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Floquet engineering Dirac bands in synthetic frequency lattices
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A waveguide coupler under periodically cascaded dielectric modulation is proposed to generate a Floquet
lattice in synthetic frequency dimension. The Floquet bands may hold linear in the entire Brillouin zone, referred
to as Floquet Dirac bands and giving rise to nondiffracting frequency shifts. The direction of frequency shift
depends on the component of incident transverse modes, analogous to the spin-momentum locking realized in
driven ultracold atoms recently. Furthermore, the shape of Floquet bands can be flexibly adjusted by applying
external modulation voltage, resulting in a tunable group velocity and diffraction coefficient. The discrete
diffraction and dynamic localization are also demonstrated in the Floquet frequency lattice. The study provides a
versatile platform to explore multiband Floquet lattice physics in synthetic dimensions, and may find applications
in spectral manipulation, mode conversion, and mode-division demultiplexing.
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I. INTRODUCTION

Dirac points with linear band crossing in momentum space
give rise to unconventional phenomena such as Klein tunnel-
ing and nondiffracting transport [1–4]. Dirac points in energy
bands typically occur in special two-dimensional lattices such
as graphene [5] and surface states of three-dimensional topo-
logical insulators [6]. Recently, a remarkable one-dimensional
(1D) Dirac band with linear dispersion everywhere in the Bril-
louin zone has been experimentally demonstrated by ultracold
atoms in optical lattices [7,8], which shows the one-to-one
correspondence between the propagation direction of particles
and their spin, namely the spin-momentum locking. The key
concept to realize 1D Dirac bands is Floquet engineering,
i.e., the control of systems using time-periodic perturbation.
Floquet engineering has been demonstrated as a powerful
tool to manipulate the properties of a system, especially the
band structure [9,10]. A variety of nontrivial phenomena have
been exhibited by using Floquet engineering, some of which
are hard to realize or manipulate in static systems, such as
1D Floquet Dirac bands [7,8], Floquet topological insulators
[9,11–13], anomalous π modes [14], discrete time crys-
tals [15], beam rectifications [16], and dynamic localizations
[17,18]. Most previous works in optical systems concerning
Floquet engineering are limited in waveguide arrays where
the propagation coordinate acts as time. The optical waveg-
uide arrays can be manufactured by well-developed lasing
direct writing or etching technologies. However, the change
of driving strength and frequency in waveguide arrays neces-
sitates refabricating the device. Moreover, the fabrication is
demanding and the size is relatively massive, which hinder
their application feasibilities.
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In contrast to waveguide arrays, synthetic frequency lat-
tices are capable to construct controllable Floquet systems.
The modes in an optical waveguide or ring resonator with
evenly spaced frequencies couple to each other by applying
dynamic refractive index modulation, forming a synthetic
frequency lattice with tunable coupling strength and artifi-
cial gauge potential [19–23]. Synthetic frequency dimensions
have enabled flexible experimental analogs of condensed-
matter systems, and served as programmable photonic sim-
ulators for bosonic transport [24,25]. Higher-dimensional
lattices can be implemented by applying multitone modula-
tions [24,26–28] or adding the other dimensions, e.g., spatial
dimension [29,30] and spin (orbital) angular momentum di-
mensions [31,32]. Numerous intriguing physical phenomena
have been demonstrated in synthetic frequency dimensions,
such as the quantum Hall effect [19], higher-order topological
insulators [33], artificial non-Abelian gauge fields [34], non-
Hermitian band braiding [35,36], and moiré lattices [37].

In this work, we demonstrate that coupled waveguides
under periodically cascaded dielectric modulation are able
to generate a Floquet frequency lattice. The Floquet driving
strength can be controlled flexibly via external modulation
voltage. Inspired by the spin-momentum locking induced by
Floquet Dirac bands in driven ultracold atoms [7,8], we show
that the Floquet frequency lattice can also exhibit Dirac bands
which hold linear dispersion in the entire Brillouin zone. The
supermodes in coupled waveguides act like pseudospins and
the analogous spin-momentum locking can be realized. The
frequency shifts are nondiffracting where the shift direction
is corresponding to the type of incident supermodes. Further-
more, by changing the driving strength, the group velocity
and diffraction coefficient of Floquet bands can be flexibly
adjusted, leading to the phenomena of discrete diffraction and
dynamic localization. The study provides a versatile platform
to explore multiband physics of Floquet lattice in synthetic
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FIG. 1. (a) Schematic of coupled waveguides under periodically
cascaded dynamic modulation. The system consists of two 400-nm-
widE LiNbO3 waveguides with 100-nm gap and the SiO2 substrate.
The periodically cascaded traveling-wave electrodes are composed
of two segments with distinct geometries associated with different
modulation wave numbers in one period L. (b) Transverse profiles
of refractive index n(x) and modulation f (x). The refractive index
for LiNbO3 waveguides and SiO2 substrate are nLN = 2.14 and
nSiO2 = 1.44. (c) Profiles of modulation amplitude �ε1,2(z) along
propagation direction z.

dimensions, and may find applications in spectral manipula-
tion, mode converters, and mode-division demultiplexing.

II. RESULTS AND DISCUSSION

A. Floquet frequency lattice

We start by considering a pair of coupled waveguides
undergoing dynamic dielectric modulation as shown schemat-
ically in Fig. 1(a). The periodically cascaded traveling-wave
modulations are composed of two alternate segments with
distinct modulation wave numbers, which can be modeled by
a modulated relative permittivity

εr (x, z, t ) = εs + �ε1(z) f (x) cos(�t − q1z)

+ �ε2(z) f (x) cos(�t − q2z), (1)

where εs denotes the static relative permittivity, while �,
q1,2, and �ε1,2 are modulation frequency, wave numbers,
and amplitudes, respectively. The modulations are solely ap-
plied in the right waveguide, reflected by the modulation
profile f (x) as shown in Fig. 1(b). The periodically cascaded
traveling-wave electrodes can be expressed by distance-
varying modulation amplitudes as

�ε1(z) = �ε, �ε2(z) = 0, z ∈ [mL, mL + L/2)

�ε1(z) = 0, �ε2(z) = �ε, z ∈ [mL + L/2, (m + 1)L),

(2)

where m is an integer and L/2 is the length of an individual
electrode. The modulation amplitude �ε should be a small
perturbation compared to the static relative permittivity εs so
that the disturbance to the wave numbers and mode profiles of
even and odd modes can be ignored. As depicted in Fig. 1(c),
the modulation amplitudes �ε1,2 accompanied by modulation
wave numbers q1,2 alternately switch on and off at z = mL/2,
leading to a Floquet driving period L. The evanescent coupling
between the fundamental modes in each waveguide gives rise

FIG. 2. (a), (b) Dispersion relation of coupled waveguides. The
periodically dimerized coupling strengths between supermodes are
induced by cascaded dynamic modulation and switch at z = mL/2,
with m being an integer. (c), (d) Floquet energy bands for LJ = π /2
in (c) and LJ = π in (d).

to the even and odd supermodes, forming a two-branch band
as shown in Figs. 2(a) and 2(b). By applying cascaded dy-
namic dielectric modulation, the supermodes are coupled to
form a Floquet frequency lattice. For concreteness, the electric
field in the coupled waveguides can be expressed as

E (x, z, t ) =
∑

n

Sn(z)ψS (x) exp
[
i
(
ωnt − βS

n z
)]

+
∑

n

An(z)ψA(x) exp
[
i
(
ωnt − βA

n z
)]

, (3)

where Sn and An are mode amplitudes of even and odd super-
modes with frequency ωn = ω0 + n� (n = 0, ±1, ±2, …),
wave numbers βS

n = βS
0 + n�/vg and βA

n = βA
0 + n�/vg, and

eigenmode profile ψS(A). Under low-frequency modulation
� � ω0, the slight distinction of eigenmode profile among
different frequencies can be neglected and the dispersion can
be regarded as linear given that the LiNbO3 holds a low
group-velocity dispersion GVD = 112.19 fs2/mm (compared
to Si as GVD = 1119.4 fs2/mm) at 1550 nm. The difference
of wave numbers at the same frequency βS

n − βA
n = 2κ is

caused by evanescent coupling, where κ denotes the coupling
strength which can be approximated to a constant under � �
ω0. The modulation wave numbers for the two segments of
modulation are designed as

q1 = �/vg + 2κ

q2 = �/vg − 2κ, (4)

where vg is the group velocity of the waveguide modes.
Such design of modulation wave numbers induces the in-
terband transitions between supermodes with evenly spaced
frequencies as shown in Figs. 2(a) and 2(b). By substi-
tuting Eqs. (1)–(4) into Maxwell’s equations, and using
a slowly varying envelope approximation (J � βn

S(A)) and

063515-2



FLOQUET ENGINEERING DIRAC BANDS IN SYNTHETIC … PHYSICAL REVIEW A 108, 063515 (2023)

rotating wave approximation (J � 4κ) [21,38–40], we can
derive the coupled-mode equation

i
d

dz
An+1 = J1(z)Sn+2 + J2(z)Sn

i
d

dz
Sn = J1(z)An−1 + J2(z)An+1, (5)

and the corresponding coupling strengths

J1(z) = J, J2(z) = 0, z ∈ [mL, mL + L/2)

J1(z) = 0, J2(z) = J, z ∈ [mL + L/2, (m + 1)L), (6)

where J = ε0 ∫∞
−∞ f (x)�εψA(x)ψS (x)dx/8 is independent

with frequency given that the distinctions of eigenmode
profile among different frequencies are neglected under low-
frequency modulation, � � ω0. Considering the parity of
even and odd supermodes, an asymmetrical modulation pro-
file f (x) is enough to induce a nonvanishing coupling strength.
As shown in Figs. 2(a) and 2(b), our frequency lattice
mimics a Floquet lattice. The driving protocol consists of
switching between two kinds of interband transition pro-
cesses, with one between supermodes An−1 and Sn during
the first half period [0, L/2) (mod L), and the other be-
tween Sn and An+1 during the second half period [L/2, L)
(mod L). The Floquet driving strength J, associated with
modulation strength �ε, can be flexibly tuned via exter-
nal modulation voltage without refabricating a new device.
The controllable Floquet frequency lattice provides a versa-
tile platform for demonstrating the physical phenomena of
Floquet lattices. As an example, we will show the Floquet
Dirac bands with linear dispersion everywhere in the Bril-
louin zone and the analogous spin-momentum locking in
the following.

B. Floquet Dirac band and spin-momentum locking

The properties of stroboscopic dynamics of Floquet lat-
tice systems are reflected in Floquet bands [10]. By defining
A2n−1(S2n) = ∫BZdkωAkω(Skω ) exp[2ikωn�], where kω de-
notes the Bloch wave number in frequency dimension, the
coupled-mode equation in k space corresponding to Eq. (5)
is

i
d

dz

[
Akω

Skω

]
=

[
0 J1(z) + J2(z)e−2ikω�

J1(z) + J2(z)e2ikω� 0

]

×
[

Akω

Skω

]
, (7)

which defines the Hamiltonians associated with two respec-
tive half periods

H1 =
[

0 J
J 0

]
, H2 =

[
0 Je−2ikω�

Je2ikω� 0

]
(8)

and gives rise to the single-period evolution operator

Uk (L) = e−iH2L/2e−iH1L/2 (9)

Hence, the Floquet Hamiltonian HF , defined as
exp(−iHF L) = Uk (L), is a stationary effective Hamiltonian
that describes the stroboscopic evolution of the system after
each driving period. The Floquet bands are the eigenvalues of

HF , which are found to be

kz = ± 1

L
arccos[cos2(LJ/2) − sin2(LJ/2) cos(2kω�)] (10)

The Floquet bands are depicted in Fig. 2(c), which shows
a two-band structure and a degeneracy in the boundary
of Brillouin zone. In particular, for LJ = π , the Floquet
bands become linear everywhere in the Brillouin zone, i.e.,
an ideal realization of the 1D Dirac fermion, as shown in
Fig. 2(d). Therefore, the nondiffracting transports can be re-
alized with arbitrary excited Bloch states, unlike the typical
Dirac semimetals such as graphene, in which the linear dis-
persion only exists in the vicinity of Dirac points, leading
to a nondiffracting transport associated with specific Bloch
momentum.

The nondiffracting transports in the proposed Floquet sys-
tems are accompanied by spin-momentum locking. We can
compute the Floquet Hamiltonian for LJ = π as

HF (kω ) = (1/L)2kω�σz + π/L, (11)

where σz denotes the third standard Pauli matrix. Such
Hamiltonian mimics a Dirac fermion with positive (nega-
tive) velocity for up (down) spin. As mentioned before, the
Floquet Hamiltonian describes the stroboscopic evolution of
the system after each driving period. However, the so-called
micromotion within a period is hidden [41], i.e., the spins
are allowed to change during the period, but must recover
themselves after each period. In our systems, the odd and
even supermodes play the role of up and down spins, re-
spectively, and the velocity of frequency shift is the analog
of momentum. The spin-momentum locking implies that the
input even (odd) supermodes will undergo red (blue) shift with
nondiffraction in the frequency domain. We simulated the
nondiffracting frequency shifts by first-principle simulations
using the 2D finite-difference time-domain (FDTD) method.
As demonstrated by the field distribution in Fig. 3(a) and
the spectral evolutions of even and odd modes in Figs. 3(b)
and 3(c), the excited even mode manifests redshift without
frequency diffraction. The nondiffracting blueshift for odd-
mode excitation is shown in Figs. 3(d)–3(f). The black circles
in spectra are solved by coupled-mode Eq. (5), which shows
good agreement with the first-principle simulated spectra de-
noted by red and blue lines. Such a phenomenon can be
understood at an intuitive level. Under LJ = π , the amplitudes
between adjacent coupled sites are completely exchanged in
each half period. Therefore, in the first half period as shown
in Fig. 2(a), the excited even-mode S0 is fully transferred
into odd-mode A−1. For the second half period as shown
in Fig. 2(b), the odd-mode A−1 recovers to even mode and
accompanies redshift to S−2. These processes repeat in the
subsequent periods, leading to the nondiffracting redshift. The
switches of transverse modes are demonstrated by field distri-
bution in Fig. 3(a), and the nondiffracting redshift is shown
by spectral evolutions of even and odd modes in Figs. 3(b)
and 3(c). The tiny diffractions in Figs. 3(b) and 3(c) are
caused by group-velocity dispersion. The GVD leads to the
wave number mismatching between waveguide coupler and
modulation, i.e., the deviation from Eq. (4), and further in-
duces the incomplete mode conversion. Similar analyses can
be applied to the case of odd-mode excitations, which undergo
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FIG. 3. Spin-momentum locking with monochromatic excitation. (a)–(c) Distribution of electric fields (a) and corresponding spectral
evolutions for even mode (b) and odd mode (c) with monochromatic even-mode excitation under LJ = π . The blue(red) lines are the even(odd)
modes spectra solved by FDTD method and black circles are solved by the coupled-mode Eq. (5). The shaded areas in (b) and (c) indicate
the spectral intensity of even and odd modes calculated by FDTD method and normalized to the intensity of excited light. (d)–(f) Distribution
of electric fields and corresponding spectral evolutions with monochromatic odd-mode excitation under LJ = π . The modulation frequency
is f = �/2π = 1 THz. The modulation amplitude is �ε = 0.4 × nLN for LJ = π . The length for one driving period of cascaded dynamic
modulation is L = 18 µm. The wavelength of excited light is 1550 nm.

blueshifts without diffraction in the frequency domain. It is
worth noting that input position will affect the direction of
frequency shift of even and odd modes. For instance, the even
(odd) modes will undergo blue (red) shift if the source is put at
z = L/2. The FDTD update equations with time-varying per-
mittivity can be found in Ref. [42]. We consider the TE modes
(Ey, Hz, Hx ) of the waveguides. The boundary is set as convo-
lutional perfectly matched layer [43]. The parameters related
to modulation wave numbers are �/vg = 0.0391 µm-1 and
κ = 0.4341 µm-1.

The spin-momentum locking in the Floquet frequency lat-
tice is useful for mode-division multiplexing applications.
We simulated the spectral evolutions by the FDTD method
with frequency comb excitation as shown in Figs. 4(a) and
4(b). The excited frequency combs contain both even and odd
modes which can be expressed as

E (x, z = 0, t ) =
∑

n

ψS (x)e−n2/D2
S eiωnt

+
∑

n

ψA(x)e−n2/D2
A eiωnt , (12)
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FIG. 4. Spin-momentum locking with frequency comb excitation. (a), (b) Spectral evolutions for even modes in (a) and odd modes in (b)
with mixed supermodes frequency comb excitation under LJ = π .

where the mode amplitudes for even and odd supermodes are
Gaussian distribution in spectra with different widths as DS =
3 and DA = 2. The incident even and odd modes manifest non-
diffracting red- and blueshifts respectively, i.e., the frequency
combs are separated in spectra according to the type of input
supermodes. Therefore, the information encoded in super-
modes is separated in the frequency domain which can be used
for demultiplexing. The condition for spin-momentum lock-
ing LJ = π is practically accessible given that the coupling
strength J can be flexibly adjusted by external modulation
voltage, which enables the device to work in a controllable
manner.

C. Discrete diffraction and dynamical localization

The dynamic of the Floquet lattice can be characterized by
the group velocity vkω = dkz/dkω and diffraction coefficient
Dkω = d2 kz/dk2

ω. In frequency lattice, they indicate the veloc-
ity of frequency shift and bandwidth expansion. Figure 5(a)
depicts the maximum group velocity and the diffraction co-
efficient of the Floquet band as coupling strength J varies.
The diffraction coefficient is supposed to take the maximum
at kω = 0. However, we choose it at kω = π /4� in Fig. 5(a) to
avoid the ambiguous definition when the degeneracy occurs.
Unlike the nondriving lattice in which the group velocity
and diffraction coefficient grow with coupling strength, they
behave periodically in the Floquet lattice. Such properties
are also demonstrated by the output spectra corresponding
to different coupling strength J as shown in Fig. 5(b), in
which the excited even mode at central frequency S0 under-
goes ten driving periods. The output spectra pattern varies
periodically with coupling strength as predicted in Fig. 5(a).
In general, the Floquet bands are dispersive. For instance, as
LJ = π /2, the Floquet bands are bent as shown in Fig. 2(c)
with both finite group velocity and diffraction coefficient. We
simulated the field distribution and the spectral evolutions
of even and odd modes by the FDTD method as shown in
Figs. 6(a)–6(c). The electric field is generally composed of
both even and odd modes and the spectral evolutions ex-

hibit discrete diffraction. However, at LJ = nπ (n = 0, 1,
2, …), the diffraction coefficient vanishes, which indicates
the nondiffracting transport. For example, as LJ = π , the Flo-
quet band hosts vanished diffraction coefficient and nonzero
group velocity, which corresponds to the Floquet Dirac band
exhibiting nondiffracting directional frequency shift. The non-
diffracting redshift with monochromatic even-mode excitation

FIG. 5. (a) Maximum group velocity |vkω| and diffraction co-
efficient |Dkω| for kω = π/4� under different coupling strength J.
(b) Output frequency spectrum vs coupling strength J with
monochromatic even-mode excitation at 1550 nm. The length of
modulation region contains ten driving periods.
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FIG. 6. Discrete diffraction and dynamic localization. (a)–(c) Distribution of electric fields (a) and corresponding spectral evolutions for
even mode (b) and odd mode (c) with monochromatic even-mode excitation under LJ = π /2. (d)–(f) Distribution of electric fields and cor-
responding spectral evolutions under LJ = 2π . The modulation frequency is f = �/2π = 1 THz. The other parameters are �ε = 0.2 × nLN

and L = 18 µm for (a)–(c), and �ε = 0.4 × nLN and L = 36 µm for (d)–(f). The wavelength of excited light is 1550 nm.

is demonstrated in Figs. 3(a)–3(c) and agrees with the asym-
metric pattern in Fig. 5(b). Intriguingly, when the coupling
strength increases to LJ = 2π , the diffraction coefficient van-
ishes once again but accompanies zero group velocity. The
Floquet bands turn out to be flat as kz = 0 according to
Eq. (10). Intuitively, the incident supermodes are fully trans-
formed into adjacent sites and back in half-driving period, i.e.,
they undergo a complete Rabi oscillation period. This process
repeats in the following evolution, leading to the phenomenon
of dynamic localization. As shown in Figs. 6(d)–6(f), the
excited even-mode S0 is transferred to A−1 at z = L/4 and
then comes back to S0 at z = L/2. In the next half period,

it undergoes transitions as S0 → A1 → S0. Therefore, the
frequency mode is invariant after a driving period. The further
larger coupling strength will not induce larger group velocity,
which only results in additional Rabi oscillation processes in a
driving period. For instance, when LJ = 3π , the input super-
modes undergo 1½ Rabi oscillation processes in half driving
period, which is equivalent to the case LJ = π . For LJ = 4π ,
the supermodes undergo the Rabi oscillation process twice in
half driving period, leading to dynamic localization analogous
to the case LJ = 2π . It is worth noting that the coupling
strength can be flexibly adjusted by external modulation and a
long-distance modulation with a small modulation amplitude
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can also lead to a significant phase modulation depth LJ .
Therefore, the property of frequency diffraction and the cor-
responding output spectrum can be conveniently manipulated
in practice.

III. CONCLUSIONS

In summary, we constructed a Floquet frequency lattice by
a waveguide coupler under periodically cascaded dielectric
modulation. The Flouqet band may show linear dispersion in
the entire Brillouin zone, referred to as Floquet Dirac band.
The nondiffracting frequency shift is realized and the shift
directions are determined by the transverse modes of inci-
dent light, mimicking the spin-momentum locking in ultracold
atom lattices. The supermode frequency comb can be excited
by using an asymmetric directional coupler from different
ports experimentally [44,45]. We also demonstrated the dis-
crete diffraction and dynamic localization by adjusting the
coupling strength, which can be flexibly controlled by external
modulation voltage. The results in our work are available for
lower-modulation frequency which is experimentally feasible.
For instance, the integrated LN electro-optic modulator has

high bandwidths (>100 GHz) and possesses ultralow on-chip
optical losses which provides an ideal experimental platform
for realizing the Floquet frequency lattice [46]. The proposed
systems are compatible with state-of-the-art integrated thin-
film lithium niobate platform [47] or silicon chip [48], and
the physical implementation can be based on traveling-wave
electrodes [46,49] or placing pn-junction electrical diodes
inside silicon waveguides [50,51]. It is worth noting that the
synthetic frequency lattice can be created with the nonlinear
process of four-wave mixing Bragg scattering and the band-
width of frequency manipulation is expanded up to terahertz
as experimentally demonstrated [20,52]. Our system provides
a versatile platform for demonstrating physical phenomena
of Floquet lattice in synthetic dimensions, and has potential
application in mode converters, spectral manipulation, and
mode-division demultiplexing.
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