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Quantum interference and exceptional points in a nonreciprocal two-level system
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Non-Hermitian systems with complex-valued energy spectra and exceptional points show unconventional
dynamics. Here we investigate the quantum interference of a self-interacting two-level system in which the cou-
pling between the levels is nonreciprocal. We propose the multiple-passage Landau-Zener-Stückelberg-Majorana
scheme to realize the quantum interferometry of such a non-Hermitian system, that is, the energy bias between
two levels is periodically modulated, which may result in constructive or destructive interference. In the absence
of nonlinear self-interaction, it exhibits obvious interference fringes in the weak nonreciprocal regime, whereas
the interference is completely suppressed in the strong nonreciprocal regime due to the parity-time-symmetry
breaking. The explicit expressions for the occupation probabilities are obtained within an effective rotating-wave
approximation, which is consistent with the numerical results. In the presence of nonlinear interaction, the system
shows a rich variety of dynamics and interference fringes. We further obtain phase diagrams for large ranges
of nonreciprocity and nonlinear interaction parameters to explicitly demonstrate quantum interference within
the nonlinear non-Hermitian system. The present work unlocks quantum interference characteristics from a
nonreciprocal two-level system and provides a theoretical perspective for the manipulation of quantum states in
non-Hermitian systems.
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I. INTRODUCTION

Quantum interference is the underlying principle of quan-
tum information processing protocols. The model of a
quantum two-level system (TLS) is a paradigm for investi-
gating a variety of quantum dynamics phenomena. Among
them, Landau-Zener tunneling is a well-known dynami-
cal phenomenon that describes quantum transitions between
the two energy levels of a two-level system traversing the
avoided-crossing region [1,2]. When the control parameter
is varied periodically, such that the TLS keeps going back
and forth across the avoided-crossing region, a sequence of
consecutive Landau-Zener tunneling events leads to a peri-
odic dependence on the occupation probabilities of the two
levels [3,4]. This phenomenon is often referred to as Landau-
Zener-Stückelberg-Majorana (LZSM) quantum interference
[5–7]. In the past few decades, LZSM interference has been
experimentally observed in a number of physical systems
such as ultracold molecular gases [8], optical lattices [9],
nitrogen-vacancy centers in diamond [10–12], and spatial
LZSM interference [13].

In the present paper we investigate quantum interference
in a non-Hermitian TLS, in which the non-Hermiticity is
induced by the nonreciprocal coupling between the levels.
Non-Hermitian Hamiltonian systems often appear as an ef-
fective description of phenomena which are associated with
nonconservative systems of various forms [14–23], especially
in the context of parity-time (PT )-symmetric systems [14,24–
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26]. In recent years, there have been remarkable developments
in the use of non-Hermitian Hamiltonians in the study of
open quantum systems [14–22]. Furthermore, non-Hermitian
systems with gain and loss [17,27–32] can also be mapped
onto nonreciprocal systems. When a quantum system couples
to a surrounding environment or bath, the dynamics of the
system itself becomes non-Hermitian and features quantum
transitions [18], i.e., the nonreciprocity of state transitions,
and it can be utilized to engineer an effective non-Hermitian
Hamiltonian [20,21,31,33] that preserves the time-reversal
symmetry while breaking the parity symmetry, so asymmetric
transport is expected to arise. The Bogoliubov–de Gennes
equation, which characterizes the dynamics of noncondensed
atoms in a Bose-Einstein condensate [34–36], possesses this
type of symmetry. The non-Hermitian Su-Schrieffer-Heeger
model with asymmetric intra-unit-cell hopping amplitudes has
been realized by this approach [37]. Nonreciprocity exists in
various physical contexts and finds applications in topolog-
ical photonics [38,39], nonlinear metamaterials [40,41], and
optical communication and information processing [42–45].
Recently, tunable nonreciprocal hopping was implemented in
the quantum trajectory approach [46–50] and realized in re-
cent experiments with single photons [51] and ultracold atoms
[20,52–57].

Non-Hermitian generalizations of the LZSM model have
been presented, including the pseudo-Hermitian LZSM model
[58], the nonlinear non-Hermitian TLS [59], and LZSM in-
terferometry in PT -symmetric optical waveguides [60]. In
addition, the captivating physical phenomena that arise from
the interplay between non-Hermitian and nonlinear effects
have garnered significant attention from researchers [18]. For
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example, nonlinearity can transform the system from broken
to full PT symmetry [61]. Nonlinear PT -symmetric optical
coupled systems can be realistically synthesized on semicon-
ductor wafers [62,63]. All-dielectric unidirectional devices
have been demonstrated by exploiting the interplay between
non-Hermiticity and nonlinearity [64,65]. The non-Hermitian
quantum dynamics differs drastically from its unitary coun-
terpart, and its generic features are far from being fully
understood. In particular, the investigation of the quantum
interference and exceptional points (EPs) for non-Hermitian
systems is only at its beginning [66,67].

In this paper we study the quantum interference of a
non-Hermitian system with multiple-passage LZSM interfer-
ometry in a nonreciprocal TLS, focusing on the impact of
EPs on quantum interference, especially in the presence of
nonlinear self-interaction. In the absence of the nonlinear self-
interaction, the appearance of EPs significantly changes the
dynamical behavior of the system, leading to the breakdown
of quantum interference. A suitable rotating-wave approxi-
mation (RWA) is used to obtain a good description of the
dynamics. In the presence of nonlinear interaction, the system
exhibits a rich variety of dynamics and interference fringes
originating from the competition between the nonreciprocity
and nonlinear interaction.

The rest of the paper is organized as follows. We first con-
struct quantum interference of a non-Hermitian system with
LZSM interferometry in a nonreciprocal TLS in Sec. II. Then
we study quantum interference in the absence of the nonlinear
self-interaction in Sec. III, focusing on the impact of EPs on
quantum interference. In Sec. IV we study the nonreciprocal
LZSM interference in the presence of nonlinear interactions.
A summary is presented in Sec. V.

II. SCHEME OF QUANTUM INTERFERENCE
IN A NONRECIPROCAL TWO-LEVEL SYSTEM

We consider a nonreciprocal TLS in which the dynamics is
governed by the dimensionless Schrödinger equation [22]

i
d

dt

(
a
b

)
=

(
γ

2 + c|a|2 ν
2

ν
2 (1 − δ) − γ

2 + c|b|2
)(

a
b

)
, (1)

where (a, b) is the two-mode wave function, ν is the coupling
strength between the two levels, δ denotes the nonreciprocity
parameter which introduces asymmetry in the system and
leads to non-Hermiticity, γ is the level bias, and c represents
the nonlinear self-interaction parameter which indicates the
population-dependent level energy. Furthermore, c represents
the nonlinear parameter signifying the interaction strength
among atoms, with c > 0 indicating repulsive interaction.
Since the Hamiltonian can be scaled by dividing by ν, for
convenience, we can set ν = 1 as the energy unit hereafter.

To construct quantum interference of a non-Hermitian sys-
tem with multiple-passage LZSM interferometry in such a
self-interacting nonreciprocal TLS, we assume the energy bias
between two levels is periodically modulated as

γ (t ) = A cos(ωt ), (2)

where A and ω are the amplitude and frequency of the driving
field, respectively. When the control parameter γ (t ) is varied

FIG. 1. Time evolution of the energy levels during one period in
the absence of the nonlinear self-interaction (i.e., c = 0): (a) real and
(b) imaginary parts of the energy levels. For δ � 1, the imaginary
parts of energy are always 0, and they overlap in (b). For δ > 1, i.e.,
δ = 3, a series of EPs have appeared. The amplitude and frequency
of the modulation field are A = 3 and ω = 20, respectively.

periodically such that the system keeps going back and forth
across the avoided-crossing region (or the EPs in the strong
nonreciprocity regime), a sequence of consecutive Landau-
Zener tunneling events leads to periodic dependence on
occupation probabilities of the two levels, namely, multiple-
passage LZSM interferometry. In the present paper we focus
on the high-frequency driving case, i.e., ω � ν.

In the absence of the nonlinear self-interaction (i.e., c = 0),
the energy levels of the system depend on the level bias γ (t )
as follows:

ε±(t ) = ± 1
2

√
γ 2(t ) + ν2(1 − δ). (3)

Obviously, when γ 2(t ) + ν2(1 − δ) < 0, the system allows
imaginary energy levels to exist, i.e., ε = εr + iεi, with εr and
εi the real and imaginary parts of energy, respectively. Figure 1
shows the energy spectrum of a non-Hermitian model plotted
against time, which describes a full cycle of the LZSM inter-
ference [6]. When δ < 1, the real parts of eigenvalues present
many periodic avoided level crossings, and the imaginary
parts of the eigenvalues remain constant at zero. This scenario
gives rise to the phenomenon of LZSM interference within
the system. However, avoided level crossings disappear and
the upper and lower energy levels cross at t = (2k+1)π

2ω
(k ∈ Z )

for δ = 1. For δ > 1, the real parts of the eigenvalues coalesce
and become zero between two EPs at which two eigenvalues
and their corresponding eigenvectors coalesce, while the cor-
responding imaginary parts of the eigenvalues are nonzero.
Obviously, the nonreciprocity parameter δ greatly affects the
level structure of the system. Therefore, we are also interested
in investigating the influence of the nonreciprocity parameter
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FIG. 2. Nonreciprocal quantum interference patterns in the ab-
sence of the nonlinear self-interaction (i.e., c = 0). Level occupation
probabilities (a) Pa and (b) Pb for the system are initially found in
the upper and lower energy levels, respectively. Here the quantum
interference patterns are obtained by recording the final occupancy
probability Pa (or Pb) during 100 periods of the LZSM process, i.e.,
t = 10π for ω = 20.

on the dynamic evolution of the occupation probability under
different initial conditions.

The nonlinear Schrödinger equation (1) of the nonre-
ciprocal TLS can be solved numerically using standard
Runge-Kutta fourth- and fifth-order algorithms. In order to
study the characteristics of nonreciprocal quantum inter-
ference, we assume that the system is initially found in
the lower (upper) energy level, i.e., (a(t = 0), b(t = 0))T =
(1, 0)T [(a(t = 0), b(t = 0))T = (0, 1)T ]. Since the TLS is
non-Hermitian, the time evolution is no longer unitary and
the total population, i.e., N (t ) = |a(t )|2 + |b(t )|2, is not a
conserved quantity. Thus, the occupancy probability of each
energy level can be defined as

Pa ≡ |a(t )|2
N (t )

, Pb ≡ |b(t )|2
N (t )

. (4)

Then the quantum interference fringe patterns can be ob-
tained by recording the occupancy probability Pa (Pb) for the
system, which is initially found in the upper (lower) energy
level, i.e., (a(t = 0), b(t = 0))T = (0, 1)T [(a(t = 0), b(t =
0))T = (1, 0)T ].

III. QUANTUM INTERFERENCE IN THE ABSENCE
OF NONLINEAR SELF-INTERACTION (c = 0)

A. Breakdown of quantum interference
by strong nonreciprocity

Let us now study quantum interference with the multiple-
passage LZSM process, where the system passes the avoided-
crossing region (or EPs) periodically. We begin our numerical
simulations of quantum interference in the absence of the
nonlinear self-interaction (i.e., c = 0) during 100 periods, i.e.,
t = 10π . Figures 2(a) and 2(b) depict quantum interference
patterns as a function of the nonreciprocity parameter δ and
the driving amplitude A for the system that is initially found
in the upper and lower energy levels, respectively.

In the weak nonreciprocal regime (i.e., δ < 1), conspicuous
interference fringes are discernible, whereas the interference

FIG. 3. Nonreciprocal time-domain interference patterns of the
multiple-passage LZSM process for the nonreciprocity parameter δ

ranging from 0 to 2. Occupation probabilities (a) Pa and (b) Pb are
shown as a function of time, assuming that the system was initially
found in the upper and lower energy levels, respectively. Here the
driving frequency ω = 20 and driving amplitude A = 3.

is completely suppressed in the strong nonreciprocal regime
(i.e., δ > 1) due to the PT -symmetry breaking. Meanwhile,
the interference fringes observed in Figs. 2(a) and 2(b) exhibit
obvious differences, indicating a clear nonreciprocal quantum
interference. In the absence of a nonreciprocity parameter
(i.e., δ = 0), the quantum interference fringe patterns of Pa are
the same as those of Pb, which corresponds to the Hermitian
case. In the weak nonreciprocal regime, as the nonreciprocal
parameter δ increases, the difference in interference fringes
becomes increasingly apparent. We also notice that at certain
amplitudes, regardless of the strength of nonreciprocity, the
occupation probabilities Pa and Pb are always zero, namely, at
certain combinations of the driving parameters, the tunnelings
between two levels are frozen, which is the so-called coherent
destruction of tunneling (CDT) [68].

B. Nonreciprocal time-domain interference patterns
and theoretical analysis

In this section we present the numerical results and com-
pare them with the theoretical predictions to gain a deeper
understanding of non-Hermitian quantum interference pat-
terns. In Figs. 3(a) and 3(b) we present the numerical
results for the nonreciprocal time-domain interference pat-
terns obtained with the multiple-passage LZSM process for
the nonreciprocity parameter δ ranging from 0 to 2. Fig-
ure 3(a) shows the occupation probabilities Pa, assuming that
the system was initially found in the upper energy levels, i.e.,
(a(t = 0), b(t = 0))T = (0, 1)T . Figure 3(b) shows the occu-
pation probabilities Pb, assuming that the system was initially
found in the lower energy levels, i.e., (a(t = 0), b(t = 0))T =
(1, 0)T . Here the driving frequency and driving amplitude are
ω = 20 and A = 3, respectively.

Obviously, in the absence of nonreciprocity, that is, when
the system degenerates into the Hermitian case, the numer-
ical results of the time-domain interference patterns Pa and
Pb in Figs. 3(a) and 3(b) obtained with the multiple-passage
LZSM process are completely consistent. As the nonrecipro-
cal parameter increases, the difference in interference fringes
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between Pa and Pb becomes increasingly significant. Never-
theless, the observation manifests as conspicuous interference
fringes in the weak nonreciprocal regime, i.e., δ < 1. Con-
versely, in the regime of strong nonreciprocity, i.e., δ > 1,
the time-domain interference is completely suppressed. In
this regime, both Pa and Pb start from 0 and monotonically
increase towards certain values with periodic modulation.
Through numerical observations, we find through enough
LZSM processes that the values depend solely on the non-
reciprocity parameter in the forms of Pa = 1/δ and Pb = (δ −
1)/δ, as shown in Figs. 3(a) and 3(b).

Now we explain the above numerical results through some
analytic deduction. Considering that the frequency of the driv-
ing field is large enough in the present paper, namely, the
high-frequency driving case, i.e., ω � ν, we can use the RWA
to analyze the above interesting phenomenon [68–70]. After
a series of careful deductions, we finally obtain the analytic
expressions of Pa and Pb (details can be found in Appendix A).
For the system initially found in the upper energy level, i.e.,
(a(t = 0), b(t = 0))T = (0, 1)T , we have

Pa = 1

δ + (1 − δ) csc2(B
√

1 − δt )
(δ < 1), (5a)

Pa = 1

δ + (δ − 1)csch2(B
√

δ − 1t )
(δ > 1). (5b)

Here B = ν
2 J0(A/ω) and J0(A/ω) is the zeroth-order Bessel

function of the first kind. For the system initially found in the
lower energy level, i.e., (a(t = 0), b(t = 0))T = (1, 0)T , we
have

Pb = δ − 1

δ

(
1 − 2

2 − δ + δ cos(2B
√

1 − δt )

)
(δ < 1),

(6a)

Pb = δ − 1

δ

(
1 − 2

2 − δ + δ cosh(2B
√

δ − 1t )

)
(δ > 1).

(6b)

In Fig. 4 we present the nonreciprocal time-domain inter-
ference patterns of multiple-passage LZSM processes Pa and
Pb obtained by directly integrating the time-dependent nonlin-
ear Schrödinger equation and compare them with the above
analytical formula calculated from the RWA. Interestingly,
we find that they match each other well both in the weak
nonreciprocal regime (δ < 1) and in the strong nonreciprocal
regime (δ > 1).

The theoretical results of the expressions (5) and (6) can
well explain the patterns of constructive and destructive in-
terference in the weak nonreciprocal regime and can also
explain the phenomenon that the quantum interference can
be completely suppressed in the strong nonreciprocal regime.
In the weak nonreciprocal regime, from Eqs. (5a) and (6a)
we readily obtain that the constructive interference occurs
at t = (2n+1)π√

1−δν|J0( A
ω

)| , n ∈ Z , whereas the destructive interfer-

ence occurs at t = 2nπ√
1−δν|J0( A

ω
)| , n ∈ Z . We can also obtain

the distances of interference fringes as � = 2π√
1−δν|J0( A

ω
)| . In

the strong nonreciprocal regime, from Eqs. (5b) and (6b) we
can obtain that through enough LZSM processes, the values
depend solely on the nonreciprocity parameter in the forms of

FIG. 4. Comparison of the nonreciprocal time-domain interfer-
ence patterns of the multiple-passage LZSM process (a) and (b) Pa

and (c) and (d) Pb obtained by directly integrating the time-dependent
nonlinear Schrödinger equation (circles) and the theoretical results
obtained using the expressions (5) and (6) (solid lines) for (a) and (c)
the weak nonreciprocal regime, i.e., δ < 1, and (b) and (d) the strong
nonreciprocal regime, i.e., δ > 1.

Pa = 1/δ and Pb = (δ − 1)/δ, which are consistent with the
numerical observations shown in Figs. 3(a) and 3(b).

C. Theoretical analysis of the CDT phenomenon
on interference patterns

Figures 2(a) and 2(b) illustrate the CDT phenomenon on
interference patterns, namely, for certain combinations of
the driving parameters, the tunneling between two levels is
frozen. In this section we provide a theoretical analysis of
the CDT phenomenon by utilizing the theory presented under
the RWA. In Fig. 5 we show nonreciprocal time-domain in-
terference patterns of the multiple-passage LZSM process for
large ranges of driving amplitude A. A notable feature is that
there are obvious differences between Pa and Pb, which can be
attributed to the presence of nonreciprocity. Figures 5(a) and
5(c) represent Pa for δ = 0.5 and 3, respectively. Figures 5(b)
and 5(d) represent Pb for δ = 0.5 and 3, respectively. Inter-
estingly, we find that in both the weak nonreciprocal regime
and the strong nonreciprocal regime, the CDT occurs. In the
weak nonreciprocal regime, except for the specific amplitudes
at which CDT occurs, the system always exhibits signif-
icant time-domain interference behavior for other driving
amplitudes. In contrast, in the strong nonreciprocal regime,
regardless of the magnitude of the driving amplitude, the
system does not exhibit time-domain interference behavior.
This is consistent with the theoretical results predicted by the
RWA for the expressions (5) and (6). Therefore, this agree-
ment between the theoretical and numerical values further
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FIG. 5. Nonreciprocal time-domain interference patterns of the
multiple-passage LZSM process for large ranges of driving ampli-
tude A: Pa for (a) δ = 0.5 and (c) δ = 3 and Pb for (b) δ = 0.5 and
(d) δ = 3. The CDT occurs in both (a) and (b) weak and (c) and (d)
strong nonreciprocal regimes.

confirms the validity of the RWA in predicting the behavior
of interference.

The numerical observation of CDT can be explained using
the above approach [68–70]. Within the framework of the
RWA and considering the high-frequency approximation that
the present paper focuses on, we can readily obtain that the
condition of CDT occurs from the reduced Hamiltonian (A7)
in Appendix A, that is,

J0

(
A

w

)
= 0. (7)

Therefore, the frequency of oscillations vanishes and the os-
cillations are consequently suppressed when the parameters
satisfy the above CDT condition (7). The above predictions
are completely consistent with our numerical observations.

IV. QUANTUM INTERFERENCE
OF THE NONRECIPROCAL TLS IN THE PRESENCE

OF NONLINEAR INTERACTION (c �= 0)

Now we focus on the effect of nonlinear interactions on the
quantum interference of a nonreciprocal TLS. In the presence
of atomic interaction, even in the high-frequency driving case
under the framework of the RWA, the system (1) is no longer
analytically solvable. It is found that the dynamics of a TLS
can be strongly modified by the nonlinear interaction [71–79].
Our numerical simulations for the effects of nonlinear inter-
action c and the driving amplitude A on the nonreciprocal
quantum interference patterns are displayed in Fig. 6, in which
the quantum interference patterns are obtained by recording

FIG. 6. Nonreciprocal quantum interference patterns in the pres-
ence of the nonlinear self-interaction. (a) and (b) Weak nonreciprocal
regime, i.e., δ = 0.5. In both (a) and (b), a white solid line divides
the phase plane into two parts: The region above the line is the
self-trapping phase and the region below the line is the quantum
interference is maintained phase. (c) and (d) Strong nonreciprocal
regime, i.e., δ = 2.5. In both (c) and (d), a white solid line divides
the phase plane into two parts: The region above the line is the self-
trapping phase and the region below the line is the phase in which
quantum interference is broken down by a strong nonreciprocity.
Here the quantum interference patterns are obtained by recording
the final occupancy probability Pa (or Pb) during 100 periods of the
LZSM process, i.e., t = 10π for ω = 20.

the final occupancy probability Pa (or Pb) during 100 periods
of the LZSM process, i.e., t = 10π for ω = 20. Figures 6(a)
and 6(c) present Pa for the system initially found in the upper
energy levels. Figures 6(b) and 6(d) present Pb for the system
initially found in the lower energy levels.

Figures 6(a) and 6(b) depict the nonreciprocal quantum
interference patterns of the multiple-passage LZSM process
in the weak nonreciprocal regime, i.e., we take δ = 0.5 as an
example. Two regions are observed, which are separated by a
white solid line. The region above the line corresponds to the
self-trapping phase, in which the strong nonlinear interaction
c blocks the Josephson oscillation of the particle between the
two energy levels, characterized by a nonzero temporal mean
of the population imbalance [71–74,76]. The region below
the line shows the phase in which quantum interference is
maintained, in which the interference fringes are modulated
by both the nonlinear interaction parameter c and the driving
amplitude A. In Fig. 6(a) the region where quantum inter-
ference is maintained is approximately within the parameter
range c < f (δ)|J0(A/ω)|. In Fig. 6(b) the region in which
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FIG. 7. Phase diagram of the nonreciprocal quantum interference
patterns in the parameter plane (c, δ): (a) Pa and (b) Pb. There
are three regions. Region I is the phase in which quantum inter-
ference is broken down by a strong nonreciprocity. Region II is
the phase in which quantum interference is maintained. Region III
is the self-trapping phase. Here the quantum interference patterns
are obtained by recording the final occupancy probability Pa (or Pb)
during 100 periods of the LZSM process, i.e., t = 10π for ω = 20
and A = 3.

quantum interference is maintained can be approximated by
the parameter range c < f1(δ)|J0(A/ω)|.

For the strong nonreciprocal regime, the phase diagrams
of nonreciprocal quantum interference patterns are shown in
Figs. 6(c) and 6(d) for δ = 2.5. A white solid line divides
the phase diagram into two parts. The region above the line
corresponds to the self-trapping phase and the region below
the line represents the phase in which quantum interference
is broken down by the strong nonreciprocity phase. We find
that, interestingly, in the phase in which quantum interference
is broken down by strong nonreciprocity, our calculations in-
dicate that the nonlinear interaction effects can be completely
suppressed so that the Pa and Pb are identical to their linear
counterparts in Eqs. (5b) and (6b), respectively. Figures 6(c)
and 6(d) show the regions where quantum interference is
broken down by a strong nonreciprocity approximately within
parameter range c < f2(δ)|J0(A/ω)|.

To gain further insight into the effects of the nonlinear
interaction c and nonreciprocity parameter δ on quantum
interference, we present the phase diagram of quantum inter-
ference for a large range of nonreciprocity and nonlinearity
parameters in Fig. 7, which shows the nonreciprocal quantum
interference patterns characterized by Pa [Fig. 7(a)] and Pb

[Fig. 7(b)] during 100 periods of the LZSM process, i.e., t =
10π for ω = 20 and A = 3. There are three regions in both
Figs. 7(a) and 7(b). Region I is the phase in which quantum
interference is broken down by a strong nonreciprocity, where
the nonlinear interaction effect is completely suppressed by
the strong non-Hermiticity so that Pa and Pb are only depen-
dent on the nonreciprocal parameter δ. Region II shows the
phase in which the quantum interference is maintained, where
the nonlinear interaction c and the nonreciprocity parameter δ

can jointly modulate quantum interference fringes. Region III
is the self-trapping phase. In Fig. 7(a), one phase-change line
(dash-dotted line) is estimated as δ = 1 + g1(A)c, while an-
other phase-change line (dashed line) is estimated as δ =

g2(A)(1 − 0.5c). In Fig. 7(b), one phase-change line (dash-
dotted line) is estimated as δ = 1 + g3(A)c, while another
phase-change line (dashed line) is estimated as δ = 1 − 0.5c.

V. CONCLUSION

In this paper we explored the dynamics of a TLS in which
the non-Hermitian effects are introduced by making the hop-
ping between the levels nonreciprocal [22]. Recently, there
has been significant progress in realizing such tunable non-
reciprocal hopping in various setups, such as optical systems
[80–83], electrical circuits [84–86], synthetic mechanical
metamaterials [87–89], and ultracold atoms in synthetic
momentum lattices [55–57,90,91]. In the above-mentioned
systems, nonreciprocal hopping schemes can be tuned in
the two-mode case, which corresponds to the nonrecipro-
cal TLS. For instance, in the experimental implementation
of ultracold atoms in synthetic momentum lattices, the dis-
crete momentum states of ultracold atoms are coupled by
using multiphoton processes [55–57,90,91]. In this system,
the laser-induced hopping can be controlled independently by
adjusting the corresponding lasers and the atomic interactions
can be tuned by adjusting the s-wave scattering length. In
particular, the influence of momentum-space interactions on
population dynamics of ultracold atoms in a coupled double
well has been explored [55]. Since the results of this work
provide useful information for understanding the dynamics of
non-Hermitian physics, we hope that our studies will stimulate
experiments in this direction.

In summary, we have utilized the multiple-passage LZSM
scheme of a self-interacting nonreciprocal TLS to explore
quantum interference in non-Hermitian systems. We focused
on the influence of the appearance of EPs on quantum
interference behavior. In the absence of nonlinear inter-
action, our findings indicate that quantum interference is
maintained in the weak nonreciprocal regime, whereas it is
completely suppressed in the strong nonreciprocal regime due
to PT -symmetry breaking. It is worth emphasizing that the
interesting phenomenon of the disappearance of the fringe
does not occur in the reciprocal case (i.e., δ = 0). In the
framework of the RWA, we provided a complete theoretical
explanation. The appearance of EPs can be changed by both
nonreciprocity and nonlinearity parameters. The competition
between nonreciprocity and nonlinearity yields a rich vari-
ety of quantum interference. Explicit phase diagrams were
obtained, showing the phase of the breakdown of quantum in-
terference by a strong nonreciprocity, the self-trapping phase,
and the phase in which quantum interference is maintained,
for a large range of nonreciprocity and nonlinearity parame-
ters. Our theoretical studies extend the understanding of novel
dynamics of non-Hermitian systems and may provide a theo-
retical perspective for the manipulation of quantum states in
non-Hermitian systems both theoretically and experimentally.
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APPENDIX A: DERIVATION OF THE ANALYTIC
EXPRESSION UNDER THE FRAMEWORK OF THE RWA

It is useful to make use of a suitable RWA to analyze the
above dynamics under high-frequency driving, i.e., ω � ν.
First we consider a Hamiltonian in Eq. (1) describing a linear
system and make a transformation to a rotating frame with the
operator U :

Û (t ) = exp

[
− i

2

(
A

w
sin ωt

)
σ̂z

]
. (A1)

This operator connects the wave function in the reference

frame (
a
b

) to the wave function in the rotating frame (
a′
b′ ),

(
a
b

)
= Û (t )

(
a′
b′

)
. (A2)

Then the dimensionless Schrödinger equation in the rotating
frame can be expressed as

i
d

dt

(
a′
b′

)
= Ĥ ′(t )

(
a′
b′

)
, (A3)

where

Ĥ ′(t ) = Û (t )†Ĥ (t )Û (t ) − iÛ (t )† dÛ (t )

dt

= ν

2

(
0 ei(A/ω sin ωt )

(1 − δ)e−i(A/ω sin ωt ) 0

)
. (A4)

We now make use of the Jacobi-Anger relation

ei(A/ω) sin γ =
∞∑

n=−∞
Jn

(
A

ω

)
einγ , (A5)

where Jn(A/ω) is the nth-order Bessel function of the first
kind. So we obtain the final expression of the new Hamilto-
nian

H ′ = ν

2

(
0

∑∞
n=−∞ Jn( A

w
)einwt∑∞

n=−∞(1 − δ)Jn( A
w

)e−inwt 0

)
.

(A6)

For the high-frequency case, the fact that the contribution of
higher-order Bessel functions is small enough means that we
can neglect it. Therefore, we further simplify the Hamiltonian
by keeping only the dominant term (i.e., the zeroth-order
Bessel function)

H ′ = ν

2

(
0 J0( A

w
)

(1 − δ)J0( A
w

) 0

)
. (A7)

Substituting Eq. (A7) into the Schrödinger equation and
simultaneously considering the initial condition (a(t =
0), b(t = 0))T = (0, 1)T , we readily obtain

a(t ) = i sin(B
√

1 − δt )√
1 − δ

, (A8a)

b(t ) = cos(B
√

1 − δt ), (A8b)

where B = ν
2 J0( A

ω
). Then the quantum interference fringe pat-

terns can be obtained by recording the occupancy probability
Pa [defined in Eq. (4)] as

Pa =
⎧⎨
⎩

1
δ+(1−δ) csc2(B

√
1−δt )

, δ < 1

1
δ+(δ−1)csch2[B

√
δ−1t]

, δ > 1.
(A9)

Concerning the initial condition (a(t = 0), b(t = 0))T =
(1, 0)T , we readily obtain

a(t ) = cos(B
√

1 − δt ), (A10a)

b(t ) = i
√

1 − δ sin(B
√

1 − δt ). (A10b)

Then the quantum interference fringe patterns can be obtained
by recording the occupancy probability Pb [defined in Eq. (4)]
as

Pb =
⎧⎨
⎩

δ−1
δ

(
1 − 2

2−δ+δ cos(2B
√

1−δt )

)
, δ < 1

δ−1
δ

(
1 − 2

2−δ+δ cosh(2B
√

δ−1t )

)
δ > 1.

(A11)

From the above explicit expressions, we see that a(t ) and
b(t ) vary with respect to time periodically in the weak nonre-
ciprocal regime. They share a common period

T = 2π√
1 − δν|J0( A

ω
)| . (A12)

In the strong nonreciprocal regime, we can obtain, through
enough LZSM processes, the values depending solely on the
nonreciprocity parameter in the forms of Pa = 1/δ and Pb =
(δ − 1)/δ.

APPENDIX B: DYNAMICAL BEHAVIOR
OF THE UNNORMALIZED AMPLITUDE

OF A WAVE FUNCTION

The unnormalized amplitude P′
a ≡ |a(t )|2 for the system

initially found in the upper energy level, i.e., (a(t = 0), b(t =
0))T = (0, 1)T , can be readily obtained from Eq. (A8a) as

P′
a = sin2(B

√
1 − δt )

1 − δ
(δ < 1), (B1a)

P′
a = sinh2(B

√
δ − 1t )

δ − 1
(δ > 1). (B1b)

The unnormalized amplitude P′
b ≡ |b(t )|2 for the system, ini-

tially found in the lower energy level, i.e., (a(t = 0), b(t =
0))T = (1, 0)T , can be readily obtained from Eq. (A10b) as

P′
b = (1 − δ) sin2(B

√
1 − δt ) (δ < 1), (B2a)

P′
b = (δ − 1) sinh2(B

√
δ − 1t ) (δ > 1). (B2b)

In Fig. 8 we present the nonreciprocal time-domain unnor-
malized amplitudes of wave function P′

a and P′
b obtained by

directly integrating the time-dependent nonlinear Schrödinger
equation and compare them with the above analytical formula
calculated from the RWA, which shows they match each other
well. From the expressions (B1) and (B2), one can clearly
see that in the weak nonreciprocal regime, the unnormal-
ized amplitudes of the wave function P′

a and P′
b oscillate

063506-7
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FIG. 8. Dynamical behavior of unnormalized amplitudes of
wave function P′

a and P′
b obtained by directly integrating the

time-dependent nonlinear Schrödinger equation (circles) and the
theoretical results obtained using the expressions (B1) and (B2)
(solid lines) for (a) and (b) the weak nonreciprocal regime,
i.e., δ < 1, and (c) and (d) the strong nonreciprocal regime,
i.e., δ > 1.

periodically with amplitudes 1/(1 − δ) and 1 − δ, respec-
tively. In the strong nonreciprocal regime, both P′

a and P′
b

rapidly increase with time evolution.

APPENDIX C: VALIDITY OF THE ANALYTICAL
FORMULA UNDER

HIGH-FREQUENCY APPROXIMATION

The analytical formulas are obtained from the framework
of the RWA and by considering the high-frequency approxi-
mation that the present paper focuses on. To demonstrate at
what frequency values the dynamics starts to deviate from the
high-frequency limit, we introduce the two quantities

�a ≡ ∣∣Pnum
a − Pana

a

∣∣, �b ≡ ∣∣Pnum
b − Pana

b

∣∣, (C1)

where Pnum
a and Pnum

b represent the numerical results ob-
tained by directly integrating the time-dependent nonlinear
Schrödinger equation and Pana

a and Pana
b represent the analyti-

cal results using expressions (5) and (6). These two quantities
can reflect at what frequency values the dynamics starts to
deviate from the high-frequency limit.

The results are shown in Fig. 9. In the strong nonreciprocal
regime (δ > 1), it is interesting to show that both quanti-
ties �a and �b are approximately zero for ω ranges from
the low-frequency case to the high-frequency case. In the
weak nonreciprocal regime (δ < 1), both quantities �a and
�b exhibit significant fluctuations for the low frequency case,
whereas they are indeed approximately zero for the high fre-
quency case. In this regime, the window of frequency values
for the dynamics starts to deviate from the high-frequency
limit, becoming larger as δ increases. The results in Fig. 9

FIG. 9. Comparison of numerical results obtained by directly
integrating the time-dependent nonlinear Schrödinger equation and
analytical results using the expressions (5) and (6). Here the results
are obtained by recording the final values during 100 periods of the
LZSM process, i.e., t = 10π for A = 3.

further strengthen the validity of the analytical formula under
high-frequency approximation.

APPENDIX D: NUMERICAL RESULTS OF
NONRECIPROCAL QUANTUM INTERFERENCE

IN THE LARGE RANGE OF DRIVING FREQUENCY

The main results in the previous text focus on the
high-frequency driving case, in the absence of nonlinear self-
interaction, where we find that interference is completely
suppressed in a strong nonreciprocal regime. To inspect
whether the interesting phenomenon also exists in the case of
low-frequency driving, we numerically solve the Schrödinger
equation within the large range of driving frequency. Fig-
ures 10(a) and 10(b) depict the numerical results of quantum
interference patterns as a function of the nonreciprocity pa-
rameter δ and the driving amplitude ω for the system that is
initially found in the upper and lower energy levels, respec-

FIG. 10. Numerical results of nonreciprocal quantum interfer-
ence patterns in the large range of driving frequency ω. Level
occupation probabilities (a) Pa and (b) Pb for the system are initially
found in the upper and lower energy levels, respectively. Here the
quantum interference patterns are obtained by recording the final
occupancy probability Pa (or Pb) during 100 periods of the LZSM
process for A = 3.
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tively. The numerical results show that the interference fringes
are conspicuously present in weak nonreciprocal regime (i.e.,
δ < 1), while the interference is completely suppressed in

strong nonreciprocal regime (i.e., δ > 1). These results seem
to clearly reveal that the interesting phenomenon of interfer-
ence suppression is due to PT -symmetry breaking.
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[80] B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L.
Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Nat. Phys.
10, 394 (2014).

[81] F. Ruesink, M.-A. Miri, A. Alù, and E. Verhagen, Nat.
Commun. 7, 13662 (2016).

[82] K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt,
A. A. Clerk, and O. Painter, Nat. Phys. 13, 465 (2017).

[83] S. Weidemann, M. Kremer, T. Helbig, T. Hofmann, A.
Stegmaier, M. Greiter, R. Thomale, and A. Szameit, Science
368, 311 (2020).

[84] M. Ezawa, Phys. Rev. B 99, 121411(R) (2019).
[85] M. Ezawa, Phys. Rev. B 100, 165419 (2019).
[86] S. Liu, R. Shao, S. Ma, L. Zhang, O. You, H. Wu, Y. J. Xiang,

T. J. Cui, and S. Zhang, Research 2021, 5608038 (2021).
[87] R. Anandwade, Y. Singhal, S. N. M. Paladugu, E. Martello, M.

Castle, S. Agrawal, E. Carlson, C. Battle-McDonald, T. Ozawa,
H. M. Price, and B. Gadway, Phys. Rev. A 108, 012221 (2023).

[88] Y. Singhal, E. Martello, S. Agrawal, T. Ozawa, H. Price, and B.
Gadway, Phys. Rev. Res. 5, L032026 (2023).

[89] E. Martello, Y. Singhal, B. Gadway, T. Ozawa, and H. M. Price,
Phys. Rev. E 107, 064211 (2023).

[90] F. A. An, B. Sundar, J. Hou, X.-W. Luo, E. J. Meier, C. Zhang,
K. R. A. Hazzard, and B. Gadway, Phys. Rev. Lett. 127, 130401
(2021).

[91] T. Yuan, C. Zeng, Y.-Y. Mao, F.-F. Wu, Y.-J. Xie, W.-Z. Zhang,
H.-N. Dai, Y.-A. Chen, and J.-W. Pan, Phys. Rev. Res. 5,
L032005 (2023).

063506-10

https://doi.org/10.1063/1.98541
https://doi.org/10.1103/PhysRevA.82.043803
https://doi.org/10.1038/s41598-017-02340-9
https://doi.org/10.1364/OL.43.005371
https://doi.org/10.1364/OL.43.002929
https://doi.org/10.1103/PhysRevLett.67.516
https://doi.org/10.1209/0295-5075/18/7/001
https://doi.org/10.1103/PhysRevA.75.063414
https://doi.org/10.1103/PhysRevA.66.023404
https://doi.org/10.1103/PhysRevA.73.013619
https://doi.org/10.1103/PhysRevA.77.013402
https://doi.org/10.1088/1367-2630/10/12/123018
https://doi.org/10.1103/PhysRevA.78.063621
https://doi.org/10.1103/PhysRevA.78.013618
https://doi.org/10.1103/PhysRevA.89.012123
https://doi.org/10.1103/PhysRevA.93.043419
https://doi.org/10.1103/PhysRevA.98.022102
https://doi.org/10.1038/nphys2927
https://doi.org/10.1038/ncomms13662
https://doi.org/10.1038/nphys4009
https://doi.org/10.1126/science.aaz8727
https://doi.org/10.1103/PhysRevB.99.121411
https://doi.org/10.1103/PhysRevB.100.165419
https://doi.org/10.34133/2021/5608038
https://doi.org/10.1103/PhysRevA.108.012221
https://doi.org/10.1103/PhysRevResearch.5.L032026
https://doi.org/10.1103/PhysRevE.107.064211
https://doi.org/10.1103/PhysRevLett.127.130401
https://doi.org/10.1103/PhysRevResearch.5.L032005

