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As a promising approach for optical nonreciprocity without magnetic materials, optomechanically induced
nonreciprocity has great potential for all-optical controllable isolators and circulators on integrated photonic
chips. However, as a very important issue in practical applications, the bandwidth for nonreciprocal transmission
with high isolation has not been fully investigated yet. In this study we first review the nonreciprocity in
a Brillouin optomechanical system with single cavity mode and point out the challenge in achieving broad
bandwidth with high isolation. To overcome this challenge, we propose a one-dimensional optomechanical
array to realize broadband optical nonreciprocity via nonreciprocal band structure. We exploit nonreciprocal
band structure induced by the stimulated Brillouin scattering with directional optical pumping and show
that it is possible to demonstrate optical nonreciprocity with both broad bandwidth and high isolation. Such
optomechanical lattices with nonreciprocal band structure, offer an avenue to explore nonreciprocal collective
effects of both photons and phonons in different frequency regimes.
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I. INTRODUCTION

Cavity optomechanics for the optical and mechanical
modes coupled through parameters interaction (for review,
see Ref. [1]) is a rapidly developing field and has wide ap-
plications ranging from gravitational wave detections [2] to
modern quantum technologies [3]. Recent studies [4] indi-
cate that the optomechanical system is an elegant candidate
for implementing optical nonreciprocity without magnetic
materials. Based on the optomechanical interactions, many
nonreciprocal devices, such as isolators and circulators,
are proposed theoretically via various of mechanisms, in-
cluding asymmetric optomechanical nonlinear interaction
[5–8], directional enhanced optomechanical interaction in
whispering-gallery-mode (WGM) microresonators [9–12],
synthetic magnetism for a closed loop of optical and mechan-
ical modes with nontrivial topological phases [13–29], and
dynamical encircling of the exceptional point [30,31]. As a
versatile platform, nonreciprocity has been realized in various
optomechanical systems working in different frequency do-
mains, ranging from optical regime with a silica microsphere
or microtoroid [32–38], a silicon nitride membrane placed
inside a high-finesse optical cavity [39–41], and a silicon op-
tomechanical crystal circuit [42–44], to the microwave regime
implemented in superconducting microwave circuits [45–49].

As an essential parameter, the isolation of nonreciproc-
ity has been seriously studied from both the theoretical and
experimental aspects. However, as another important param-
eter, the bandwidth of nonreciprocity has attracted much less
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attention in past studies. It has been shown that the bandwidth
of the optomechanically induced nonreciprocity is ultimately
limited by the optical linewidths [9,35]. So far, how to break
the bandwidth limit of nonreciprocity is still an open ques-
tion. To answer this question, we propose to demonstrate
optomechanical nonreciprocity in an optomechanical array
with nonreciprocal band structure that simultaneously favors
broad bandwidth and high reverse isolation.

In a very recent work [50], nonreciprocal single-photon
band structure was proposed in a one-dimensional (1D)
coupled-resonator optical waveguide that chirally couples to
an array of two-level quantum emitters. Inspired by this work
[50] and the rapid growth of topological optomechanical
lattices [51,52], here we propose to realize optomechan-
ical nonreciprocity with high reverse isolation and bread
bandwidth via nonreciprocal band structure in a Brillouin
optomechanical array. The nonreciprocal band structure is
generated by the stimulated Brillouin scattering between the
optical and mechanical whispering-gallery modes (WGMs)
circulating along the equatorial surface with the control laser
maintained in one direction, which is obviously different from
the nonreciprocal band structure based on chirally coupling to
two-level quantum emitters [50]. Our work is also different
from the nonreciprocal phonon transport that was proposed
in an array of optomechanical cavities with time-reversal
symmetry broken by the position-dependent phase (synthetic
magnetic field) [23] or the interplay of photonic spin-orbit
coupling [53,54].

This rest of the paper is organized as follows. In Sec. II,
we give a brief review on the optical nonreciprocity based
on stimulated Brillouin scattering in a WGM optomechani-
cal system, and elaborate the challenge we face in achieving
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optical nonreciprocity with both broad bandwidth and high
isolation in a single cavity. We propose to realize nonrecip-
rocal band structure in a Brillouin optomechanical array in
Sec. III. In Sec. IV, we demonstrate the optomechanical non-
reciprocity with high reverse isolation and broad bandwidth
via the nonreciprocal band structure, show the advantageous
of optomechanical nonreciprocity via the nonreciprocal band
structure to the nonreciprocity in the Brillouin optomechan-
ical system with single cavity, and discuss the effect of the
backscattering on the nonreciprocity. Finally, we summarize
the results in Sec. V.

II. PHOTON-PHONON-INTERACTION-INDUCED
NONRECIPROCITY

We start by reviewing optical nonreciprocity induced by
photon-phonon interactions in a microresonator supporting
pairs of degenerate clockwise (CW) and counterclockwise
(CCW) WGMs, which has been realized by several different
experimental groups based on Brillouin scattering [32,33]
or optomechanical interaction [34–37]. We will discuss the
bandwidth for nonreciprocal transport between different ports
with high isolation and show the challenge we face in achiev-
ing the optical nonreciprocity with both broad bandwidth and
high isolation in a single cavity.

As a specific example, we consider a Brillouin optome-
chanical system that consists of a microcavity supporting both
optical and mechanical WGMs traveling along the surface,
and the optical modes are evanescently coupled with two
tapered fibres, as illustrated schematically in Fig. 1(a). The
optomechanical system based on forward Brillouin scattering
can be described with the Hamiltonian

HBom =
∑

σ=cw,ccw

(ω0a†
σ aσ + ωcc†

σ cσ + ωd d†
σ dσ )

+
∑

σ=cw,ccw

gb(dσ a†
σ cσ + d†

σ aσ c†
σ )

+ (�e−iωpt d†
cw + �∗eiωpt dcw), (1)

where aσ and dσ are two optical modes coupled through
Brillouin scattering mediated by the traveling acoustic wave
cσ in the same direction. Here (ω0, k0) and (ωd , kd ) are the
energies and momenta of the optical modes aσ and dσ , and
(ωc, kc) are the energy and momentum of the travelling acous-
tic mode. To observe the forward Brillouin scattering effect,
the energies and momenta of these three modes must satisfy
the energy and momentum conservations ωc = ω0 − ωd and
kc = k0 − kd simultaneously. To enhance the single-photon
Brillouin coupling rate gb, a strong control laser (� and ωp) is
input from Port 1. For simplicity, we assume that the frequen-
cies of the modes satisfy the resonant conditions ωp = ωd =
ω0 − ωc [Fig. 1(a)].

In a rotating frame defined by the unitary trans-
formation operator R1(t ) = exp(−iH0t ) with H0 =∑

σ=cw,ccw(ω0a†
σ aσ + ωcc†

σ cσ + ωd d†
σ dσ ), the Hamiltonian

(1) becomes

H ′
Bom =

∑
σ=cw,ccw

gb
(
dσ a†

σ cσ + d†
σ aσ c†

σ

) + (�d†
cw + �∗dcw).

(2)

For a very strong control laser pumping to mode dcw, we
can treat the operator of the mode dcw as a sum of its clas-
sical mean value and quantum fluctuation operator 〈dcw〉 +
dcw, where 〈dcw〉 = −i�/κd and κd is the coupling strength
between the optical mode and fibers. Then, we obtain the
linearized photon-phonon interaction as

Hbom ≈ ga†
cwccw + g∗acwc†

cw, (3)

where g ≡ gb〈dcw〉 is enhanced by the strong control
laser with 〈dcw〉 � 1, and the weak nonlinear terms∑

σ=cw,ccw gb(dσ a†
σ cσ + H.c.) are ignored. Though the non-

linear interaction may induce quantum correlations [55], here
this effect can be ignored for weak nonlinear interaction
(gb 	 κd ) under the conditions that both the power of the
probe laser and the amplitude of the acoustic wave are very
weak in the following. Without loss of generality, we take g
as a positive-real number in the following. We note that this
strong driving-enhanced beam-splitter-type photon-phonon
interaction has also been realized in the optomechanical sys-
tems for the WGM optical modes coupling with the breathing
mechanical mode [34–37]. So the results in the following
are also applicable to the other WGM optomechanical sys-
tems. The transmission spectra of the probe laser input from
different port can be obtained analytically by means of the
Fourier transformation method. The quantum Langevin equa-
tions (QLEs) are given by

d

dt
acw = −κaacw − igccw + √

κaa1,in + √
κaa4,in, (4)

d

dt
ccw = −κcccw − igacw +

√
2κcccw,in, (5)

d

dt
accw = −κaaccw + √

κaa2,in + √
κaa3,in, (6)

where the optical modes acw and accw are coupled to both of
the fibers with strength κa, and a j,in is the field input from
Port j; κc is the acoustic damping rate and ccw,in is the field
input into the acoustic mode. The QLEs can be solved in the
frequency domain by introducing the Fourier transform for an
operator o as

õ(ω) = 1√
2π

∫ +∞

−∞
o(t )eiωt dt . (7)

Based on the standard input-output theory [56]

ã1,out (ω) + ã2,in(ω) = √
κãaccw(ω), (8)

ã2,out (ω) + ã1,in(ω) = √
κãacw(ω), (9)

ã3,out (ω) + ã4,in(ω) = √
κãacw(ω), (10)

we obtain the expressions of the output fields as

ã1,out (ω) = S12(ω )̃a2,in(ω) + S13(ω )̃a3,in(ω), (11)

ã2,out (ω) = S21(ω )̃a1,in(ω) + S24(ω )̃a4,in(ω)

+ S2c(ω )̃ccw,in(ω), (12)

ã3,out (ω) = S31(ω )̃a1,in(ω) + S34(ω )̃a4,in(ω)

+ S3c(ω )̃ccw,in(ω), (13)
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FIG. 1. (a) Schematic illustration of the forward Brillouin optomechanical interaction and the frequency relationship under triple resonance
ω0 = ωd + ωc. (b) [(e)] The transmission spectra (T12 and T21) [(T13 and T31)] and (c) [(f)] the isolation 10 log10(T21/T12) [10 log10(T31/T13)] for
g = 3κa. (d) [(g)] The bandwidth for the 20 dB isolation (T21/T12 = 100) [(T31/T13 = 0.01)] versus coupling g/κa. Here we set κc = κa/100.

where

S12(ω) = κa

κa − iω
− 1, (14)

S21(ω) = S34(ω) = (κc − iω)κa

(κa − iω)(κc − iω) + g2
− 1, (15)

S13(ω) = κa

κa − iω
, (16)

S31(ω) = S24(ω) = (κc − iω)κa

(κa − iω)(κc − iω) + g2
, (17)

S2c(ω) = S3c(ω) = −ig
√

2κaκc

(κa − iω)(κc − iω) + g2
, (18)

are the scattering coefficients. The transmission spectra are
defined by

Ti j = |Si j (ω)|2 (19)

for photons transporting from Port j to i.
The transmission spectra and the corresponding isolation

between Ports 1 and 2 are shown in Figs. 1(b) and 1(c). We
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can see that the photons transport unidirectionally from Ports
1 to 2 around the frequency ω = 0, or from Ports 2 to 1 around
the frequencies ω = ±g. Such Brillouin-scattering-induced
nonreciprocity was realized first in 2015 [32,33]. It is worth
emphasizing that the bandwidth for nonreciprocity with high
isolation is very narrow. We note that the bandwidth for nonre-
ciprocity depends on the optomechanical coupling strength g.
To clarify this point further, we show the bandwidth for 20 dB
isolation versus g in Fig. 1(d). It shows that the bandwidth
for 20 dB isolation increases with g in the weak coupling
regime (g < κa), and then reaches the maximal value about
κa/5 in the strong coupling regime (g > κa). The bandwidth
with high isolation is one of the most important parameters
for nonreciprocal devices in practical applications. How to
increase the bandwidth with high isolation still needs more
research.

Optical nonreciprocity can also be realized between Ports
1 and 3. According to the transmission spectra and the corre-
sponding isolation shown in Figs. 1(e) and 1(f), the photons
transport unidirectionally from Ports 3 to 1 around the fre-
quency ω = 0, or from Ports 1 to 3 around the frequencies
ω = ±g. As shown in Fig. 1(g), the bandwidth for −20 dB
isolation increases monotonously with coupling strength g,
and most importantly, the value of bandwidth is not saturated
in the strong coupling regime. So we can obtain a much
broader bandwidth for high isolation between Ports 1 and 3.
How to get a broader bandwidth with a higher isolation is the
main issues discussed in this paper. We will show that both
the bandwidth and isolation for optical nonreciprocity can be
improved in a one-dimensional (1D) optomechanical array via
nonreciprocal band structure.

III. NONRECIPROCAL BAND STRUCTURE

We propose a 1D optomechanical array with N unit
cells as shown in Fig. 2(a), where the unit cell is con-
sisting of a Brillouin optomechanical system coupled to a
WGM microresonator. It is worth mentioning that optome-
chanical arrays were realized in coupled optomechanical
double-disk oscillators [57], optomechanical crystals [51],
and superconducting circuit optomechanics [52]. In the ro-
tating frame defined by the unitary transformation operator
RN (t ) = exp(−iHNt ) with HN = ∑

σ=cw,ccw

∑N
j=1(ω0a†

σ aσ +
ω0b†

σ bσ + ωcc†
σ cσ + ωd d†

σ dσ ), the system can be described by
the total Hamiltonian

Htot = H (0)
1→3 + H (0)

3→1 + H (0)
BS , (20)

where H (0)
1→3 is the Hamiltonian for photons transport from

Ports 1 to 3,

H (0)
1→3 =

N∑
j=1

(g jd
†
j,cwa j,cwc†

j,cw + � jd
†
j,cw + va j,cwb†

j,ccw)

+
N−1∑
j=1

va j+1,cwb†
j,ccw + H.c., (21)

FIG. 2. (a) Schematic of a 1D Brillouin optomechanical array
containing N unit cells and the input-output waveguides. (b) Geo-
metric structure of the lattice with the backscattering effect taken
account Jη 
= 0. (c) Geometric structure of the lattice without taking
account of the backscattering effect Jη = 0.

H (0)
3→1 is the one for photons transport in the reverses direction,

i.e., from Ports 3 to 1,

H (0)
3→1 =

N∑
j=1

(g jd
†
j,ccwa j,ccwc†

j,ccw + va j,ccwb†
j,cw)

+
N−1∑
j=1

va j+1,ccwb†
j,cw + H.c., (22)

and

H (0)
BS =

N∑
j=1

∑
η=a,b,c,d

Jη(η†
j,cwη j,ccw + η

†
j,ccwη j,cw), (23)

is the backscattering-induced interaction terms for the photons
transport in different directions.

To realize nonreciprocal band structure, a strong control
laser is pumped to the mode d j,cw under the conditions that
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the power of the probe laser and the amplitude of acoustic
wave are very weak, the modes d j,cw and d j,ccw can be treated
classically as complex numbers as

〈d j,cw〉 = −i2� jκd

κ2
d + 4J2

d

(24)

and

〈d j,ccw〉 = −i2Jd

κd
〈d j,cw〉. (25)

So we obtain the linearized Hamiltonian

Hlin = H1→3 + H3→1 + HBS, (26)

where

H1→3 =
N∑

j=1

(ga j,cwc†
j,cw + va j,cwb†

j,ccw)

+
N−1∑
j=1

va j+1,cwb†
j,ccw + H.c., (27)

H3→1 =
N∑

j=1

(g∗
sa j,ccwc†

j,ccw + va j,ccwb†
j,cw)

+
N−1∑
j=1

va j+1,ccwb†
j,cw + H.c., (28)

and

HBS =
N∑

j=1

∑
η=a,b,c

Jη(η†
j,cwη j,ccw + η

†
j,ccwη j,cw), (29)

where g ≡ g j〈d j,cw〉 and gs ≡ g j〈d j,ccw〉 are the pumping-
enhanced photon-phonon coupling strengths; see Fig. 2(b).
For simplicity, we set g as a positive-real number. We should
point out that gs is induced by the backscattering as gs =
(−i2Jd/κd )g, and the differences between g and gs is the key
ingredient for the nonreciprocal band structure.

First of all, let us analyze the band structure and
the corresponding transmission spectra by neglecting the
backscattering, i.e., gs = 0 and Jη = 0. In this case, the ge-
ometric structure of the coupled modes are divided into three
parts [see Fig. 2(c)]: (i) a stub lattice [58–60] for the photons
transport from Ports 1 to 3, (ii) a Su-Schrieffer-Heeger (SSH)
lattice [61–63] for the photons transported from Ports 3 to
1, and (iii) the isolated acoustic modes c j,ccw. The Hamil-
tonian of the stub lattice is given by H1→3 (27), and the
SSH lattice and the isolated acoustic modes are described by
H3→1 (28) with gs = 0. The band structure of the lattices for
photons transported in different directions can be found by
numerically solving the eigenvalues of Eqs. (27) and (28),
respectively. The band structures for the lattices containing N
unit cells (N = 10) are shown in Figs. 3(a) and 3(b), respec-
tively. There is only one passband in the band structures of the
SSH lattice for photons transport from Ports 3 to 1. In contrast,
there are two passbands in the band structures of the stub
lattice for the photons transport from Ports 1 to 3, separated by
a band gap induced by the photon-phonon interaction g. The
width of the band gap becomes broader with the increasing of
g, as shown in Fig. 3(c).

FIG. 3. Band structure of (a) a SSH lattice for the photons trans-
port from Ports 3 to 1 and (b) a stub lattice for the photons transport
from Ports 1 to 3. (c) Band structures of the stub lattice versus the
coupling strength g/κa. The other parameters are N = 10, v = 10κa,
and g = 20κa in (b).

The band structures can also be analyzed analytically
in the momentum space under the periodic boundary con-
dition. By introducing the Fourier transformation Ok =
(1/

√
N )

∑
j ei jkd0 Oj (k is the wave number and d0 is the

lattice constant, hereafter we set d0 = 1 for simplicity), the
Hamiltonian (26) can be rewritten as

Hlin =
∑

k

V †
k Hlin(k)Vk, (30)

where V †
k = (a†

k,cw, b†
k,ccw, c†

k,cw, a†
k,ccw, b†

k,cw, c†
k,ccw) and the

Hamiltonian in the momentum space is given by

Hlin(k) =
(

H1→3(k) HBS(k)
HBS(k) H3→1(k)

)
, (31)

with the submatrices

H1→3(k) =
⎛
⎝ 0 ρ g

ρ∗ 0 0
g 0 0

⎞
⎠, (32)

H3→1(k) =
⎛
⎝ 0 ρ gs

ρ∗ 0 0
g∗

s 0 0

⎞
⎠, (33)

HBS(k) =
⎛
⎝Ja 0 0

0 Jb 0
0 0 Jc

⎞
⎠. (34)

Here we define ρ ≡ v + veik .
The frequency spectrum of the lattices can be read off from

Eqs. (32) and (33) for gs = 0 and Jη = 0. The eigenvalues of
Eqs. (32) and (33) can be written in an unified form as

ω(k) =
⎧⎨
⎩

√|ρ|2 + g2
om,

0,

−√|ρ|2 + g2
om,

(35)

where gom = 0 for the SSH lattice and gom = g for the stub
lattice. As shown in Fig. 4(a), there is only one passband
from −2v to 2v (width 4v) in the band structure for the
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FIG. 4. Frequency spectrum for photons transport (a) from Port 3 to 1 and (b) from Port 1 to 3. (c) The transmission spectra (T13 and T31)
and (d) the isolation I = 10 log10(T31/T13) versus the energy of the input photons for N = 10. (e) The isolation 10 log10(T31/T13) versus energy
ω/κa and coupling strength g/κa. The other parameters are g = 2v, v = 10κa, κa = κb, κc = κa/100, and Jη = 0 (η = a, b, c, d).

photons transported from Ports 3 to 1 (SSH lattice), where
the eigenvalues ω(k) = 0 for the isolated acoustic modes are
not shown here. In contrast, there is a band gap (from g to −g)
between the two passbands (from g to

√
4v2 + g2 and from −g

to −
√

4v2 + g2) in the band structure of the stub lattice for the
photons transport from Ports 1 to 3 [see Fig. 4(b)].

IV. BROADBAND OPTICAL NONRECIPROCITY

Now, we discuss the transmission spectra between the Ports
1 and 3 with nonreciprocal band structure. After introducing
the decay terms and the corresponding input fields, the QLEs
for the operators are given by

d

dt
a j,cw = −ivb j,ccw − ivb j−1,ccw − igc j,cw − iJaa j,ccw

− κa

2
a j,cw + √

κaa j,cw,in, (36)

d

dt
b j,ccw = −iva j,cw − iva j+1,cw − iJbb j,cw

− κb

2
b j,ccw + √

κbb j,ccw,in, (37)

d

dt
c j,cw = −iga j,cw − iJcc j,ccw

− κc

2
c j,cw + √

κcc j,cw,in, (38)

d

dt
a j,ccw = −ivb j,cw − ivb j−1,cw − igsc j,ccw − iJaa j,cw

− κa

2
a j,ccw + √

κaa j,ccw,in, (39)

d

dt
b j,cw = −iva j,ccw − iva j+1,ccw − iJbb j,ccw

− κb

2
b j,cw + √

κbb j,cw,in, (40)

d

dt
c j,ccw = −ig∗

sa j,ccw − iJcc j,cw

− κc

2
c j,ccw + √

κcc j,ccw,in, (41)

where κη (η = a, b, c) are the decay rate of the optical and
mechanical modes, and η j,σ,in (σ = cw, ccw) are the input
operators of these modes. For the sake of brevity, we rewrite
the QLEs in a matrix form as

d

dt
V = −MV +

√
	Vin, (42)

where (V )T = ((V1→3)T , (V3→1)T ), (V1→3)T = (. . . , a j,cw,

b j,ccw, c j,cw, . . . ), (V3→1)T = (. . . , a j,ccw, b j,cw, c j,ccw, . . . ),
(Vin )T = ((V1→3,in )T , (V3→1,in )T ), (V1→3,in )T = (. . . , a j,cw,in,

b j,ccw,in, c j,cw,in, . . . ), (V3→1,in )T = (. . . , a1,ccw,in, b1,cw,in,

c1,ccw,in, . . . ), 	 = diag(. . . , κa, κb, κc, . . . ), and M is a
6N × 6N coefficient matrix.

We solve the QLEs in the frequency domain and get the
expression

Ṽ (ω) = (M − iωI )−1
√

	Ṽin(ω), (43)

where I is the identity matrix. Based on the
input-output theory [56], the output vector (Vout )T =
((V1 → 3,out )T , (V3 →1, out )T ), (V1 → 3, out )T = ( . . . , a j, cw, out,

b j, ccw, out, c j, cw, out, . . .), (V3 → 1, out )T = (. . . , a1, ccw, out,

b1,cw,out, c1,ccw,out, . . . ), in the frequency domain is obtained
as

Ṽout (ω) = U (ω)Ṽin(ω), (44)

where

U (ω) =
√

	(M − iωI )−1
√

	 − I. (45)
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The transmission spectrum for the photons transport from
Ports 1 to 3 is given by

T31(ω) = |U(3N−1),1(ω)|2, (46)

and the transmission spectrum in the reverse direction is
given by

T13(ω) = |U(3N+1),(6N−1)(ω)|2, (47)

where Ui j (ω) is the element at the ith row and jth column of
the scattering matrix U (ω) in Eq. (45).

We note that there is a transmission window in the trans-
mission spectrum for the passband, and the photon transport
is suppressed significantly in the stopband or band gap. To
obtain great optical nonreciprocity, we set g = 2v, so the pass-
band (−2v < ω < 2v) for photons transport from Ports 3 to 1
corresponds to the band gap (−g < ω < g) for photons trans-
port from Ports 1 to 3 with two passbands (−

√
4v2 + g2 <

ω < −g and g < ω <
√

4v2 + g2), as shown in Figs. 4(a)
and 4(b). In this case, the transmission spectra (T31 and T13)
and the corresponding isolation [I = 10 log10(T31/T13)] are
shown in Figs. 4(c) and 4(d). We obtain strong nonreciprocity
(∼140 dB) with a broad bandwidth (∼g � κa) based on the
nonreciprocal band structure. In addition, the width of the
strong nonreciprocity can be tuned by the coupling strength g
[see Fig. 4(e)], which depends on the optical driving strength.

To show the advantageous of optical nonreciprocity via
the nonreciprocal band structure to the nonreciprocity in the
Brillouin optomechanical system with single cavity mode, we
show the isolations for different systems in Fig. 5(a) (SC
stands for single cavity). In comparison to nonreciprocity in
a single cavity, both the isolation and bandwidth are dramat-
ically improved for the nonreciprocity in an optomechanical
array with nonreciprocal band structure. Specifically, the iso-
lation is improved by 56 dB for an optomechanical array with
N = 5 unit cells, and it can be improved further by 72 dB
when the unit cells increase to N = 10. Moreover, we show
the band width with −50 dB isolation versus the number of
unit cells N in Fig. 5(b). Clearly, the advantageous of the
nonreciprocity in an optomechanical array starts to appear
with the number of unit cells N = 3, and the bandwidth
gradually tends toward 4v with the increase of the number of
unit cells.

Finally, let us discuss the effect of the backscattering on
the nonreciprocity based on nonreciprocal band structure. The
backscattering effect induces the coupling between the path
for photons transport from Ports 1 to 3 and the path for
photons transport from Ports 3 to 1, as shown in Fig. 2(b). In
this case, the frequency spectrum versus the wave vector k/π

is shown in Fig. 6(a), which is the combination of the energy
bands for photons transport in bidirection between Ports 1
and 3. In addition, the backscattering effect induces a nonzero
photon-phonon coupling gs 
= 0 for the photons transport
from Ports 3 to 1, which leads to the appearing of a band gap
−|gs| < ω < |gs| in the band structure. When the backscatter-
ing effect is weak, the nonreciprocity still can be obtained with
high isolation and broad bandwidth as shown in Figs. 6(b)

FIG. 5. (a) The isolation 10 log10(T31/T13) versus the energy of
the input photons ω/κa. (b) The bandwidth with isolation of −50 dB
versus the number of unit cells N . The dashed line is the bandwidth
for optomechanical nonreciprocity in a single cavity. The other pa-
rameters are v = 10κa, g = 2v, κb = κa, κc = κa/100, and Jη = 0
(η = a, b, c, d).

and 6(c) for Jη = 0.1κa. To show the effect of backscatter-
ing on the nonreciprocity clearly, the isolation versus energy
ω/κa and backscattering Jη/κa is shown in Fig. 6(d). We can
see that the nonreciprocal effect becomes weaker with the
increasing of Jη in the weak backscattering regime (Jη <

κa/2) and disappears when Jη = κa/2. This can be understood
from the relation gs = (−i2Jd/κd )g, which indicates that the
difference between gs and g becomes smaller with the in-
creasing of Jη, and |gs| = g for κd = κa and Jd = κd/2. The
permitting transport direction even changes when Jη > κa/2
for we have |gs| > g in the strong backscattering regime. In
addition, there are many other factors that may impose some
limitation in the isolation contrast, such as the intrinsic decay
rates of the coupled optical and acoustic modes, the thermal
effect of the acoustic modes, the disorder effect of the param-
eters, and so on.

V. CONCLUSION

In conclusion, we revealed the challenge in achieving
nonreciprocal isolator with both broad bandwidth and high
isolation in an optomechanical system with single cavity
mode. To overcome this challenge, we proposed a 1D op-
tomechanical array with nonreciprocal band structure to
realize broadband optical nonreciprocity. We investigated
the nonreciprocal band structure in a 1D Brillouin optome-

063516-7



NING HU, ZHI-XIANG TANG, AND XUN-WEI XU PHYSICAL REVIEW A 108, 063516 (2023)

FIG. 6. (a) Frequency spectrum of the Hamiltonian (26) versus wave vector k/π , (b) the transmission spectra (T13 and T31), and (c) the
isolation 10 log10(T31/T13) versus energy ω/κa, for Jη = 0.1κa (η = a, b, c, d). (d) The isolation 10 log10(T31/T13) versus energy ω/κa and
backscattering Jη/κa. The other parameters are v = 10κa, g = 2v, κb = κd = κa, κc = κa/100, and N = 10.

chanical array with directional enhanced optomechanical
interaction by applying optical control fields and demon-
strated optical nonreciprocity with both broad bandwidth
and high isolation in a controllable way. Looking for-
wards, such optomechanical lattices offer a path to realize
proposals exploring the nonreciprocal collective effects,
such as nonreciprocal topological phases, and viewed more
broadly, it can be used to explore exotic quantum light-
matter interactions in nonreciprocal optomechanical lattices
[64,65].
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