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Optical self-cooling of a membrane oscillator in a cavity optomechanical experiment
at room temperature
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Thermal noise is a major obstacle to observing quantum behavior in macroscopic systems. To mitigate its
effect, quantum optomechanical experiments are typically performed in a cryogenic environment. However,
this condition represents a considerable complication in the transition from fundamental research to quantum
technology applications. It is therefore interesting to explore the possibility of achieving the quantum regime
in room-temperature experiments. In this work we test the limits of sideband-cooling vibration modes of a SiN
membrane in a cavity optomechanical experiment. We obtain an effective temperature of a few millikelvins,
corresponding to a phononic occupation number of around 100. We show that further cooling is prevented by
the excess classical noise of our laser source, and we outline the road toward the achievement of ground state
cooling.

DOI: 10.1103/PhysRevA.108.063508

I. INTRODUCTION

The research in the field of cavity optomechanics [1,2] has
gained a lot of momentum in recent years, driven by the obser-
vation of quantum phenomena in optically cooled micro- and
nanomechanical resonators. This breakthrough is paving the
way for integrated systems implementing quantum measure-
ments in sensing devices. In general, quantum properties of
the optomechanical system are hidden or destroyed by thermal
noise. As a consequence, most of the quantum optomechani-
cal experiments performed to date have exploited resonators
in a cryogenic environment [3–5]. However, this condition is
a major obstacle to making usable sensors. Therefore, a recent
branch of research is progressing toward a new generation of
optomechanical systems, capable of maintaining quantum be-
havior and, in particular, approaching the mechanical ground
state, even at room temperature. A disruptive impact has been
achieved by systems based on levitated nanoparticles, whose
oscillatory motion in optical tweezers has been cooled down
to a phononic occupancy n̄ below unity both with a passive
scheme exploiting light scattered in a red-detuned cavity mode
[6–8] and by measurement-based active feedback [9–11]. On
the opposite side of the mass range, a phononic occupation
number of n̄ = 11 was reported for the pendulumlike motion
of the mirrors of the Laser Interferometer Gravitational-Wave
Observatory (LIGO) [12]. Concerning deformation modes of
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micro- and nanodevices, active feedback cooling exploiting
radiation pressure allowed us to cool a vibration mode of a
nanometric string down to n̄ = 27 at room temperature [13]
and n̄ = 3.5 in a liquid-nitrogen environment at 77 K [14].
The same technique led to similar results for a defect mode
of a phononic crystal patterned on a SiN membrane, cooled
down to n̄ = 20 [15] in a room-temperature experiment. A
major achievement recently reported is the measurement and
prediction of the motion of a defect mode of a membrane
at room temperature with an accuracy corresponding to 0.97
quantum [16].

In this work we operate with a SiN membrane inside a
high-finesse optical cavity [17] at room temperature, and un-
like the cited works, we exploit passive, resolved-sideband
cooling. This configuration has proven to be highly successful
in the field of optomechanics. For instance, it is one of the
first systems surpassing the threshold of n̄ < 1 in cryogenic
experiments, both by means of sideband cooling [18,19] and
with active feedback [20]. Having in mind easier application
in future sensing devices, here we choose to realize a self-
aligned, easily handled cavity. It requires no fine adjustment or
gluing, and to elude electronic noise and improve mechanical
accuracy we avoid piezoelectric transducers. These technical
choices, together with the tuning range of our Nd:yttrium alu-
minum garnet (YAG) laser source, determine the requirements
described in the next section. Our experiment and results are
described in the following sections, where we show that we
could achieve an effective temperature of a few millikelvins
(n̄ around 100), a limit well explained by a model including
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FIG. 1. (a) Simplified scheme of the experimental setup. FC: filter cavity; AOM: acousto-optic modulator; OMC: optomechanical cavity;
PDH: Pound-Drever-Hall detection. (b) Ring-down signal of the (0,1) mode, frequency shifted by 257 kHz (blue) together with the fitting
decaying sinusoidal function (red). On the bottom, enlarged views of the initial and final sectors are shown. (c) The same for the mode (0,2),
shifted by 592 kHz.

excess laser noise, which is also crucial for providing reliable
thermometry.

II. EXPERIMENTAL SETUP

A simplified scheme of the experimental setup is sketched
in Fig. 1. The mechanical oscillator is a circular SiN mem-
brane with a thickness of 100 nm and a diameter of 1.5 mm
equipped with a specific on-chip structure that, working as a
“loss shield” [21–24], reduces the coupling between the mem-
brane and the frame and the consequent dissipation losses. In
addition, the membrane thickness is reduced at the edge in
order to further decrease the edge losses [25]. In this work
we exploit the first two rotationally symmetric drum modes
at �m/2π � 256 kHz [mode (0,1)] and �m/2π � 593 kHz
[mode (0,2)].

The mechanical quality factors Q were measured from
the ring-down of driven oscillations. We verified that Q de-
pends meaningfully on the membrane cleanliness; therefore,
for better accuracy we measured it with the membrane al-
ready mounted in the optical cavity in its final configuration,
which is described below. To avoid perturbing optomechanical
effects, we used for sensing a tunable, single-mode extended-
cavity semiconductor laser operating around 970 nm, where
the cavity finesse is below 100. The laser is frequency mod-
ulated at 20 MHz and locked to a cavity resonance using the
reflected light, demodulated to obtain the first derivative of the
Lorentzian dip. We verified by changing the locking point that
the dynamical back-action of this probe laser is negligible.

The same derivative signal is further mixed with a local oscil-
lator at a frequency few hundred hertz apart from that of the
selected mechanical mode, then low-pass filtered with a band-
width of few kilohertz. The oscillation of each mode is thus
selected and down-converted. A Nd:YAG laser, operating at a
wavelength at which the finesse of the cavity is high, is tuned
close to a cavity resonance to excite the mechanical modes
by means of the radiation pressure. The Nd:YAG laser is then
blocked, and the decaying signal is recorded. Two examples
of such signals for the (0,1) and the (0,2) modes are shown in
Fig. 1 together with the fitting damped oscillations. The mea-
sured quality factors are, respectively, (1.18 ± 0.03) × 107

and (0.92 ± 0.06) × 107, where the errors reflect one standard
deviation over repeated measurements.

The configuration of the optomechanical cavity is dictated
by two requirements: (a) it should be self-aligned, without
position and tilt adjustments for the membrane and the mir-
rors, and (b) we want to avoid piezoelectric transducers. Due
to the latter requirement, by tuning the laser source we have
to optimize the position of the membrane with respect to the
cavity standing wave and to find a resonance of the overall
cavity. For what concerns the optical alignment, we have
to consider that the membrane plane must be orthogonal to
the cavity optical axis. To ensure it, we have implemented
a cavity with a flat end mirror. Silicon spacers between the
mirror and the membrane frame, obtained from high-quality
wafers, guarantee the required parallelism between the sur-
faces of the mirror and the membrane [26,27]. In order to
achieve good optomechanical coupling, we have to vary the
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position of the membrane with respect to the cavity standing
wave; therefore, the distance L1 between the flat mirror and
the membrane should be ideally at least c/4�ν (c is the
speed of light, and �ν is the overall laser tuning range). In
our case, �ν � 30 GHz, and we have used two 1-mm-thick
spacers, giving L1 = 2 mm. To ensure that a cavity resonance
is close to the optimal frequency, we require that the cavity
length Lc is much larger than L1. Moreover, to avoid scatter-
ing of the light impinging outside the membrane edge, it is
important that the cavity waist is not too large. For this pur-
pose, we have chosen a nearly hemispherical configuration,
with a concave input coupler with a radius of 50 mm and
a total cavity length of Lc = 48 mm guaranteed by an Invar
cylindrical spacer. The calculated beam waist is 50 µm on the
flat mirror and 52 µm on the membrane, i.e., much smaller
than the membrane diameter. The cavity finesse (defined as
the ratio between the empty-cavity free spectral range and
the optical linewidth), measured with the membrane under
working conditions, is around 15 400, with an input coupler
transmission of 330 ppm.

The cavity is positioned on a cantilever suspension sys-
tem inside a vacuum chamber, evacuated down to 10−6 mbar.
The emission of the Nd:YAG laser is frequency locked to
a 22-cm-long filter cavity with a linewidth of 66 kHz. The
slow branch of the feedback loop is sent to a piezoelectric
transducer (PZT) moving one mirror of the filter cavity, while
the fast branch controls the laser frequency by means of its
internal PZT. The light transmitted by the filter cavity is
tuned by a double-pass acousto-optic modulator (AOM) and
split into two beams (the cooling and probe beams) whose
frequency difference is set by two additional AOMs. The two
beams are sent to the experimental bench by optical fibers,
overlapped by orthogonal polarizations, and mode-matched
to the optomechanical cavity. The reflected probe beam is
used for frequency locking the laser to a cavity resonance by
means of a Pound-Drever-Hall (PDH) detection and a servo
loop acting on the first AOM, with a locking bandwidth of
∼10 kHz. To derive the PDH error signal, the probe beam
is phase modulated at 13.3 MHz before it is coupled to the
fiber.

The same PDH signal is also used to obtain the spectrum
of the membrane motion. The power of the probe beam is
around 100 µW. The PDH signal is converted into frequency
fluctuations thanks to a calibration tone produced by adding
a sinusoidal voltage with a frequency of 20 kHz to the cor-
rection signal going to the voltage-controlled oscillator that
drives the first AOM. The cooling beam power is varied be-
tween 0 and ∼1 mW.

The frequency spectrum, corrected for the cavity filtering,
can be used to deduce the single-photon optomechanical cou-
pling rate g0. As described in the next section, in the regime of
moderate optomechanical cooling, when the thermal noise is
the dominant source of force fluctuations, the peak area of the
mechanical resonance can be written as (g0/2π )2 (2 neff + 1),
where the phonon occupancy is neff = kBT

h̄�m

�m
�eff

(kB is the
Boltzmann constant, T is the room temperature, �m = �m/Q
is the natural mechanical width, �eff is the measured peak
width). Typical values of g0/2π are around 2 Hz for both
modes.

III. MODEL

The role of excess phase and amplitude noise of the laser
fields used for cooling and probing the mechanical oscillators
was soon recognized by the optomechanical community, and
its contribution to the achievable thermal occupation number
was calculated, e.g., in Refs. [28–30]. These classical fluctu-
ations manifest in the output field for two reasons: because
they act as inherent noise and because the field probes the
motion of the mechanical oscillator, which is, in turn, driven
by fluctuations in intracavity intensity. As a consequence,
the output spectrum is modified with respect to the case of
coherent fields. The shape of the spectra obtained by hetero-
dyne and direct intensity detection is derived in the literature,
along with their correct use for thermometry [29–31]. In this
section we recall and elaborate the results of a model of the
optomechanical system including classical noise, described
in detail in the Appendix, in order to clearly and correctly
interpret our experimental spectra.

We consider a mechanical oscillator interacting with the
field of an optical cavity with a decay rate κ and populated by
an input field detuned by � from the cavity resonance. The
mechanical and optical susceptibilities are defined as

χm(ω) = 1

−i(ω − �m ) + �m/2
, (1)

χc(ω) = 1

−i(ω + �) + κ/2
. (2)

The optomechanical interaction modifies the susceptibility
and the occupation number of the oscillator. The former can
be written as

χeff (ω) = 1

−i(ω − �eff ) + �eff/2
, (3)

where �eff is the shifted resonance frequency, �eff = �opt +
�m, and �opt is the optical damping. The oscillator occupancy
is now

neff = �m

�eff
nth + �opt

�eff
(nba + nexc), (4)

where nth is the occupancy of the thermal bath, which in our
case is at room temperature; nba is the contribution of the
quantum back-action; and nexc is the contribution of sources
of excess phase noise φ and relative amplitude noise ε, pro-
portional to their spectral densities Sφφ and Sεε . As derived in
the Appendix, the excess occupancy can be written as

nexc = �opt
�2

m

4g2
0

(
1

cos2 θ
Sφφ + A2Sεε

)
, (5)

with the definitions

θ = arg[χc(�m ) − χ∗
c (−�m )] (6)

and

A = |χ∗
c (0)χc(�m ) + χc(0)χ∗

c (−�m )|
�m|χc(0)|2 Re[χc(�m ) − χ∗

c (−�m )]
. (7)

The functions 1/ cos θ and A are plotted in Fig. 2 for our
experimental parameters κ and �m.

In neff , the contribution of the thermal noise [first term on
the right-hand side in Eq. (4)] is proportional to the inverse
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FIG. 2. Dimensionless functions 1/ cos θ (dashed lines) and A
(solid lines), described in the text, plotted as a function of the
detuning �/2π for κ/2π = 204 kHz and �m/2π = 256 kHz (red
curves) and 593 kHz (green curves). Vertical dotted lines correspond
to �m/2π (green and red lines) and the different values of detuning
used in the present work (blue lines at −480, −180, and −150 kHz).

of the input power (since �eff � �opt, in turn, is proportional
to the intracavity power), while the contribution of the excess
noise [rightmost term in Eq. (4)] increases linearly with the
input power. We can emphasize it by writing neff as

neff = 0.5 nmin

(
�opt

�min
+ �min

�opt

)
+ nba, (8)

where

nmin = �m
√

�mnth

g0

√
Sφφ

cos2 θ
+ A2Sεε . (9)

We note that in the strongly resolved-sideband regime (κ �
�m) and for � = −�m, cos θ and A assume their optimal
values, cos θ � 1 and A � 1. In this case, the upper limits
on the excess noise that allow us to achieve ground-state
cooling (i.e., nmin < 1) can be written in simple forms as
(2π )2Sνν < g2

0/�mnth [28] and Sεε < g2
0/�

2
m�mnth, where the

frequency-noise spectral density is Sνν = (ω/2π )2Sφφ .
For a given detuning, with varying input power the min-

imum occupancy is achieved when thermal noise and phase
noise equally contribute 0.5nmin, corresponding to the optimal
optical width

�min = 2g0
√

�mnth

�m

(
Sφφ

cos2 θ
+ A2Sεε

)− 1
2

. (10)

As derived in the Appendix, the output spectrum of a PDH
detection can be written as

Sout = c + |C(ω)|2
[

(2π )2Sνν + 2g2
0

(
neff + 1

2

)
L

−2g2
0 nexc2 cos θ (cos θ L − sin θ D)

]
, (11)

where c is a constant accounting for the vacuum noise not
entering the cavity (due, e.g., to the limited efficiency), the
cavity filtering function is

C(ω) = κ/2

κ/2 − iω
, (12)

FIG. 3. Spectrum (power spectral density) of the PDH signal,
calibrated in terms of frequency fluctuations. Red curves: fits of the
low-frequency background and of the beat note between the probe
and cooling beam. Green curve: overall background given by the sum
of the two fitted curves. Purple arrows indicate the membrane modes,
labeled (i) for mode (0,1), (ii) for (1,1), (iii) for (2,1), (iv) for (0,2),
and (v) for (3,1).

and the Lorentzian and dispersive shapes L and D are,
respectively,

L = �eff

2
[|χeff (ω)|2 + |χeff (−ω)|2] (13)

and

D = (ω − �eff )|χeff (ω)|2 + (−ω − �eff )|χeff (−ω)|2. (14)

IV. EXPERIMENTAL RESULTS

Observing the detected spectrum over a wide frequency
range (Fig. 3), we notice two relevant features: the tail of
low-frequency fluctuations and the beat note between cool-
ing and probe fields. The former is due to both frequency
noise and low-frequency mechanical modes of the oscillator
device belonging to the frame and to the internal filtering
structure. We have observed that our filter cavity is efficient
in reducing frequency noise above ∼100 kHz, but at a lower
frequency, on the contrary, the noise increases [32]. The noise
tail gives a contribution to the background beneath the peak
of the first membrane mode at ∼260 kHz. The beat note is
due to residual percolation between the two fields on the
reflected path in spite of their orthogonal polarizations. This
beat note is minimized using half- and quarter-wave plates
before the cavity to compensate for its birefringence; however,
the residual remains relevant. The two spectral structures are
fitted with phenomenological shapes on frequency intervals
outside the regions of the membrane modes, and the fitting
functions are subtracted from the experimental spectra in or-
der to minimize the residual background. We now focus on
the first membrane mode, which appears in the spectra of the
PDH detection. At low cooling power, the resonance peak is
well fitted by a Lorentzian shape [Fig. 4(a)], which broadens
at increasing cooling power. This broadening is accompanied
at the beginning by a reduction in the peak area, but at high
power the frequency noise plays a relevant role. The mode
heats up again, and if cos θ is not too small (depending on
the detuning of the cooling field), the line shape is well re-
produced by the sum of a Lorentzian curve and a dispersive
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FIG. 4. Spectra of the resonance peak corresponding to the first membrane mode, acquired for a detuning of the cooling beam of �/2π =
−480 kHz, after the subtraction of the background shown in Fig. 3. (a)–(c) correspond to increasing cooling power, giving widths of �eff/2π =
1.2 kHz, �eff/2π = 2.7 kHz, and �eff/2π = 9 kHz, respectively. Dots: experimental data. Green solid line: fit with the sum of a Lorentzian
and a dispersive shape [Eq. (15)]. Red solid line: fit with a Lorentzian shape [Eq. (15) with a3 = 0].

curve, as predicted by Eq. (11). A clear example is shown in
Fig. 4(c) for � = −480 kHz. We remark that, after subtracting
the background that includes c and the term directly propor-
tional to Sνν , the remainder of the spectrum can be negative in
a limited frequency region due to the contribution proportional
to D. The physical origin of this effect is the correlation
between the frequency noise, which gives rise to intracavity
radiation pressure noise, and the resulting oscillator motion,
both imprinted in the fluctuations of the output field.

The calibrated output spectra, such as those shown in
Fig. 4, are fitted with the function

a0 + a1 ω + |C(ω)|2(a2L + a3D), (15)

where L and D are defined in Eqs. (13) and (14); ai are
free constant parameters; and C(ω), defined in Eq. (12), is
completely determined by the independently measured κ . The
terms (a0 + a1 ω) account for the residual background re-
maining after the described subtraction of the low-frequency
and beat-note structures. Comparing Eq. (15) with the theo-
retical spectrum given in Eq. (11), we deduce a2 = 2g2

0(neff +
1/2 − 2nexc cos2 θ ) and a3 = 4g2

0nexc cos θ sin θ . It is useful to
define a new parameter aeff = a2 + a3/ tan θ , which, follow-
ing the comparison with Eq. (11), is equal to aeff = g2

0(2 neff +
1). θ is given by Eqs. (2) and (6), and it is calculated from
independently measured system parameters. Finally, we fit
aeff vs �eff with the function aeff = b1/�eff + b2�eff , with
b1 and b2 being free parameters, a behavior that, according
to Eq. (8), should hold for �opt � �eff and nmin � 1, nba.
At low cooling power, the thermal noise dominates, and ac-
cording to Eq. (4), we have b1 = 2g2

0 �mnth. Since �m and
nth are determined independently (the latter assuming that
the oscillator is at room temperature), we can evaluate the
optomechanical coupling rate g0. The optimal width is derived
as �min = √

b1/b2, and the minimum occupation number is
derived as nmin = 2�mnth

√
b2/b1. In Fig. 5 we plot aeff/2g2

0 ≡
neff for a detuning of the cooling beam of −480 kHz. With
the described procedure, we derive g0/2π = 2.1 ± 0.1 Hz and
nmin = 450 ± 35 at the optimal effective width of �min/2π =
2.35 kHz. The acquired spectrum corresponding to the lowest
occupancy is shown in Fig. 4(b).

The excess occupation number nexc is produced by both
phase and amplitude excess noise. The coefficient of the dis-
persive shape, which is just sensitive to phase noise, allows
distinguishing the two sources. According to Eq. (11), the

contribution of the phase noise to b2�eff should be equal to
a3/ sin 2θ , while a larger b2 can be attributed to the amplitude
noise. In our case, we find b2�eff/a3 = −2.3 ± 0.4, in good
agreement with the calculated 1/ sin 2θ = −1.84. As a conse-
quence, we can ascribe nexc to the excess phase noise. Using
Eq. (9), we deduce a frequency noise of Sνν = (2.2 ± 0.4) ×
10−2 Hz2/Hz around a mode eigenfrequency of ∼250 kHz.
For the relative amplitude noise, we infer an upper limit of
Sεε < 2 × 10−14 Hz−1.

Following the behavior of 1/ cos θ shown in Fig. 2, we
infer that the minimum occupation number is potentially
reduced by a factor of 4.4, i.e., down to ∼100, when the detun-
ing is close to � � −�m � −2π × 260 kHz. This working
point implies two technical issues in the measurement of the
phonon number. First, the beat note between the cooling and
probe fields is close to the mechanical peak, hindering its
accurate analysis. Second, here | sin θ | is small; therefore, it is
difficult to determine the weight of the dispersive contribution
in the spectral shape and, consequently, the correction to be
applied to the Lorentzian amplitude. We have, however, ac-
quired sets of spectra at varying cooling powers for detunings
of �/2π = −150 kHz and �/2π = −180 kHz. The deduced
optomechanical coupling rate is now g0/2π = 2.6 Hz, and
the slight increase with respect to the previous value can
be attributed to a different position of the membrane with
respect to the cavity standing wave, caused by thermal drifts
(these datasets were acquired on a different day than the
previous ones). The inferred frequency noise is Sνν = (2.2 ±
1.3) × 10−2 Hz2/Hz for the data at �/2π = −150 kHz and
Sνν = (3.0 ± 1.4) × 10−2 Hz2/Hz for the data at �/2π =
−180 kHz, while the minimum occupation number is, respec-
tively, nmin = 120 ± 70 and nmin = 130 ± 60. Even with the
anticipated low accuracy, these results agree with the previ-
ously reported data, confirming the overall self-consistency
of our modeling. We now consider the (0,2) mode of the
membrane. Thanks to its higher resonance frequency (about
593 kHz), it has a lower back-action-limited occupation num-
ber nba, and it is less sensitive to low-frequency technical
noise. However, cavity filtering reduces the signal-to-noise
ratio in the PDH detection. An example of the resonance
peak acquired at moderate cooling is shown in Fig. 6(a) for a
detuning of �/2π = −480 kHz. The dispersive contribution
to the line shape cannot be singled out. Even at the high-
est cooling power that still allows the resonance peak to be
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FIG. 5. Dots: area of the resonance peak of (a) the (0,1) mode and (b) the (0,2) mode of the membrane, calibrated in terms of thermal
occupancy, at increasing cooling power, plotted as a function of the peak width. Green dots correspond to the spectra shown in Figs. 4 and 6.
The red solid line show the fit with the function b1/�eff + b2�eff . The dashed line shows the b1/�eff contribution to the fit.

reliably extracted from the wings of the beat note, the purely
Lorentzian shape gives the best fit to the experimental data, as
shown in Fig. 6(b) and confirmed by the lack of visible sys-
tematic behavior in the fit residuals. The peak area, calibrated
as before in terms of occupation number, is plotted in Fig. 5(b)
as a function of the peak width �eff and fitted with the func-
tion b1/�eff + b2�eff . We infer g0/2π = 1.74 ± 0.02 Hz and
nmin = 104 ± 14 at the optimal effective width of �min/2π =
13 ± 2 kHz.

The lack of a dispersive component in the peak line shape
indicates that the frequency noise plays a negligible role, and
nexc should be imputed to the excess amplitude noise. Using
Eq. (9) we infer Sεε = (1.6 ± 0.2) × 10−14 Hz−1. According
to the behavior of A, an optimized detuning (� � −�m)
would reduce neff by 20%.

V. CONCLUSIONS

We have optically cooled two low-frequency vibration
modes of a membrane at room temperature, exploiting self-
cooling in a cavity optomechanical setup with a red-detuned

cooling beam in the resolved-sideband regime. We have
chosen to build a monolithic cavity, self-aligned, without in-
cluding mechanical adjustments or piezoelectric transducers.
For both modes we have achieved a phononic occupation
number around 100, corresponding to effective temperatures
of 1.5 and 3 mK for the (0,1) and (0,2) modes, respectively,
and effective quality factors between 30 and 50. We have
shown that this performance is limited by the laser excess
noise. Without changing other parameters, lower occupation
numbers could be obtained with oscillators exhibiting a higher
quality factor, but achieving an occupancy of around 1 would
require Q ∼ 1011, well above the state of the art for room-
temperature membrane oscillators.

The excess amplitude noise can be reduced using an addi-
tional noise eater. In [33] we reported an active stabilization
that reduces the intensity fluctuations at a level that is 3 dB
above shot noise for a laser power of 24 mW. This corresponds
to Sεε = 0.8 × 10−17 Hz−1, i.e., more than three orders of
magnitude lower than in the present experiment. We notice,
however, that the intensity noise directly measured on our
cooling beam is already lower than the Sεε deduced from

FIG. 6. Spectra of the resonance peak corresponding to the (0,2) membrane mode, acquired for a detuning of the cooling beam of �/2π =
−480 kHz. (a) and (b) correspond to increasing cooling power, giving widths of �eff/2π = 900 Hz and �eff/2π = 7.1 kHz, respectively. Blue
dots: experimental data used for the fit. Light gray line: 10-point (equivalent to 100 Hz) moving average of the complete set of experimental
data. A few spurious peaks are removed from the set used for the fit. Red solid line: fit with a Lorentzian shape. Orange solid line: residuals of
the fit (10-point moving average).
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the behavior of the (0,2) mode peak area. The intracavity
excess intensity fluctuations may be caused by pointing noise,
a technical issue that can be solved with a careful analysis of
the optical path.

The excess frequency noise is a bigger problem. At present,
we show that it limits the cooling performance for the (0,1)
mode, but it is likely to similarly affect the (0,2) mode as soon
the amplitude noise is reduced. For this second mode, a fre-
quency noise below 0.7 × 10−2 Hz2/Hz is, indeed, required
to drop neff below 100. A possible strategy to mitigate the
effect of the excess frequency noise is to reduce the cavity
length and, consequently, increase the optomechanical cou-
pling rate. This comes at the price of dropping the design of a
cavity without a piezoelectric transducer, at least when using
a Nd:YAG laser source, due to a cavity free spectral range
exceeding the laser tuning range. By decreasing the input
mirror transmission down to 100 ppm one could shorten the
cavity by a factor of 20, maintaining an overcoupled cavity
with the mechanical modes in the resolved-sideband regime
(thus ensuring nba < 1). A phonon occupancy of around 7
then seems achievable with current oscillator parameters and
laser excess noise, at least for the (0,2) mode. The effective
quality factor would, however, drop to ∼3, an unreasonable
value if we consider the presence of the other mechanical
modes and the low-frequency background. A level of neff

around or slightly below 20, dominated by the thermal noise,
is more realistically within reach.

To arrive at the so-called ground-state level neff � 1,
the quality factor of the membrane modes should then be
increased above 108, a threshold already achieved in thin-
ner membranes isolated from the frame by tethers [34] or
patterned phononic crystals [15,35]. We remark that the fluc-
tuations in the cavity length could now play a relevant role.
Their effect is equivalent to that of laser frequency noise, with
spectral density scaling as SLL = (Lc/νl )2Sνν where νl is the
laser frequency. In particular, to approach neff = 1, we require
SLL below 10−36 m2/Hz. In [33] we reported an upper limit to
the displacement noise of ∼10−36 m2/Hz around 170 kHz for
a 1.5-mm-long cavity, including a piezoelectric transducer, at
cryogenic temperature. At room temperature, the mechanical
modes of the bulky input mirror give a structured spectral
background varying between 10−36 and 10−34 m2/Hz in our
frequency region of interest [36]. The calculated broadband
Brownian noise of the mirror is around 10−37 m2/Hz [37], and
similar or lower levels are expected for thermoelastic and ther-
morefractive noise [38–40]. The low-frequency thermal noise
of high-order membrane modes also plays a relevant role.
Our finite-element-model simulations predict a background
of 3 × 10−36 m2/Hz for the current device, but a lower level
can be reached for membranes with a higher quality factor.
Moreover, intermodulation radiation pressure noise produced
by the nonlinearity of the cavity response function [41,42]
must be attentively considered. The target is therefore not out
of reach, but it requires careful evaluation of the displacement-
noise background.
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APPENDIX

The linearized evolution equations for the intracavity field
operator δâ and the mechanical bosonic operator b̂, in the
frame rotating with angular frequency ωl = 2πνl (νl is the
laser frequency), are [1]

δ ˙̂a =
(

i� − κ

2

)
δâ + ig0 α(b̂ + b̂†) + √

κ δâin, (A1)

˙̂b =
(

−i�m − �m

2

)
b̂ + ig0(α∗δâ + αδâ†) +

√
�m b̂in,

(A2)

where � = ωl − ωc is the detuning with respect to the cavity
resonance frequency ωc, κ and �m are the optical and mechan-
ical decay rates, α is the intracavity mean field, and the input
terms are defined below.

In Fourier space, Eqs. (A1) and (A2) can be written as
1

χc
ã = ig0 α

(
b̃ + b̃†

) + √
κ ãin, (A3)

1

χm
b̃ = ig0

(
α∗ã + αã†) +

√
�m b̃in, (A4)

where we use Õ to indicate the Fourier transform of the
operator Ô and Õ† for the Fourier transform of Ô†, such
that [Õ(ω)]† = Õ†(−ω). The optical and mechanical suscep-
tibilities are defined in Eqs. (1) and (2), and the intracavity
mean field α is related to the input field α0 by the equation
α = √

κχc(0)α0.
Replacing Eq. (A3) in Eq. (A4) and neglecting the coun-

terrotating terms, the solution for b̃ can be written as

1

χeff
b̃ = ig0

√
κ[α∗χc(ω)ãin + αχ∗

c (−ω)ã†
in] +

√
�m b̃in,

(A5)
where the effective susceptibility χeff is defined as

1

χeff
= 1

χm
+ g2

0 |α|2[χc(ω) − χ∗
c (−ω)]

� i(�eff − ω) + �eff

2
. (A6)

The resonance frequency is shifted to

�eff = �m + g2
0|α|2 Im[χc(�m ) − χ∗

c (−�m )] (A7)

by the optical spring effect, and red-detuned radiation pro-
vides optical damping with the rate

�opt = 2g2
0 |α|2 Re[χc(�m ) − χ∗

c (−�m )], (A8)

yielding a total width �eff = �m + �opt.
The input field fluctuations, including the classical extra

phase and amplitude noise, can be written as

δâin = âv + α0 (iφ + ε), (A9)

where âv is a vacuum field operator and the phase and relative
amplitude fluctuations are given by the classical, real stochas-
tic variables φ and ε, which we assume are uncorrelated.

063508-7



P. VEZIO et al. PHYSICAL REVIEW A 108, 063508 (2023)

The input noise operators are characterized by the correlation
functions

〈âv(t )â†
v(t ′)〉 = δ(t − t ′), (A10)

〈â†
v(t )âv(t ′)〉 = 0, (A11)

〈b̂in(t )b̂†
in(t ′)〉 = (nth + 1) δ(t − t ′), (A12)

〈b̂†
in(t )b̂in(t ′)〉 = nth δ(t − t ′), (A13)

where nth is the thermal occupation number of the thermal
bath, which in our case is at room temperature.

Inserting the expressions of the input field noise in
Eq. (A5), we derive

1

χeff
b̃ = ig0

√
κ[α∗χc(ω)ãv + αχ∗

c (−ω)ã†
v]

− g0
√

κα0[α∗χc(ω) − αχ∗
c (−ω)]φ̃

+ ig0
√

κα0[α∗χc(ω) + αχ∗
c (−ω)]ε̃ +

√
�m b̃in.

(A14)

The effective thermal occupation number can be calculated
as neff = ∫∫ 〈b̃†(ω′)b̃(ω)〉 dω′

2π
dω
2π

, leading to the weak-coupling
limit

neff = �m

�eff
nth + �opt

�eff
(nba + nexc), (A15)

where the contribution due to the quantum back-action is [1]

nba =
(

(κ/2)2 + (� − �m )2

(κ/2)2 + (� + �m )2
− 1

)−1

(A16)

and the contribution of the excess noise is

nexc = κ2g2
0α

4
0

�opt
[|χ∗

c (0)χc(�m ) − χc(0)χ∗
c (−�m )|2 Sφφ

+ |χ∗
c (0)χc(�m ) + χc(0)χ∗

c (−�m )|2 Sεε]. (A17)

Using Eq. (A8) to replace α0 in the above expression, the
excess occupation number can be written in a simple form that
is useful for the comparison with the experimental results as

nexc = �opt
�2

m

4g2
0

( 1

cos2 θ
Sφφ + A2Sεε

)
, (A18)

where θ and A are defined in Eqs. (6) and (7).
The state of the oscillator is measured through the out-

put field, which is given by the input-output relation aout =
−√

κa + ain. For the field fluctuations, inserting Eq. (A3) in
this latter relation, we can write

ãout = −ig0 αχc(ω)
√

κ (b̃ + b̃†) + [1 − κχc(ω)]ãin, (A19)

and for the mean field αout = [1 − κχc(0)]α0.
In order to gather information on the displacement of the

oscillator, we analyze a quadrature of the probe field. In par-
ticular, in the case of PDH detection, the phase modulation
sidebands act as a local oscillator to extract the phase quadra-
ture of the resonant carrier field of the probe beam. We assume
that all the fields (cooling field, probe, and local oscillator)
are derived from the same laser source and are affected by the
same excess phase and relative amplitude noise.

For a general quadrature detection, the total detected fluc-
tuations are proportional to

Xout = 1
2

(
e−i(θLO+φ) aout,p + H.c.

) � 1
2

(
e−iθLO ãtot + H.c.

)
,

(A20)

where θLO is the phase of the local oscillator, ãtot = ãout,p −
iαout,pφ, and we use the subscript p for the probe field. Ne-
glecting the quantum noise of the probe and using Eqs. (A9)
and (A19), the total detected field, after some algebra and not-
ing, in particular, that χ−1

c (0) − χ−1
c (ω) = iω, can be written

as

ãtot = −iα0,pκχc,p(ω)χc,p(0)[iωφ̃ + g0(b̃ + b̃†)]

+ α0,p[2 − κχc,p(0) − κχc,p(ω)]ε̃, (A21)

and the detected field quadrature can be written as

Xout = − 4

κ
α0,p C(ω)[iωφ̃ + g0(b̃ + b̃†)] + D(ω)ε̃, (A22)

where

C(ω) = i
κ2

8

[
χc,p(ω)χc,p(0)e−iθLO − χ∗

c,p(−ω)χ∗
c,p(0)eiθLO

]
(A23)

and

D(ω) =
(

1 − κ

2
χc,p(ω) − κ

2
χc,p(0)

)
e−iθLO

+
(

1 − κ

2
χ∗

c,p(−ω) − κ

2
χ∗

c,p(0)
)

eiθLO . (A24)

In the particular case of phase quadrature detection with a
resonant probe field (i.e., for �p = 0 and θLO = π/2) as, e.g.,
in the signal of a PDH detection, we find that D(ω) = 0 and
C(ω) reduces to the usual cavity filtering function of Eq. (12).
In the following, we consider this experimental situation, and
in particular, since D(ω) = 0, we neglect the correlation be-
tween the mechanical fluctuations and the amplitude noise of
the probe and the local oscillator.

It is useful to separate in (b̃ + b̃†) the term proportional to
φ̃ from the expressions in the absence of phase noise. Using
Eq. (A14) as well, we thus write

Xout = − 4

κ
α0,p C(ω)

[{
iω + g2

0α
2
0κ [χ∗

c (0)χc(ω)

− χc(0)χ∗
c (−ω)][−χeff (ω) + χ∗

eff (−ω)]
}
φ̃

+ g0(b̃ + b̃†)no φ

]
. (A25)

The symmetrized spectrum of Xout, defined as Sout =
1
2

∫
dω′
2π

〈X †
out (ω

′)Xout (ω) + X †
out (ω

′)Xout (−ω)〉, can be calcu-
lated from Eq. (A25). A simple and clear form is obtained in
the weak-coupling limit (implying �eff � κ,�m) by replac-
ing ω → �m inside the square brackets, everywhere except in
χeff , and neglecting the terms proportional to χeff (ω)χeff (−ω).
After some algebra, the output spectrum turns out to be
proportional to the expression given in Eq. (11). The propor-
tionality constant is removed using an additional calibration
tone, i.e., a coherent phase modulation at a frequency far
from �m, yielding an additional peak in Sνν which is used
to determine the overall scale constant in the experimental
spectrum.
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