggered by the defect itself, but instead by the positive

(a) (b)

(c)

FIG. 20. (a), (b) Spatiotemporal colorplot of the numerical dif-
ferential intensity [Eq. (33)] for, respectively, a weak defect with
amplitude ϕ0 = 0.01, and a strong defect with amplitude ϕ0 = 0.2.
The defect (indicated by the black parallelogram) moves at a speed
s = vsound in a uniform light field, with nonlinearity �I0 = 0.45,
and with all other parameters as in Fig. 8(a). The strong defect in
(b) triggers an instability, corresponding to a cascade of emitted
excitations originating from the positive density bump that is present
in the excitation pattern emitted by the defect. (c) The total emission
intensity (49) for the strong defect in (b), plotted as function of the
defect velocity and nonlinearity for mmax = 1000 and j = 101. The
instability appears at large nonlinearities, spreading from the regime,
�I0 > 0.5, where the light field is itself unstable. Note that the
scale of the colorbar is chosen to highlight both stable and unstable
regions; in fact, the emission intensity for the latter case is several
orders of magnitude larger than for the former, and diverges further
with increasing mmax.

density bump that is present in the density modulation emitted
by the defect. This suggests that the instability arises as a
result of the local light intensity, Ieff , increasing sufficiently to
enter the unstable regime �Ieff > 0.5, shown in Fig. 4. This is
also consistent with Fig. 20(c), where we plot the emission for
the strong defect in Fig. 20(b) as a function of the defect speed
and nonlinearity. Unlike for a weak defect [Fig. 19(b)], we
observe an unstable region of parameter space, which extends
out from �I0 = 0.5, centered along the speed of sound and
which pushes down to even lower nonlinearities as the defect
amplitude is further increased.

C. Superfluid-like response of expanding light fields

As introduced in Sec. III C, the initial light field in a re-
alistic experiment is typically spatially localized and then,
unless confining potentials are applied, freely expands over
time. In this final section, we simulate a moving defect in these
more realistic experimental conditions, to show that also here
signatures of a superfluid-like behavior and a critical velocity
can be observed.

In the two panels of Fig. 21, we plot the total differential
intensity (49) for a realistic narrow and rapidly varying defect,
across a Gaussian light field with initial widths σG = 10 and
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FIG. 21. Total emission intensity (49) for a narrow and rapidly
varying defect, moved across a Gaussian light field with initial width
σG = 10 (top panel) and σG = 5 (bottom panel). The defect parame-
ters are σn = 1, σm = 10, md = 20 and ϕ0 = 0.01. The total emission
intensity (49) has been evaluated with mmax = 150 and j = 51. The
analytical speed of sound from the initial intensity is shown as a
dashed black line, and the speed of sound for the unperturbed in-
tensity at the position of the defect is shown as a solid black line. As
can be seen, the maximum of emission is in better agreement with
the latter rather than the former, showing the impact of the light field
expansion in reducing the critical speed for superfluidity.

σG = 5. The defect profile is chosen to have σn = 1, σm = 10;
the rapid switch on and off of the defect leads to significant
additional excitations, which smear out the threshold. In ad-
dition, the expansion of the light field also leads to a clear
downwards shift of the emission pattern towards lower speeds
s as compared to Fig. 18.

This can be attributed to two effects; firstly, the dropping
intensity of the light field means that the effective nonlinearity
at the time when the defect is applied is always lower than the
initial nonlinearity at the center of the cloud. Here we assess
the importance of this effect by plotting the analytical speed
of sound based on the initial intensity as a dashed black line,
and the speed of sound for the unperturbed intensity at the
central position of the defect as a solid black line; as expected,
the maximum of emission is in much better agreement with
the latter rather than the former, showing that the effective
nonlinearity is indeed lower than would be expected from
initial conditions. Secondly, the defect moves across the spa-
tially inhomogeneous light field, and so also crosses regions
of lower intensities. This leads to a sizable emission also
below the expected threshold speed, as is indeed observed.
Once all these complications are taken into account, the main
qualitative features of the total emission intensity diagram of
Fig. 21 can be recognized and understood, confirming the
important role of superfluid effects also in this expanding
geometry.

While these conclusions are in qualitative agreement with
the observations presented in the Supplemental Material of
our previous experimental work [19], note that an alternative
approach eventually turned out to be more effective in pro-
viding experimental evidence of a superfluid behavior. As is

presented in the main text of Ref. [19], expansion of the cloud
could be blocked by applying an additional confining potential
and the defect was then periodically moved through the cloud
with a sinusoidal temporal dependence. This ensured that the
light intensity did not drop significantly over time and that
the defect motion was restricted to the central region of the
cloud. This allowed for the experimental observation of a clear
threshold in the deposited energy as a function of the defect
speed, which was interpreted as evidence of the breakdown
of superfluid behavior above a certain critical speed. While
this observation is in qualitative agreement with a generalized
Landau criterion based on the instantaneous speed and the
local density, a quantitative analysis of the experiment will
require more sophisticated theoretical tools, in particular to
account for the nonuniform motion of the defect and the
consequent effect of acceleration on the emission. A study
along these lines will be the topic of future work.

V. CONCLUSIONS

In this paper we have reported the development of a general
theory of hydrodynamic effects in fluids of light in optical
mesh lattices. This study had a twofold objective in mind.

On the one hand, our theory has allowed us to characterize
effects, such as the behavior of the speed of sound, the role
of Umklapp processes in weakening superfluidity, and the
appearance of dynamical instabilities, which are qualitatively
different from that found in typical superfluids of material or
luminous particles in spatially continuous geometries, and are
peculiar to the spatiotemporally periodic geometry of optical
mesh lattices.

On the other hand, we have performed detailed numer-
ical simulations to show that these features can be indeed
accurately measured in an optical mesh lattice, while tak-
ing into account experimental complications such as the
overall expansion of the light field and realistic defect pro-
files. In particular, this study provides a solid conceptual
framework in support of the data analysis protocols applied
in our recent experimental work [19] and lays the foun-
dation for a next generation of quantitative experimental
measurements. In particular, our work paves the way for
further experimental exploration of more subtle superfluid
hydrodynamic phenomena, going beyond our recent proof-
of-principle experimental demonstration [19] and exploiting
fully the novel and specific features of optical mesh lattices.
For instance, our theoretical study has shown that new phe-
nomena such as dynamical instabilities and effective critical
velocities below the speed of sound may be observed in this
platform.

As compared to other promising platforms for studies of
superfluid hydrodynamics effects such as cold atoms [38] or
exciton-polariton fluids [1], optical mesh lattices have demon-
strated direct real-time and site-resolved access to the fluid
observables as well as an analogous spatiotemporal resolu-
tion in the design and application of external potentials with
arbitrary shapes without the need for any cumbersome ex-
perimental apparatus. These considerations, together with the
recent demonstration of lattices with nontrivial geometrical
[37] or topological properties [28,29], and of lattices with
two [21] or even more spatial dimensions [12,52], suggest
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the promise of optical mesh lattices as an ideal candidate to
investigate unprecedented regimes of superfluid hydrodynam-
ics and of its interplay with the most subtle geometrical and
topological features of complex lattices.

ACKNOWLEDGMENTS

This project was supported by German Research Founda-
tion (DFG) in the framework of Project No. PE 523/14-1,

the Cooperative Research Center SFB 1375 NOA, and by the
International Research Training Group (IRTG) 2101. H.M.P.
is supported by the Royal Society via Grants No. UF160112,
RGFEA180121 and RGFR1180071. I.C. acknowledges finan-
cial support from the European Union FET-Open grant “MIR-
BOSE” (No. 737017), from the H2020-FETFLAG-2018-2020
project ”PhoQuS” (No. 820392), from the Provincia Au-
tonoma di Trento, the Q@TN initiative, and the PNRR MUR
Project No. PE0000023-NQSTI.

[1] I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299 (2013).
[2] Y. Pomeau and S. Rica, C. R. Seances Acad. Sci., Ser. 2 317,

1287 (1993).
[3] F. T. Arecchi, G. Giacomelli, P. L. Ramazza, and S. Residori,

Phys. Rev. Lett. 67, 3749 (1991).
[4] G. A. Swartzlander and C. T. Law, Phys. Rev. Lett. 69, 2503

(1992).
[5] T. Frisch, Y. Pomeau, and S. Rica, Phys. Rev. Lett. 69, 1644

(1992).
[6] K. Staliunas and V. J. S. Morcillo, Transverse Patterns in Non-

linear Optical Resonators (Springer, Berlin, Heidelberg, 2003).
[7] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun,

J. Keeling, F. Marchetti, M. Szymańska, R. André, J. Staehli
et al., Nature (London) 443, 409 (2006).

[8] A. Amo, J. Lefrere, S. Pigeon, C. Adrado s, C. Ciuti, I.
Carusotto, R. Houdre, E. Giacobino, and A. Bramati, Nat. Phys.
5, 805 (2009).

[9] A. Amo, S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet,
I. Carusotto, F. Pisanello, G. Leménager, R. Houdré, E.
Giacobino, C. Ciuti, and A. Bramati, Science 332, 1167
(2011).

[10] G. Nardin, G. Grosso, Y. Leger, B. Pietka, F. Morier-Genoud,
and B. Deveaud-Pledran, Nat. Phys. 7, 635 (2011).

[11] I. Liberal, M. Lobet, Y. Li, and N. Engheta, Proc. Natl. Acad.
Sci. USA 117, 24050 (2020).

[12] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu,
M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I.
Carusotto, Rev. Mod. Phys. 91, 015006 (2019).

[13] P. Leboeuf and S. Moulieras, Phys. Rev. Lett. 105, 163904
(2010).

[14] D. Vocke, T. Roger, F. Marino, E. M. Wright, I. Carusotto, M.
Clerici, and D. Faccio, Optica 2, 484 (2015).

[15] C. Michel, O. Boughdad, M. Albert, P.-É. Larré, and M. Bellec,
Nat. Commun. 9, 2108 (2018).

[16] Q. Fontaine, T. Bienaimé, S. Pigeon, E. Giacobino, A. Bramati,
and Q. Glorieux, Phys. Rev. Lett. 121, 183604 (2018).

[17] A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, P. J.
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