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in a generalized cross-Kerr optomechanical circuit
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We propose a feasible experimental scheme to improve the few-photon optomechanical effects, including
photon blockade and mechanical-Schrödinger-cat-state generation, as well as photon-phonon entanglement in a
tripartite microwave-optomechanical circuit. The system under consideration is formed by a single-Cooper-pair
transistor, a microwave LC resonator, and a micromechanical resonator. Our scheme is based on an additional
higher-order (generalized) nonlinear cross-Kerr type of coupling, linearly dependent on photon number while
quadratically dependent on mechanical phonon number, which can be realized via adjusting the gate charge
of the Cooper-pair transistor. We show, both analytically and numerically, that the presence of both cross-Kerr
and generalized cross-Kerr nonlinearities not only may give rise to the enhancement of one- and two-photon
blockades as well as photon-induced tunneling but can also provide more controllability over them. Further-
more, it is shown that in the regime of zero optomechanical coupling, with the aid of generalized cross-Kerr
nonlinearity, one can generate multicomponent mechanical superposition states which exhibit robustness against
system dissipations. We also study the steady-state entanglement between the microwave and mechanical modes,
the results of which signify the role of generalized cross-Kerr nonlinearity in enhancing the entanglement in the
regime of large red detuning. The proposed generalized cross-Kerr optomechanical system can find potential
applications in microwave quantum sensing, quantum telecommunication, and quantum information protocols.
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I. INTRODUCTION

The past decade has witnessed significant theoretical as
well as experimental progress in the field of cavity quan-
tum optomechanics [1,2], which explores the parametric
coupling between the position of a mechanical oscillator
and the frequency of a photon field inside a high-finesse
optical (or microwave) cavity via the radiation-pressure
force. In a typical cavity optomechanical system the posi-
tion of the mechanical oscillator modulates the resonance
frequency of the cavity and gives rise to a nonlinear cou-
pling between the cavity and the mechanical modes. Such
a nonlinear coupling brings about broad applications rang-
ing from addressing fundamental questions at the forefront
of physics to realizing quantum technological goals. To cite
some important examples, one could highlight exploring pos-
sible quantum gravitational phenomena [3], the Bell test
for macroscopic mechanical entanglement [4–6]; testing of
the quantum-classical boundary [7]; high-precision position,
mass, magnetic, or force sensing [8–18]; coherent photon-
phonon conversion [19]; realization of the optomechanically
induced transparency [20–23]; quantum state transfer [24];
optomechanical entanglement generation [25–27]; quantum
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information processing [28]; generating nonclassical states
of light [29,30]; and mechanical motion [31], quantum cor-
relations [32,33], and proposals for realizing the parametric
dynamical Casimir effect [34–37].

To observe and control quantum behaviors in a standard
optomechanical system, it is essential to cool down the me-
chanical oscillator as close as possible to its motional ground
state. To achieve this goal, a variety of methods have been
proposed and realized [38–42]. Even so, the ground-state
cooling of a mechanical oscillator alone is not sufficient to
observe quantum behavior. The other requirement is the ne-
cessity of being in the strong-coupling regime [43], in which
the coupling strength between the cavity and the mechanical
modes is larger than the damping rates of the cavity field and
the mechanical oscillator. Nevertheless, the optomechanical
coupling is usually weak, so the nontrivial quantum phenom-
ena cannot be observed in the single-photon optomechanical
coupling regime [19]. To overcome this restriction, a strong
external driving field can be applied to the cavity mode,
and consequently a multiphoton strong-coupling regime is
reached [43], but with the sacrifice of the radiation-pressure
nonlinearity. In addition, it has been shown [44,45] that under
sufficiently strong driving, an optomechanical cavity behaves
effectively as a rigid cavity filled with a nonlinear optical Kerr
medium. Motivated by such an analogy between quantum
optomechanics and nonlinear optics, the Kerr medium inside
an optomechanical cavity has been proposed [46] not only
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to enhance the optomechanical coupling strength, but also to
avoid losing the nonlinearity.

Optomechanical systems coupled to a nonlinear inductive
element (single-Cooper-pair transistor) [47] or a quantum
two-level system (qubit) [48] have also been proposed and
experimentally studied as a promising platform for strength-
ening the single-photon radiation-pressure coupling by several
orders of magnitude (about four to six orders of magnitude
for typical experimental parameters). Moreover, it has been
shown [47] that in such hybrid optomechanical systems a
strong controllable cross-Kerr (CK) type of coupling gCKn̂an̂b

between the cavity field and the mechanical oscillator, with
respective number operators n̂a and n̂b, can be realized. The
CK nonlinearity gives rise to a dispersive frequency shift in
the mechanical (optical) mode with linear dependence versus
the photon (phonon) number, as well as an optimal cool-
ing or heating of the mechanical oscillator [49]. It can also
significantly enhance the quantum correlation between the
optical and the mechanical modes [50]. Furthermore, it has
been shown [51] that in an optomechanical system with CK
nonlinearity the optical bistability can be turned into tristable
behavior. In Ref. [52] the effects of the CK nonlinearity on the
normal mode splitting, ground-state cooling, and steady-state
entanglement in an optomechanical cavity assisted by an opti-
cal parametric amplifier have been studied. The CK effects on
the optomechanically induced transparency phenomenon in a
parity-time symmetric optomechanical system have also been
explored [53]. Recently, the influence of the CK interaction on
the few-photon optomechanical effects, including the photon
blockade (PB) and the mechanical-cat-state generation in a
superconducting quantum circuit proposed in Ref. [47], has
been investigated [54]. In addition, some realizable schemes
have recently been proposed for boosting the photon-phonon
CK coupling in optomechanical systems based on various
methods such as two-photon parametric driving [55], strong
mechanical driving [56], periodic modulation of the me-
chanical spring constant [57], and utilization of Josephson
(quantum) capacitance of a Cooper-pair box [58].

In this paper, inspired by the role of the nonlinear
photon-phonon interaction in few-photon optomechanical
phenomena, we introduce and investigate the influence of a
higher-order nonlinear CK coupling, namely, generalized CK
nonlinearity, on photon blockade, mechanical-Schrödinger-
cat-state generation, and photon-phonon entanglement. This
type of CK nonlinearity, which is linearly related to the
cavity photon number while depending quadratically on the
mechanical phonon number (i.e., proportional to n̂an̂2

b), can
be realized in a tripartite microwave-optomechanical system
composed of a single-Cooper-pair transistor, a microwave LC
resonator, and a micromechanical resonator. By calculating
the steady-state equal-time second- and third-order correlation
functions of the cavity mode, we analyze both analytically and
numerically the effect of generalized CK nonlinearity on the
quantum statistics of intracavity photons including PB and
photon-induced tunneling (PIT). In particular, we show that
photon bunching and antibunching can be effectively con-
trolled by adjusting the system parameters. With regard to the
generation of the mechanical cat state, we find, based on both
analytical and numerical solutions, that in the regime of zero
optomechanical coupling multicomponent mechanical super-

(a)

(b)

FIG. 1. (a) Schematic circuit diagram of the considered tripartite
microwave-optomechanical system [47] composed of a single-
Cooper-pair transistor with Josephson energies EJ1,J2 and Josephson
capacitances C1,2 (the brown box), a microwave LC resonator (the
blue box), and a micromechanical resonator with gate capaci-
tance Cg0 which couples via a time-dependent capacitance Cg(t ) ≡
Cg[x(t )] ≡ Cg (the green box). Here we consider the gate capacitor,
which can be vibrated through modulating the movable part of the
gate capacitance. (b) Equivalent cavity optomechanical system where
the cavity mode â with frequency ωc is coupled to the mechanical
mode b̂ with frequency ωM through the radiation pressure, the CK,
and an additional higher-order CK type of interaction with coupling
strengths g0, ḡCK, and g′

CK, respectively (see the text for details).

position states can be generated making use of the generalized
CK nonlinearity. We also examine the robustness of these gen-
erated states against the system dissipation. Furthermore, our
results reveal that although the generalized CK nonlinearity
is weaker than the optomechanical and CK nonlinearities, it
can increase the photon-phonon entanglement in the regime
of large red detuning.

The remainder of the paper is organized as follows. In
Sec. II we introduce the physical system and derive an effec-
tive Hamiltonian containing the radiation-pressure, the CK,
and the generalized CK couplings. In Sec. III we analyze
the PB and PIT phenomena in the system under considera-
tion. Section IV provides a discussion of the generation of
Schrödinger cat sates in the mechanical mode. The steady-
state entanglement between the microwave and mechanical
modes is investigated in Sec. V. We present in Sec. VI a
brief discussion of the values of the experimental parameters
required for implementation of the model. We summarize our
conclusions in Sec. VII. The details of some derivations are
contained in Appendix A–D.

II. SYSTEM HAMILTONIAN

As schematically shown in Fig. 1(a), we consider a
microwave-optomechanical circuit, which was proposed in
Ref. [47] for boosting the optomechanical radiation-pressure
coupling. It consists of a single-Cooper-pair transistor with
Josephson energies EJ1,J2 and Josephson capacitances C1,2

(the brown box), a microwave LC resonator (the blue box),
and a micromechanical resonator with gate capacitance Cg0
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which couples via a time-dependent capacitance Cg(t ) (the
green box). In this system, the nonlinearity of the Josephson
effect can be exploited to achieve a strong radiation-pressure-
type coupling between the mechanical and microwave modes
[47].

The total Hamiltonian describing the tripartite quantum
system depicted in Fig. 1(a) for the case of equal Joseph-
son couplings EJ1 = EJ2 = EJ can be written as [47] (see
Appendix A)

Ĥt = h̄ω0
c ĉ†ĉ + h̄ω0

Md̂†d̂ + B1

2
σ̂1 + B3

2
σ̂3

+ gmσ̂3x̂m + gqσ̂1x̂2
c , (1)

where ω0
c = 1/

√
LC and ω0

M are the natural frequencies of the
cavity and the mechanical modes, described by the annihila-
tion operators ĉ and d̂ , respectively. In addition, B1 and B3

are the effective magnetic fields, σ̂1 and σ̂3 are Pauli matrices,
gm and gq denote the coupling strengths between the Joseph-
son junction qubit and two oscillators, and x̂m = d̂ + d̂† and
x̂c = ĉ + ĉ† stand for the position operators of the mechanical
and cavity modes, respectively.

The Hamiltonian (1) acts on two different subspaces, the
qubit and the cavity and mechanical oscillator subspaces,
which represent the high-energy and low-energy subspaces,
respectively. We are interested in obtaining an effective low-
energy Hamiltonian of the system. For this purpose, the
Schrieffer-Wolff transformation [59] can be utilized to decou-
ple the high-energy and low-energy subspaces. However, in

the dispersive regime where h̄ω0
c,M � |B| =

√
B2

1 + B2
3 and

when all couplings are small it is sufficient to diagonalize the
interaction part of the Hamiltonian (1) in the qubit basis to ob-
tain an effective low-energy Hamiltonian. Assuming the qubit
to be in its ground state, we find (h̄ = 1) (see Appendix B)

Ĥ = Ĥ0 + Ĥop + ĤCK + Ĥ ′
CK, (2)

with

Ĥ0 = ωcâ†â + ωMb̂†b̂, (3)

Ĥop = g0â†â(b̂† + b̂), (4)

ĤCK = ḡCKâ†âb̂†b̂, (5)

Ĥ ′
CK = g′

CKâ†â(b̂†b̂)2, (6)

which describes an equivalent optomechanical cavity system
where the cavity field interacts with the mechanical oscillator
via the radiation-pressure, the CK, and an additional higher-
order CK type of coupling [Fig. 1(b)]. Here Ĥ0 denotes the
free energy of the cavity and mechanical modes where â (â†)
and b̂ (b̂†) are the annihilation (creation) operators of the
cavity field and the mechanical mode, with effective resonant
frequencies ωc and ωM , respectively. The Hamiltonian Ĥop

refers to the optomechanical radiation-pressure interaction
with coupling strength g0, which is four to six orders of
magnitude larger than its counterpart in other conventional
optomechanical systems [47,60]. The ĤCK, originating from
a quadratic-quadratic coupling term between x̂c and x̂m (see

FIG. 2. Variation of (a) radiation-pressure coupling, (b) CK cou-
pling, and (c) generalized CK coupling for different values of EJ/EC

as a function of δng0. Here EJ/h̄ = 10 GHz.

Appendix B), describes the CK interaction (linear phonon-
number-dependent dispersive shift) between the cavity field
and the mechanical mode, with the modified coupling strength
ḡCK = gCK + g′

CK. Finally, Ĥ ′
CK represents the higher-order

CK interaction (quadratic phonon-number-dependent disper-
sive shift) with the coupling strength g′

CK, which originates
from an interaction that is quadratic with respect to x̂c while
being quartic in terms of x̂m (see Appendix B).

As shown in Appendix B, the coupling strengths g0, gCK,
and g′

CK in the Hamiltonian of Eq. (2) depend on the ratio
EJ/EC as well as δng0. Here EC = e2/[2(C1 + C2 + Cg0)] is
the charging energy of the qubit and δng0 denotes the devi-
ation from the two lowest charge states integer value (int)
|int(ng0)〉 = |0〉 and |int(ng0) + 1〉 = |1〉, with ng0 = VgCg0/2e
the gate charge by which the energy difference of having
zero pairs or one Cooper pair on the island can be tuned.
Figure 2 shows the coupling strengths g0, gCK, and g′

CK versus
δng0 (δng0 = [ng0 − int(ng0 )] ∈ [0, 1]) for different values of
EJ/EC . As can be seen, the coupling strengths reach their
maximum values very close to the charge degeneracy point
δng0 = 0.5 such that the maximum values are enhanced with
deceasing EJ/EC ratio. As explained in Appendix B, the
Hamiltonian (2) is derived under certain limits [see Eqs. (B8)
and (B12)] which restrict the range of values the control
parameters EJ/EC and δng0 can take.

To see how the CK and generalized CK couplings can
influence the eigenenergy spectrum of the system, we need
to diagonalize the Hamiltonian (2). The energy eigenvalues
associated with photons are explicit. However, the phononic
part is complicated. It is straightforward to approximately
diagonalize the phononic part of the Hamiltonian Ĥ by using
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the well-known polaron transformation [54] as

ÛP = exp[ f (n̂)(b̂† − b̂)] = exp

( −g0n̂

ωM + n̂ḡCK
(b̂† − b̂)

)
,

(7)
with n̂ = â†â, which displaces the resonator modes. The trans-
formed Hamiltonian of the system reads

ĤP := Û †
P ĤÛP = Û †

P [ωcâ†â + ωMb̂†b̂ + g0â†â(b̂† + b̂)

+ ḡCKâ†âb̂†b̂]ÛP + Û †
P [g′

CKâ†â(b̂†b̂)2]ÛP

= ωcn̂ + (ωM + ḡCKn̂)b̂†b̂ − g2
0

ωM + ḡCKn̂
n̂2

+ g′
CKÛ †

P [n̂(b̂†b̂)2]ÛP. (8)

Under the condition | f (n)| < 1, i.e.,

−1 <
g0n/ωM

1 + nḡCK/ωM
< 1, (9)

we have Û †
P [n̂(b̂†b̂)2]ÛP ≈ n̂(b̂†b̂)2, and thus the transformed

Hamiltonian (8) reduces to

ĤP ≈ ωcn̂ + (ωM + ḡCKn̂)b̂†b̂ − g2
0

ωM + ḡCKn̂
n̂2

+ g′
CKn̂(b̂†b̂)2. (10)

Note that the condition (9) is justified in the regimes we
will consider in Sec. III. It is noteworthy that the radiation
pressure vanishes (g0 = 0) when the gate charge is tuned to
the degeneracy point δng0 = 0.5, as Fig. 2(a) shows. Conse-
quently, in this case, the phononic part of the Hamiltonian (2)
is itself diagonal and the polaron transformation operator de-
fined by Eq. (7) reduces to the identity operator. As discussed
in Sec. IV, the possibility of achieving zero single-photon
optomechanical coupling through adjusting the system param-
eters is a feature that can be used to generate the mechanical
Schrödinger cat state in the system under consideration. The
eigenstates and eigenenergies of Hamiltonian (10) are given
by

ĤP|n〉a|m〉b = En,m|n〉a|m〉b, (11)

where |n〉a and |m〉b are photonic and phononic number states,
respectively, and

En,m = nωc + (ωM + nḡCK )m − (g0n)2

ωM + nḡCK
+ ng′

CKm2.

(12)

The eigenvalues of the Hamiltonian (2) are the same as En,m,
but its eigenstates differ from those of ĤP,

Ĥ |n〉a|m, f (n)〉b = En,m|n〉a|m, f (n)〉b, (13)

where |m, f (n)〉b is the displaced number state defined as
[61,62]

|m, f (n)〉b := ÛP|m〉b = exp[ f (n)(b̂† − b̂)]|m〉b, (14)

with

f (n) = −g0n

ωM + nḡCK
. (15)

Note that the set of displaced number states is a complete
set for an arbitrary value of f (n). We define the generalized

En
er

gy

Photon number0 1 2

FIG. 3. Qualitative (unscaled) diagram of the eigenenergy of the
Hamiltonian Ĥ . The horizontal axis shows the photon subspace as-
sociated with n = 0, 1, 2.

shifted mechanical frequency as

ω̃n
M = ωM + n(ḡCK + g′

CK ), (16)

where n is the photon number. The diagram of the eigenenergy
of the Hamiltonian Ĥ is depicted in Fig. 3. According to
Eqs. (12) and (16), the different values of photon and phonon
energy levels depend on the CK and generalized CK nonlinear
terms, giving rise to an anharmonicity to the energy-level
structure. This anharmonicity causes the symmetry-breaking
behavior of the eigenenergy spectrum of the system which is
responsible for the phenomenon of blockade in the system.

III. PHOTON BLOCKADE AND PHOTON-INDUCED
TUNNELING

Using the Hamiltonian (2), we now investigate statistical
properties of the photon including PB and PIT in the system
under consideration. To this end, we assume that the cavity
is weakly driven by a monochromatic laser field. Then the
Hamiltonian of the total system reads

Ĥsys = ωcâ†â + ωMb̂†b̂ + g0â†â(b̂† + b̂) + ḡCKâ†âb̂†b̂

+ g′
CKâ†â(b̂†b̂)2 + �(âeiωd t + â†e−iωd t ), (17)

where � = √
2κP/h̄ωd denotes the amplitude of the driving

field with power P and frequency ωd and κ is the cavity decay
rate. In the frame rotating at the driving laser frequency ωd ,
the Hamiltonian of the system can be written as

ˆ̃Hsys = �câ†â + ωMb̂†b̂ + g0â†â(b̂† + b̂)

+ ḡCKâ†âb̂†b̂ + g′
CKâ†â(b̂†b̂)2 + �(â + â†), (18)

where �c = ωc − ωd is the detuning between the cavity and
driving field.

To quantitatively study the quantum statistics of intracavity
photons, we consider the steady-state equal-time second- and
third-order correlation functions of the cavity mode defined as

g(2)(0) = 〈â†2â2〉ss

〈â†â〉2
ss

, (19a)

g(3)(0) = 〈â†3â3〉ss

〈â†â〉3
ss

, (19b)
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respectively, where the average values are taken over the
steady state of the system. Typically, g(2)(0) < 1 corresponds
to the sub-Poissonian photon statistics, which is a nonclassical
effect often referred to as the photon antibunching effect.
Specifically, g(2)(0) → 0 is a signature of the complete single-
photon blockade (1PB) effect, in which only one photon can
be excited in the cavity mode, i.e., an ideal single-photon
source. The two-photon blockade (2PB) effect occurs when
g(2)(0) � 1 and g(3)(0) < 1 [63,64]. As the name implies, the
2PB means that the generation of the second photon will
block the emergence of the third photon, i.e., two-photon
bunching and three-photon antibunching. On the other hand,
g(n)(0) > 1 (n = 2, 3) indicates the photon bunching effect,
in which the excitation of the first photon contributes to the
excitation of the second or third photon and the photons ex-
hibit super-Poissonian statistics. This phenomenon, which is
referred to as two-photon-induced tunneling (2PIT) or three
photon-induced tunneling (3PIT) depending on 1 < g(3)(0) <

g(2)(0) or 1 < g(2)(0) < g(3)(0), has been explored theoreti-
cally [64–67] and observed experimentally [68,69].

In the following, we calculate the equal-time second- and
third-order correlation functions of the cavity mode in the
optomechanical system under consideration through analyt-
ically solving the non-Hermitian Schrödinger equation and
numerically simulating the quantum master equation.

A. Approximate analytical solution

As long as the driving laser field is weak enough, i.e.,
� � κ , only the lower-energy levels of the cavity modes are
occupied. In this case, the driving term in the Hamiltonian (18)
can be treated as a perturbation. Truncating the Hilbert space
of the cavity field up to n = 3, a general state of the system in
this subspace can be expressed as

|ψ (t )〉 =
∞∑

m=0

3∑
n=0

Cn,m(t )|n〉a|m, f (n)〉b, (20)

where the coefficient Cn,m(t ) stands for the probability
amplitude of the corresponding state |n〉a|m, f (n)〉b. We
phenomenologically add an anti-Hermitian term to the Hamil-
tonian, given in Eq. (18) [70,71], to take into account the
dissipation of the cavity mode. Considering the case of a
zero-temperature photon bath, the effective non-Hermitian
Hamiltonian takes the form

Ĥeff = ˆ̃Hsys − i
κ

2
â†â. (21)

It should be noted that since the cavity decay dominates over
the mechanical dissipation, here we approximately neglect the
dissipation of the phononic mode, which is justified in the
timescale 1/κ � t � 1/γ , where γ represents the mechan-
ical decay rate. However, we will later take into account the
mechanical dissipation in our numerical calculation.

Inserting the non-Hermitian Hamiltonian (21) and the
general state vector (20) into the Schrödinger equa-
tion i d

dt |ψ (t )〉 = Ĥeff |ψ (t )〉, we obtain a set of linear dif-
ferential equations for the probability amplitudes, which

reads

Ċ0,m = −iẼ0,mC0,m − i�
∞∑

l=0

b〈m, f (0)|l, f (1)〉bC1,l , (22a)

Ċ1,m = −(iẼ1,m + κ/2)C1,m − i�
∞∑

l=0

b〈m, f (1)|l, f (0)〉bC0,l

−i
√

2�

∞∑
l=0

b〈m, f (1)|l, f (2)〉bC2,l , (22b)

Ċ2,m = −(iẼ2,m + κ )C2,n − i
√

2�

∞∑
l=0

b〈m, f (2)|l, f (1)〉bC1,l

−i�
√

3
∞∑

l=0

b〈m, f (2)|l, f (3)〉bC3,l , (22c)

Ċ3,m = −(iẼ3,m + 3κ/2)C3,m

−i�
√

3
∞∑

l=0

b〈m, f (3)|l, f (2)〉bC2,l . (22d)

In these equations, the quantities Ẽnm denote the eigenvalues
of the Hamiltonian (18) in the absence of the cavity field
driving,

Ẽn,m = n�c + (ωM + nḡCK )m − (g0n)2

ωM + nḡCK
+ g′

CKnm2.

(23)

Furthermore, the transition amplitudes b〈m, f (n)|m′, f (n′)〉b,
called Franck-Condon factors [72,73], are determined by the
relation

b〈m, f (n)|m′, f (n′)〉b

= b〈m| exp[{ f (n) − f (n′)}(b̂† − b̂)]|m′〉b, (24)

where the matrix elements can be calculated based on the
relation [61]

b〈m| exp[x(b̂† − b̂)]|m′〉b

=

⎧⎪⎨
⎪⎩

√
m!
m′! e

−x2/2(−x)m′−mLm′−m
m (x2), m′ � m√

m′!
m! e−x2/2(x)m−m′

Lm−m′
m′ (x2), m > m′,

(25)

where Lm′
m (x) is the associated Laguerre polynomial.

Under the weak-driving assumption, we have the approx-
imate scales Cn,m ≈ (�/κ )n for n = 0, 1, 2, 3. Thus, we can
approximately solve the set of equations (22) by using a
perturbation method by discarding higher-order terms in the
equations of motion for the lower-order variables. This ap-
proximation has been widely used in cavity QED [74,75]
and optomechanical systems [70,76] for investigating photon
statistics. Assuming the cavity field is initially in the vacuum
state, i.e., Cn,m(0) = 0 for n = 1, 2, 3, the long-time solutions
of the equations of motion for the probability amplitudes are
approximately given by

C0,m(∞) = C0,m(0)e−iẼ0,mt , (26a)

C1,m(∞) = −�

∞∑
l=0

b〈m, f (1)|l, f (0)〉bC0,l (0)e−iẼ0,l t

Ẽ1,m − Ẽ0,l − iκ/2
, (26b)

063505-5



SOLKI, MOTAZEDIFARD, AND NADERI PHYSICAL REVIEW A 108, 063505 (2023)

C2,m(∞) =
√

2�2
∞∑

l,k=0

b〈m, f (2)|l, f (1)〉b b〈l, f (1)|k, f (0)〉b

Ẽ2,m − Ẽ0,k − iκ

× C0,k (0)e−iẼ0,kt

Ẽ1,l − Ẽ0,k − iκ/2
, (26c)

C3,m(∞) = −
√

6�3
∞∑

l,k, j=0

b〈m, f (3)|l, f (2)〉b

Ẽ3,m − Ẽ0, j − i3κ/2

× b〈l, f (2)|k, f (1)〉b b〈k, f (1)| j, f (0)〉b

Ẽ2,l − Ẽ0, j − iκ

× C0, j (0)e−iẼ0, j t

Ẽ1,k − Ẽ0, j − iκ/2
, (26d)

where the initial probability amplitudes C0,m(0), C0,l (0),
C0, j (0), and C0,k (0) are determined by the initial state
of the mechanical mode. We assume that the mechani-
cal oscillator is initially prepared in its ground state |0〉b,
i.e., C0,m(0) = 〈0|m〉b = δm,0 [note that |m, f (n = 0) = 0〉b =
|m〉b]. Therefore, with the probability amplitudes given in
Eqs. (26) and Pn = ∑∞

m=0 |Cn,m|2 for n = 1, 2, 3, we obtain
the single-photon, two-photon, and three-photon probabilities,
respectively, as

P1 =
∞∑

m=0

∣∣∣∣∣� b〈m, f (1)|0〉b

Ẽ1,m − i
2κ

∣∣∣∣∣
2

, (27)

P2 =
∞∑

m=0

∣∣∣∣∣
∞∑

l=0

√
2�2 b〈m, f (2)|l, f (1)〉b

Ẽ2,m − iκ
b〈l, f (1)|0〉b

Ẽ1,l − i
2κ

∣∣∣∣∣
2

,

(28)

P3 =
∞∑

m=0

∣∣∣∣∣
∞∑

l,k=0

√
6�3 b〈m, f (3)|l, f (2)〉b

Ẽ3,m − i 3
2κ

b〈l, f (2)|k, f (1)〉b

Ẽ2,l − iκ

× b〈k, f (1)|0〉b

Ẽ1,k − i
2κ

∣∣∣∣∣
2

. (29)

Using Eq. (20), when the system is in the steady state, the
equal-time second- and third-order correlation functions (19)
can be written, respectively, as

g(2)(0) = 2P2

(P1 + 2P2)2
≈ 2P2

P2
1

, (30a)

g(3)(0) = 6P3

(P1 + 2P2 + 3P3)3
≈ 6P3

P3
1

, (30b)

where the photon probabilities Pi (i = 1, 2, 3) are given by
Eqs. (27)–(29) and we have used P1 � P2 � P3 under the
weak-driving condition. After some straightforward calcula-
tions, we can approximate the correlation functions as

g(2)(0) ≈ 4

∣∣∣∣∣
Ẽ1,0 − i κ

2

Ẽ2,0 − iκ

∣∣∣∣∣
2

= 4(�c − δ[1] )2 + κ2

(2�c − δ[2] )2 + κ2
, (31)

g(3)(0) ≈ 36

∣∣∣∣∣
(Ẽ1,0 − i κ

2 )2

Ẽ2,0 − iκ

1

Ẽ3,0 − i 3κ
2

∣∣∣∣∣
2

= 144(�c − δ(1) )4 + 9κ4 − 72κ2(�c − δ(1) )

[(2�c − δ(2) )2 + κ2][4(3�c − δ(3) )2 + 9κ2]
,

(32)

where

δ[n] = g2
0n2

ωM + nḡCK
(n = 1, 2) (33)

denotes the n-photon frequency shift, with ḡCK the modified
cross-Kerr coupling.

The simplified analytic solution of g(2)(0), i.e., Eq. (31),
has the same form as that given in [54] except that here the
cross-Kerr coupling gCK is replaced by the modified cross-
Kerr coupling ḡCK = gCK + g′

CK. As can be seen in Eq. (31),
the value of g(2)(0) depends on δ[1] and δ[2]. For the single-
photon resonance case, i.e., �c = δ[1], the correlation function
g(2)(0) takes the form g(2)

SPR(0) = κ2

(2δ[1]−δ[2] )2+κ2 , which shows

that a larger difference 2δ[1] − δ[2] results in a more effec-
tive photon blockade [g(2)

SPR(0) < 1]. Expanding δ[1] and δ[2]

up to ḡCK/ωM , we get 2δ[1] − δ[2] ≈ (2g2
0/ωM )(3ḡCK/ωM −

1). Thus, depending on whether it is negative or positive,
the photon blockade is enhanced or weakened compared
to the case when the quadratic phonon-number-dependent
dispersive shift is not considered, g′

CK = 0 [54]. On the
other hand, for the two-photon resonant case, i.e., 2�c =
δ[2], the second-order correlation function becomes g(2)

TPR(0) =
(2δ[1]−δ[2] )2+κ2

κ2 > 1, which corresponds to the PIT.

B. Numerical simulation

In order to verify the validity of our previous analytical
treatment, we now numerically simulate the photon statisti-
cal properties by employing the quantum master equation.
Considering both optical and mechanical dissipations, the dy-
namical evolution of the system is described by the master
equation of the density operator ρ̂,

˙̂ρ = i[ρ̂, Ĥsys] + κ

2
(âρ̂â† − â†âρ̂ − ρ̂â†â)

+γ

2
(n̄th + 1)(b̂ρ̂b̂† − b̂†b̂ρ̂ − ρ̂b̂†b̂)

+γ

2
n̄th(b̂†ρ̂b̂ − b̂b̂†ρ̂ − ρ̂b̂b̂†), (34)

where the Hamiltonian Ĥsys is given in Eq. (18), γ denotes the
mechanical decay rate, and n̄th = [exp(ωM/kBT) − 1]−1 is the
average thermal phonon number of the mechanical oscillator
at temperature T , with kB the Boltzmann constant. Here we
assume that the cavity field is coupled to a vacuum reservoir.

By using the quantum toolbox in PYTHON (QUTIP) [77,78],
we numerically solve the master equation to obtain the
steady-state density matrix of the system ρ̂ss. Then the exact
numerical results for the equal-time second-order (n = 2) and
third-order (n = 3) correlation functions can be obtained by

g(n)(0) = Tr(â†nânρ̂ss )

[Tr(â†âρ̂ss )]n
, n = 2, 3. (35)

In order to verify our analysis, we plot in Fig. 4 the equal-
time second-order correlation function g(2)(0) at the steady
state versus the normalized cavity-laser detuning �c/ωM and
gate charge deviation δng0, for the different coupling regimes
EJ/EC = 1/20 [Fig. 4(a)] and EJ/EC = 1/30 [Fig. 4(b)],
which imply different values of the coupling strengths g0,
gCK, and g′

CK through analytical calculation of Eq. (30a). In
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FIG. 4. Contour plots of the steady-state second-order correla-
tion function g(2)(0) versus the normalized cavity-laser detuning
�c/ωM and gate charge deviation δng0 for different coupling regimes
(a) EJ/EC = 1/20 and (b) EJ/EC = 1/30. The other system pa-
rameters are ωc/2π = 5 GHz, ωM/2π = 10 MHz, κ/ωM = 0.01,
γ /ωM = 0.001, �/ωM = 0.001, and n̄th = 0.

this figure, the range of the gate charge deviation δng0 is lim-
ited [approximately δng0 ⊂ (0.450, 0.460)

⋃
(0.530, 0.560)],

since only in this range are the general conditions (B12) and
(B8) for obtaining the Hamiltonian (2) and the particular limi-
tation related to the polaron transformation given in Eq. (9)
satisfied. To achieve precise compliance with Eq. (B12) in
numerical calculations, we impose the condition G/g � 0.1,
where G = {G2, G4} and g = {g0, gCK, g′

CK}. As can be seen,
over a wide range �c/ωM ⊂ [−0.5, 0] weak PB happens. In
this case, a relatively strong 1PB occurs near the blue detuning
�c ≈ −ωM ; the minimum values of the second-order correla-
tion function are shown in each plot. However, in the range
�c/ωM ⊂ (−1,−0.5)

⋃
(0, 0.5), the cavity photons satisfy

Poissonian or super-Poissonian statistics [g(2)(0) � 1]. Also,
this figure reveals that the PB phenomenon is enhanced at
upper values of the gate charge deviation.

As indicated in Fig. 4, the minimum values of the second-
order correlation function for EJ/EC = 1/20 and 1/30 are
g(2)(0) = 0.008 and 0.007, respectively, which occur at re-
spective gate charge deviations of δng0 = 0.533 and 0.527.
Note that to have the desired optimum points of the deviation
gate charge δng0 to obtain the desired values of these corre-
lation functions, one must precisely control the change of the
deviation gate charge and its fluctuations should be smaller
10−3. To achieve this, one needs to use the precise electronics
elements which are usual in the advanced laboratories (dis-
cussed in Sec. VI).

Figure 5 shows the second-order correlation function for
these values of gate charge deviation. The corresponding val-
ues of the coupling strengths g0, gCK, and g′

CK are also given.
The analytical and numerical results agree fairly well with
each other. Moreover, each plot in Fig. 5 reaches two peaks
corresponding to the PIT effect in the system.

FIG. 5. Steady-state second-order correlation function g(2)(0)
versus the normalized cavity-laser detuning �c/ωM for (a) EJ/EC =
1/20 and δng0 = 0.533 and (b) EJ/EC = 1/30 and δng0 = 0.527. The
corresponding values of the coupling strengths are also given. The
blue solid and red dashed lines show the analytical and numerical
solutions, respectively. The other system parameters are the same as
in Fig. 4.

To illustrate more clearly the effect of the second-order
dispersive shift g′

CK on the photon statistics for the different
values of the control parameters δng0 and EJ/EC , we nu-
merically plot in Fig. 6 the steady-state correlation function
g(2)(0) as a function of the normalized cavity-laser detuning
�c/ωM with g′

CK = 0 (green solid line) and g′
CK �= 0 (red

dashed line) in each plot. From this figure we can see that
the second-order dispersive shift can enhance the 1PB about
45% near the blue detuning �c = −1.1ωM in Fig. 6(a) and
about 6% near the blue detuning �c = −1.1ωM in Fig. 6(b)
compared with the typical case g′

CK = 0. Moreover, we find
similar results for the peak of g(2)(0) in the plots. In con-
clusion, the second-order dispersive shift can strengthen the
PIT. Furthermore, to improve the photon blockade effect of
the system, it is essential to find appropriate relations among
the coupling strengths g0, gCK, and g′

CK. It should be noted that
selecting higher values for the second-order dispersive shift is
not the correct strategy to enhance the 1PB effect. The steady-
state second- and third-order correlation functions g(2)(0) and
g(3)(0) are computed numerically to produce Figs. 7(a) and
7(b), which illustrate four distinct effects including 1PB, 2PB,
2PIT, and 3PIT as a function of the normalized cavity-laser
detuning �c/ωM and the gate charge deviation δng0. While
the general conditions (B12) and (B8) limit the range of the
gate charge deviation similar to Fig. 4, the particular condition
(9) is not taken into account in Fig. 7, since the steady-
state second- and third-order correlation functions g(2)(0) and
g(3)(0) are calculated directly form Eq. (2) by solving the
master equation numerically. It can be observed that the range
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FIG. 6. Steady-state second-order correlation function g(2)(0)
versus �c/ωM with the same coupling strengths g0 and gCK in (a) and
(b) as those in Figs. 5(a) and 5(b), respectively. The green solid
and red dashed lines show the results for g′

CK = 0 and g′
CK �= 0,

respectively. The other system parameters are the same as in Fig. 4.

FIG. 7. Map of four effects including 1PB, 2PB, 2PIT, and 3PIT
versus �c/ωM and the gate charge deviation δng0, for different cou-
pling regimes: (a) EJ/EC = 1/20 and (b) EJ/EC = 1/30. The other
system parameters are the same as in Fig. 4.

FIG. 8. Steady-state second- and third-order correlation func-
tions versus the mechanical thermal phonon number n̄th, with the
same coupling strengths g0, gCK, and g′

CK in (a) and (b) as those in
Figs. 5(a) and 5(b), respectively. The red solid and blue dashed lines
are for g(2)(0) and g(3)(0), respectively. The cavity-laser detuning is
zero (�c = 0) and other system parameters are the same as in Fig. 4.

�c/ωM ⊂ (−1.5,−1)
⋃

(−0.5, 0) exhibits 1PB, while the
range �c/ωM ⊂ (−1,−0.5)

⋃
(0, 0.5) is relevant to the 3PIT.

The narrow boundary between the two previously mentioned
areas (1PB and 3PIT), marked by 2PB and 2PIT, corresponds
to the tiny ranges of �c/ωM and δng0 in which the 2PB effect
can occur in the system.

The behaviors of the steady-state second- and third-order
correlation functions versus the thermal fluctuations of the
phonon bath for different coupling regimes are presented in
Fig. 8. As can be seen, thermal phonons can considerably
affect the correlation function g(2)(0) and tend to destroy
1PB. Specifically, 1PB happens below a critical tempera-
ture Tc whose value depends on the coupling strengths g0,
gCK, and g′

CK, which are in turn determined by the ratio
EJ/EC as well as δng0. As can be seen in Fig. 8(a), for
the coupling regime of g0 = −9 MHz, gCK = −0.6g0, and
g′

CK = −0.1g0 corresponding to EJ/EC = 1/20 and δng0 =
0.533, the critical temperature is Tc = 1.2 mK (i.e., n̄th =
2.0), while Fig. 8(b) shows that for the coupling regime
of g0 = −10.7 MHz, gCK = −0.9g0, and g′

CK = −0.4g0 cor-
responding to EJ/EC = 1/30 and δng0 = 0.527, the critical
temperature is Tc = 1.07 mK (i.e., n̄th = 1.8). Moreover, the
correlation functions g(2)(0) and g(3)(0) exhibit different be-
haviors with respect to temperature in the two mentioned
coupling regimes. Figure 8(a) shows that with increasing tem-
perature a direct transition from 1PB to 3PIT takes place,
while according to Fig. 8(b) this transition is mediated by
the appearance of the 2PB and 2PIT effects. Therefore, in
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the system under consideration, the quantum statistics of pho-
tons (photon bunching and antibunching) can be controlled
through adjusting the coupling regime or, equivalently, by
tuning the ratio EJ/EC and δng0.

IV. GENERATION OF THE MECHANICAL SCHRöDINGER
CAT STATE

In addition to the PB and PIT effects discussed so far,
the generation of the Schrödinger cat state is another inter-
esting phenomenon in few-photon optomechanics. In recent
years, several theoretical proposals have been made to realize
Schrödinger cat states in optomechanical systems based on
various mechanisms including conditional measurement of
the optical field [79], photon hopping in a two-mode op-
tomechanical system [80], utilizing the combined effects of
nonlinear dynamics and dissipation [81], coherent feedback in
the absence of laser driving [82], modulating the optomechan-
ical coupling frequency to near resonance [83], coherently
driving a quadratically coupled optomechanical cavity [84],
and exploiting the photon-phonon CK interaction in an un-
driven [54] and a strongly driven optomechanical cavity [56].

In this section, we discuss the generation of the
Schrödinger cat states of the mechanical-like mode in the
system under consideration, benefiting from the quadratic
phonon-number-dependent CK coupling g′

CK, in the regime
of parameters corresponding to zero optomechanical coupling
g0 = 0. This is while all the above-mentioned schemes rely on
the optomechanical coupling between the cavity and mechan-
ical modes. The scenario under consideration arises when the
gate charge deviation is assumed to be equal to δng0 = 0.5
(see Fig. 2). Here we choose EJ/EC = 1/4, from which it
follows that g0 = 0, gCK = −2.7 MHz, and g′

CK = 0.2 MHz.
Furthermore, the conditions expressed by Eqs. (B12) and (B8)
(without considering g0) are still fulfilled by these specific
coupling constants. In the absence of the driving field, the
dynamical evolution of the system is governed by the unitary
operator

Û (τ ) = exp{−iτ [ωcâ†â + ωMb̂†b̂ + ḡCKâ†âb̂†b̂

+ g′
CKâ†â(b̂†b̂)2]}. (36)

We assume that the system is initially prepared in the state

|ψ (0)〉 = |n〉a ⊗ |ξ 〉b, (37)

where |n〉a (n > 0) and |ξ 〉b = e−|ξ |2/2 ∑∞
m=0(ξm/

√
m!)|m〉b

denote the number state of the cavity field and the coherent
state of the mechanical oscillator, respectively. Experimen-
tally, the coherent state of the mechanical oscillator can be
achieved via state transfer between an ancillary cavity mode
and the mechanical oscillator, which are linearly coupled to
each other [19,24]. In terms of the time-evolution operator
(36), the state of the system at time τ can be obtained as

|ψ (τ )〉 = Û (τ )|ψ (0)〉ηn(τ )e−|ξ |2/2

×
∞∑

m=0

ξ ′m
n (τ )√

m!
e−iχn (τ )m2 |m〉b|n〉a, (38)

where

ηn(τ ) = e−iτωcn, (39a)

ξ ′
n(τ ) = ξe−iτ (ωM+ḡCKn), (39b)

χn(τ ) = g′
CKτn. (39c)

At times τ (k)
n = π

kg′
CKn (k is an integer) the state of the system

becomes ∣∣ψ(
τ (k)

n

)〉 = ηn
(
τ (k)

n

)|φ〉(k)
b |n〉a, (40)

where

|φ〉(k)
b = e−|ξ |2/2

∞∑
m=0

ξ ′m
n

(
τ (k)

n

)
√

m!
e−iπm2/k|m〉b (41)

is the so-called Yurke-Stoler-like state [85]. Different values
of the integer k > 1 result in a variety of quantum superpo-
sitions of coherent states of the mechanical-like mode. For
k = 2 we have

e−iπm2/2 = 1

2
(1 − i) + (−1)m

2
(1 + i) (42)

and the state |φ〉(k)
b becomes

|φ〉(2)
b = 1 − i

2

∣∣ξ ′
n

(
τ (2)

n

)〉
b + 1 + i

2

∣∣−ξ ′
n

(
τ (2)

n

)〉
b, (43)

which is a two-component Schrödinger cat state of the me-
chanical oscillator. When k = 3 we have

e−iπm2/3 = a1e−imπ/3 + a2eimπ/3 + a3(−1)m, (44)

where a1 = a2 = 1
3 (1 + e−iπ/3) and a3 = 1

3 (1 − 2e−iπ/3). In
this case, a three-component (unnormalized) mechanical cat
state can be obtained

|φ〉(3)
b = a1

∣∣ξ ′
n

(
τ (3)

n

)
e−iπ/3〉

b + a2

∣∣ξ ′
n

(
τ (3)

n

)
eiπ/3〉

b

+a3

∣∣−ξ ′
n

(
τ (3)

n

)〉
b. (45)

By taking k = 4, we have

e−iπm2/4 = 1

2
e−iπ/4[1 − (−1)m] + (−1)m

2
im[1 + (−1)m]

(46)
and we obtain a cat state with four superposition components
as

|φ〉(4)
b = 1

2 e−iπ/4
[∣∣ξ ′

n

(
τ (4)

n

)〉
b − ∣∣−ξ ′

n

(
τ (4)

n

)〉
b

]
+ 1

2

[∣∣−iξ ′
n

(
τ (4)

n

)〉
b
+ ∣∣iξ ′

n

(
τ (4)

n

)〉
b

]
. (47)

The above results can be generalized to conclude that at time
τ (k)

n the k-component mechanical Schrödinger cat state |φ〉(k)
b

is generated. The signature of the nonclassical characteristic
of the generated mechanical Schrödinger cat states |φ〉(k)

b can
be revealed by calculating their corresponding Wigner func-
tions defined as [86]

W (x, p) = 1

2π

∫ ∞

−∞
dy

〈
x + y

2

∣∣∣ρ̂ (k)
b

∣∣∣x − y

2

〉
exp(−ipy), (48)

where ρ̂
(k)
b = |φ〉(k)

b
(k)
b 〈φ| and x and p are the position and mo-

mentum variables in the phase space, respectively. In Fig. 9,
by using QUTIP, we have simulated the time evolution of the
Wigner functions for the states |φ〉(k)

b with k = 2, 3, 4 when
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FIG. 9. Numerical simulations of the time evolution of the Wigner functions W (x, p) of the generated states |φ〉(k)
b versus dimensionless

canonical quadratures x and p for k = 2, 3, 4 and n = 1 over the time range from t = 0 to τ
(k)
1 . The relevant parameters are ωc/2π = 5 GHz,

ωM/2π = 10 MHz, g0 = 0, gCK = −2.7 MHz, g′
CK = 0.2 MHz, and ξ = 4.

n = 1. As can be seen, the state of the mechanical oscillator
evolves from the initial coherent state |ξ 〉b to a k-component
Schrödinger catlike state at time τ

(k)
1 [see Figs. 9(d), 9(h),

and 9(l)]. Therefore, the numerical and analytical results are
perfectly identical to each other. It should be noted that the
second-order dispersive shift g′

CK realized by our scheme is
responsible for creating the macroscopically distinct superpo-
sition states in the mechanical-like mode. This can be easily
seen from Eqs. (38) and (39c) as the mechanical oscillator
would remain in its initial coherent state (up to a phase factor)
if g′

CK were not taken into account [i.e., in the case in which
the quadratic-quartic interaction between the cavity and me-
chanical modes is neglected; see Eq. (B10f)].

To investigate the influence of the system dissipation on the
Wigner functions of the generated mechanical Schrödinger
cat-like states, we use the Wigner negativity W, which is
defined as [87]

W =
∫∫

[|W (x, p)| − W (x, p)]dx d p. (49)

This is the volume of the negative part of the Wigner dis-
tribution, such that W � 0, and is often considered as a
measure of quantumness (nonclassicality). By definition, the
quantity W is equal to zero for classical states, while W >

0 corresponds to nonclassical states. Figure 10 shows the
numerically calculated time evolution of the Wigner nega-
tivity for two different rates of cavity dissipation, namely,
κ = 10 kHz (red dashed lines) and κ = 100 kHz (green dotted
lines), and also for the ideal (free-dissipation) case κ, γ = 0
(blue solid lines). The Wigner negativity in the absence of
dissipation oscillates during the time t/τ (k)

1 for k = 2, 3, 4.
However, in the presence of dissipation, as time goes on,
the effects of decoherence become increasingly prominent,
leading to the eventual disappearance of the Wigner negativ-
ity. Moreover, the nonclassicality of the generated mechanical

states is suppressed more rapidly as κ/γ increases. Here we
should emphasize that the negativity of a Wigner distribution
is not sufficient to imply the existence of a Schrödinger cat
state; it merely indicates the nonclassicality of the state. Note

FIG. 10. Time evolution of the Wigner negativity for (a) k = 2,
(b) k = 3, and (c) k = 4. Here γ = 10 kHz, ξ = 4, n̄th = 0, and the
other system parameters are the same as in Fig. 9.
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that τ
(2)
1 = 7.8 µs, τ

(3)
1 = 5.2 µs, and τ

(4)
1 = 3.9 µs are close

to the cavity decay time κ−1 ≈ 10 µs. This provides a suitable
experimental situation to monitor the nonclassical state. Most
interestingly, as can be seen from Fig. 10, the generated me-
chanical cat states are robust against dissipation [see the red
dashed and green dotted curves for t/τ (k)

1 = 1 (k = 2, 3, 4)].
It should be noted that for the steady-state mechanical cat
state to emerge, one needs to cool down the mechanics to near
its ground state where nth � 0, since the presence of thermal
noises immediately destroys the nonclassical behavior of the
system.

V. MICROWAVE-MECHANICAL ENTANGLEMENT

In this section, we would like to investigate the entangle-
ment between the microwave and mechanical modes in the
presence of ordinary and generalized CK nonlinearities. To
this aim, we should solve the steady state of the linearized
quantum Langevin equations of motion using the Hamiltonian
(2) by considering a strong cavity driving laser term as [88]
(see Appendix C)

δ ˙̂a = −(i�eff + κ )δâ + i
geff

2
(δb̂† + δb̂) +

√
2κ âin, (50a)

δ ˙̂b = −(iωeff + γ )δb̂ + i
geff

2
(δâ† + δâ) +

√
2γ b̂in. (50b)

Here �eff = �c + g0(β + β∗) + g̃CK|β|2 + g′
CK|β|4 is

the effective cavity detuning and ωeff = ωM + g̃CK|α|2 +
2g′

CK|α|2|β|2 is the effective frequency of the mechanical
mode. Also, geff = −2g|α| is the effective optomechanical
coupling strength with g = g0 + g̃CKβ + 2g′

CKβ3 and
g̃CK = gCK + 2g′

CK. The equations of motion (50) show
that in the linearized regime, the dynamics of the system
in the Schrödinger picture is governed by the effective
Hamiltonian

Ĥ (2)
eff = �effδâ†δâ + ωeffδb̂†δb̂ − geff

2
(δâ† + δâ)(δb̂† + δb̂)

− iκδâ†δâ − iγ δb̂†δb̂. (51)

If we define the quadratures δQ̂ = (δb̂† + δb̂)/
√

2 and
δP̂ = (δb̂ − δb̂†)/i

√
2 for the resonator and δX̂ = (δâ† +

δâ)/
√

2 and δŶ = (δâ − δâ†)/i
√

2 for the cavity mode,
Eqs. (50) can be expressed in the compact matrix form

˙̂u(t ) = Aû(t ) + N̂ (t ), (52)

where ûT (t ) = (δQ̂(t ), δP̂(t ), δX̂ (t ), δŶ (t )) is the vector of
continuous-variable (CV) fluctuation operators, N̂T (t ) =
(
√

2γ Q̂in(t ),
√

2γ P̂in(t ),
√

2κX̂in(t ),
√

2κŶin(t )) is the vector
of noises, and the drift matrix is

A =

⎛
⎜⎜⎝

−γ ωeff 0 0
−ωeff −γ geff 0

0 0 −κ �eff

geff 0 −�eff −κ

⎞
⎟⎟⎠. (53)

Since the dynamics of the system is linearized and the quan-
tum noises are zero-mean quantum Gaussian noises, the
steady state of the system is a Gaussian bipartite state [88].
Therefore, the steady state of the system is characterized by

FIG. 11. Logarithmic negativity EN as a function of cavity de-
tuning �c/ωM and gate charge deviation δng0 for (a) EJ/EC = 1/4
and (b) EJ/EC = 1/5. The other parameters are ωc/2π = 10 GHz,
ωM/2π = 50 MHz, P = −50 dBm, κ = 1 MHz, γ = 500 kHz, and
n̄th = 0.5.

its 4 × 4 correlation matrix [89]

Vi j = [〈ûi(∞)û j (∞) + û j (∞)ûi(∞)〉]/2, (54)

where ûT (∞) = (δQ̂(∞), δP̂(∞), δX̂ (∞), δŶ (∞)) is the
vector of CV fluctuation operators at the steady state
(t → ∞).

According to the Routh-Hurwitz criterion [90], the system
is stable only if the real part of all the eigenvalues of matrix
A is negative. In Appendix D we examine the Routh-Hurwitz
criterion in the system. Therefore, when the stability condi-
tions are fulfilled, the steady state of the correlation matrix
can be obtained by solving the Lyapunov equation

AV + VAT = −D, (55)

where D = diag[γ (2n̄th + 1), γ (2n̄th + 1), κ, κ] is the diag-
onal diffusion matrix. However, the analytical solution to
Eq. (55) for the correlation matrix V is very cumbersome, so
we mainly adopt the numerical simulations. The microwave-
mechanical bipartite entanglement can be quantified by using
the logarithmic negativity EN . For Gaussian states it reads [91]

EN = max[0,− ln(2ν−)], (56)

where ν− = 2−1/2{�(V ) − [�(V )2 − 4 det V ]1/2}1/2 is the
lowest symplectic eigenvalue of the partial transpose of the
correlation matrix with �(V ) = det VC + det VM − 2 det VCM ,
and we have used the 2 × 2 block form of

V =
(

VM VCM

V T
CM VC

)
. (57)

Here VM and VC correspond to the mechanical and cavity
modes, respectively, and VCM is related to the optomechanical
correlation. According to Eq. (56), when ν− < 1/2 the state
in question will exhibit entanglement.

The logarithmic negativity EN , plotted as a function of cav-
ity detuning and gate charge deviation δng0, is demonstrated
in Fig. 11 for two distinct coupling regimes EJ/EC = 1/4
[Fig. 11(a)] and EJ/EC = 1/5 [Fig. 11(b)]. Here we investi-
gate the entanglement in the red-detuned sideband (�c > 0),
notably in the dispersive red detuning corresponding to the
large detuning. However, the entanglement is still fragile to
the thermal noise, which means that the mechanical oscillator
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FIG. 12. Scaled effective frequency ωeff/�eff as a function of
cavity detuning �c/ωM for (a) EJ/EC = 1/4 and δng0 = 0.539
and (b) EJ/EC = 1/5 and δng0 = 0.528. The green lines show
ωeff/�eff = −1. The red dashed lines denote the unstable range ac-
cording to the Routh-Hurwitz condition. The black solid lines show
the maximum values of logarithmic negativity. The other system
parameters are the same as in Fig. 11.

must be precooled down to near its ground state (n̄th = 0.5).
Figure (11) shows that for the selected initial parameters, the
higher values of δng0 lead to the enhancement of microwave-
mechanical entanglement.

As can be seen, Fig. 11 does not include results for the
logarithmic negativity in the middle range of δng0 values.
This is because of certain restrictions imposed on the system
parameters. The first restriction comes from the conditions
(B8) and (B12), which were also taken into account in Fig. 4.
The second restriction concerns the linearization conditions
|α|, |β| � 1, which are realized when the driving power is
large enough. The third and final restriction is due to the
stability condition for the system, which is justified according
to the Routh-Hurwitz criterion (see Appendix D).

Moreover, the value of logarithmic negativity EN depends
on the system parameters �eff , ωeff , and geff in Eq. (51).
The investigation of the entanglement is complicated due to
the dependence of these values on the coupling strengths
g0, gCK, and g′

CK in Eq. (2) and can be controlled by the
detuning parameter �c. To clarify this matter, in Fig. 12, the
ratio of ωeff/�eff is plotted versus �c/ωm for δng0 = 0.539
[Fig. 12(a)] and δng0 = 0.528 [Fig. 12(b)].

The red dashed lines in both panels indicate the region
where the system is unstable according to the Routh-Hurwitz
criterion and the vertical black dashed lines correspond to

FIG. 13. Logarithmic negativity as a function of cavity detuning
�c/ωM for the parameter regimes considered in Fig. 12 and for cases
both with and without the generalized CK term. The green and red
hatched boxes show unstable regions for the green solid and red
dotted lines, respectively, according to the Routh-Hurwitz condition.

the detunings at which the maximum logarithmic negativity
occurs. In addition, �eff = −ωeff is shown with a horizontal
green solid line. The maximum values of the logarithmic
negativity are obtained for �c/ωM = 7.6 in Fig. 12(a) and for
�c/ωM = 11.7 in Fig. 12(b), both of which are adjacent to
�eff = −ωeff . These results are consistent with those expected
for linearized optomechanical systems [1,2].

As mentioned above, the logarithmic negativity depends
on the coupling strengths. Therefore, we are interested in
knowing how the generalized CK Hamiltonian term affects
the entanglement in the system. We thus plot in Figs. 13(a)
and 13(b) the logarithmic negativity versus the cavity detuning
�c/ωM for the parameter regimes considered in Figs. 12(a)
and 12(b), respectively, for cases both with and without the
generalized CK term. As can be seen from Fig. 13(a), for
g′

CK �= 0 the photon-phonon entanglement is significantly en-
hanced. In Fig. 13(b), while there are slight variations in the
entanglement values, the primary distinction lies in the shift
of the entanglement degree relative to the detuning parameter
�c/ωM .

VI. EXPERIMENTAL DISCUSSION

The experimental realization of the tripartite microwave-
optomechanical system discussed in this paper was reported
in Ref. [48]. The cavity and mechanical frequencies, deter-
mined by Eqs. (B10a) and (B10b), here have been chosen
to be ωc/2π = 5–10 GHz and ωM/2π = 10–50 MHz, which
are experimentally realistic. The cavity and mechanical decay
rates depend on the gate charge [48], and we have considered
them to be in the ranges from 10 kHz to 1 MHz and from
10 kHz to 500 kHz, respectively, which are accessible with
the current experimental situations. For the numerical simula-
tions of the photon blockade and the microwave-mechanical
entanglement, the values of the driving laser power have been
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set to P = −155 and −50 dBm, respectively, which are in
the range used in some recent experiments [48,92,93]. In our
calculations, the gate voltage is changeable in the range
of Vg = 1–10 V; the capacitances are C = 50 fF, Cg0 =
0.1–1 fF, and C1 + C2 = 0.2–2 fF; the Josephson energy
EJ/h̄ = 10 GHz; the inductance L = 5–15 nH; and 4Z0e2

h ≈
10−2 (Z0 = √

L/C) [47,48]. As the final point, based on the
experimental parameters [47,48], the accessibility of the pre-
cision of the deviation gate charge is considered �(δng0 ) <

10−3, which implies highly stable and precise gate voltage and
the gate capacitance with relative errors �Y/Y � 10−8–10−9

(Y = Vg,Cg0 ).

VII. CONCLUSION AND OUTLOOK

In the present work, we have investigated the few-
photon optomechanical effects, including photon blockade
and mechanical-Schrödinger-cat-state generation, as well as
photon-phonon entanglement in a generalized microwave-
optomechanical system where, in addition to the strong
optomechanical and CK photon-phonon couplings, a higher-
order nonlinear CK coupling is present. We found that in
the presence of the higher-order CK coupling the degrees
of photon bunching and antibunching can be effectively en-
hanced and controlled by adjusting the system parameters.
Interestingly, we have also shown that in the regime of zero
optomechanical coupling the generalized CK nonlinearity
can result in the existence of multicomponent mechanical
superposition states which are robust against the system dis-
sipation. Moreover, our results reveal that the generalized
CK nonlinearity can substantially enhance the photon-phonon
entanglement in the regime of large red detuning.

As an outlook for further study, the system can be inves-
tigated for other nonclassical properties such as phonon or
photon-photon blockade, quadrature squeezing, mechanical
cooling, and normal mode splitting. Furthermore, the chaotic
dynamics of the system might be an interesting subject for
future investigation.
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APPENDIX A: DERIVATION OF THE HAMILTONIAN (1)

We start with the Hamiltonian (6) in Ref. [47] describing a
single-Cooper-pair transistor, which consists of a microwave
cavity and a mechanical resonator coupled to a common qubit

Ĥt = ĤSCPT + h̄ω0
c ĉ†ĉ + h̄ω0

Md̂†d̂ + gmσ̂3x̂m

+ (gq1σ̂1 + gq2σ̂2)x̂2
c + (gc1σ̂1 + gc2σ̂2)x̂c, (A1)

where

ĤSCPT = B1

2
σ̂1 + B2

2
σ̂2 + B3

2
σ̂3, (A2a)

gm = −4ECxxp(∂xCg)Vg

2e
, (A2b)

gq1 = e2Z0

8h̄
(EJ2 + EJ2) cos(φa/2), (A2c)

gq2 = e2Z0

8h̄
(EJ2 − EJ1) sin(φa/2), (A2d)

gc1 =
√

e2Z0

8h̄
(EJ2 + EJ2) sin(φa/2), (A2e)

gc2 =
√

e2Z0

8h̄
(EJ2 − EJ2) cos(φa/2). (A2f)

Here the quantities ω0
c and ω0

M denote the natural frequen-
cies of the cavity and the mechanical modes, respectively, with
respective annihilation (creation) operators ĉ (ĉ†) and d̂ (d̂†)
and the position operators x̂c = ĉ† + ĉ and x̂d = d̂† + d̂; σ̂1,
σ̂2, and σ̂3 are Pauli matrices for the qubit; and EJi (i = 1, 2)
are the Josephson energies. The effective magnetic fields B1,
B2, and B3 are given by

B1 = −(EJ1 + EJ2) cos(φa/2), (A3a)

B2 = (EJ1 − EJ2) sin(φa/2), (A3b)

B3 = 4EC (1 − 2δng0), (A3c)

where φa is the average phase difference of the supercon-
ducting order parameters across the junction. In addition, gm,
gq1,2, and gc1,2 describe the coupling strengths between the
qubit and resonators. Finally, e is the electric charge unit
and Z0 = √

L/C, with L and C the geometric inductance and
capacitance, respectively (see Fig. 1).

Similar to Ref. [47], for the sake of simplicity, we consider
the case of symmetric junctions EJ1 = EJ2 = EJ , in which
case, according to Eqs. (A2d), (A2f), and (A3b), the coupling
strengths gq2 and gc2 and the magnetic field B2 are all vanish-
ing. Moreover, we set φa = 0 so that Eq. (A2e) gives gc1 = 0.
In this way the Hamiltonian (A1) takes the form

Ĥt = h̄ω0
c ĉ†ĉ+ h̄ω0

Md̂†d̂+ B1

2
σ̂1+ B3

2
σ̂3 + gmσ̂3x̂m + gqσ̂1x̂2

c ,

(A4)

in which gq ≡ gq1.

APPENDIX B: DERIVATION OF HAMILTONIAN (2)

As mentioned in Sec. II, in the dispersive limit, h̄ω
(0)
c,M �

|B| =
√

B2
1 + B2

3, and when all couplings are small enough we
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need to diagonalize only the interaction part of the Hamilto-
nian (1) in the qubit basis. In this basis, we can write

Ĥt =
(B3

2 + gmx̂m
B1
2 + gqx̂2

c
B1
2 + gqx̂2

c −B3
2 − gmx̂m

)
. (B1)

Assuming the qubit is in its ground state, we can use the
replacement σ̂3 → −1, and we find the corresponding eigen-
value of Ĥt as

λ = −B

2
(1 + x)1/2, (B2)

where

x = 4

B2

(
B1gqx̂2

c + B3gmx̂m + g2
mx̂2

m + g2
qx̂4

c

)
. (B3)

Since −1 < x � 1, with the help of binomial expansion we
have

(1 + x)1/2 ≈ 1 + 1

2
x − 1

8
x2 + 3

48
x3 − 15

384
x4 + 21

768
x5.

(B4)

Using the multinomial theorem [94] together with Eqs. (B2)
and (B3), we obtain

Ĥt = h̄ω0
c ĉ†ĉ + h̄ω0

Md̂†d̂ + αmx̂m + h̄gScx̂2
c + h̄gSmx̂2

m

+ h̄grpx̂2
c x̂m + h̄g0

ck x̂2
c x̂2

m + h̄g0
cubicx̂2

c x̂3
m + h̄g0

quarticx̂2
c x̂4

m

+ h̄G0
1x̂4

c x̂m + h̄G0
2x̂4

c x̂2
m + h̄G0

3x̂4
c x̂3

m + h̄G0
4x̂4

c x̂4
m, (B5)

where

αm = −B3gm

B
, (B6a)

h̄gSc = −gqB1

B
, (B6b)

h̄gSm = −B2
1g2

m

B3
, (B6c)

h̄grp = 2
B1B3gmgq

B3
, (B6d)

h̄g0
CK = 2

B1g2
mgq

B5

(
B2 − 3B2

3

)
, (B6e)

h̄g0
cubic = 4

B1B3g3
mgq

B7

(
5B2

3 − 3B2
)
, (B6f)

h̄g0
quartic = 2

B1gqg4
m

B9

( − 3B4 + 30(BB3)2 − 35B4
3

)
, (B6g)

h̄G0
1 = 2

B3gmg2
q

B5

(
B2 − 3B2

3

)
, (B6h)

h̄G0
2 = 2g2

mg2
q

B7

(
15B2

1B2
3 − 2B4

)
, (B6i)

h̄G0
3 = 4g2

mg2
qB3

B9

(
5B2B2

3 + 15B2
1B2 − 3B4 − 35B2

3B2
1

)
,

(B6j)

h̄G0
4 = g4

mg2
q

B9

× (
60B2B2

3 + 30B2B2
1 − 6B4 − 70B4

3 − 420B2
3B2

1

)
.

(B6k)

Note that in Eq. (B5) the linear term with respect to x̂c is
absent because of the assumption φa = 0.

In the derivation of the Hamiltonian (B5) we have ignored
the noninteracting terms such as x̂4

c and x̂3
m, which are negli-

gible compared to the free Hamiltonians of the cavity and the
mechanical oscillator. In addition, we have kept the interacting
terms up to fourth order in x̂c and x̂m.

The term αmx̂m in Eq. (B5) describes the qubit-induced
static force; its contribution is negligible for our system and
thus we neglect it. On the other hand, the terms with coeffi-
cients gSc and gSm correspond to the cavity and mechanical
Stark shifts, respectively. The terms in the second line of
Eq. (B5) stand for the radiation-pressure, cross-Kerr, cubic,
and quartic couplings, respectively, each with their own cou-
pling strength. Finally, the terms in the third line of Eq. (B5)
can be neglected under certain conditions, given in the
following.

Now we use the Bogoliubov transformation

ĉ = sinh(θc)â† + cosh(θc)â, (B7a)

d̂ = sinh(θm)b̂† + cosh(θm)b̂, (B7b)

where θc (m) = 1
2 ln[ω0

c (m)/
√

ω0
c (m)(ω

0
c (m) + 4gSc (Sm))], to

eliminate the Stark shift terms from Eq. (B5). Additionally,
provided (if g0 �= 0)

g0
CK, g0

cubic, g0
quartic, G0

1, G0
2, G0

3, G0
4 � g0, ωM , (B8)

the terms involving different powers of the annihilation and
creation operators, such as ânâ†m and b̂nb̂†m, rotate very fast.
This implies that in the parameter regime we consider, a
rotating-wave approximation can be performed and all rotat-
ing terms can be safely discarded. The surviving terms are the
contributions containing equal powers of â and â† and of b̂
and b̂†. Thus, the Hamiltonian of the system takes the form

Ĥ = ωcâ†â + ωMb̂†b̂ + g0â†â(b̂† + b̂)

+ (gCK + 2g′
CK + 2G2 + 4G4)â†âb̂†b̂ + (g′

CK

+ 2G4)â†âb̂†2b̂2 + (G2 + 2G4)â†2â2b̂†b̂

+ G4â†2â2b̂†2b̂2, (B9)

where

ωc =
√

ω0
c

(
ω0

c + 4gSc
)
, (B10a)

ωM =
√

ω0
m

(
ω0

m + 4gSm
)
, (B10b)

g0 = 2grp
(
ω0

c/ωc
)(

ω0
m/ωm

)1/2
, (B10c)

gCK = 4g0
CK

(
ω0

c/ωc
)(

ω0
m/ωm

)
, (B10d)

gcubic = 2g0
cubic

(
ω0

c/ωc
)(

ω0
m/ωm

)3/2
, (B10e)

g′
CK = 12g0

quartic

(
ω0

c/ωc
)(

ω0
m/ωm

)2
, (B10f)

G2 = 12G0
2

(
ω0

c/ωc
)2(

ω0
m/ωm

)
, (B10g)

G4 = 36G0
4

(
ω0

c/ωc
)2(

ω0
m/ωm

)2
. (B10h)

In the regime where the radiation-pressure coupling is zero
(see Sec. IV), the condition (B8) is still valid without consid-
ering g0 in this relation.
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The coupling strengths in Eqs. (B6) depend on the parame-
ters B1, B3, gm, and gq. After simplification, these parameters
are given by [47]

B1 = 2EJ , (B11a)

B3 = 4EC (1 − 2δng0), (B11b)

gm ≈ −80
ECVgC

eωc
, (B11c)

gq = e2Z0

4h̄
EJ . (B11d)

The experimental values of EJ , Vg, C, and Z0 are given in
Sec. VI. However, the parameters δng0 and EJ

EC
can be used

as control parameters to adjust the coupling strengths in the
Hamiltonian (B9). Considering the case

G2, G4 � g0, gCK, g′
CK, (B12)

we end up with the Hamiltonian

Ĥ = ωcâ†â + ωMb̂†b̂ + g0â†â(b̂† + b̂)

+ ḡCKâ†âb̂†b̂ + g′
CKâ†â(b̂†b̂)2, (B13)

where ḡCK = gCK + g′
CK is the modified cross-Kerr coupling.

Although the system parameters are restricted to satisfy
G2 � g′

CK, according to the condition of Eq. (B12), it is
possible to analytically justify this condition. According to
Eqs. (B11c) and (B11d) and also the experimental parameters
(see Sec. VI), we have |gq/gm| ≈ 0.5(EJ/EC ) � 1. A com-
parison between G0

2 [Eq. (B6i)] and g0
quartic [Eq. (B6g)] shows

that with the proper choices of the magnetic fields, G0
2 can be

made much smaller than g0
quartic, which in turn, according to

Eqs. (B10f) and (B10g), leads to G2 � g′
CK.

APPENDIX C: LINEARIZED QUANTUM LANGEVIN
EQUATIONS

The quantum Langevin equations of motion for the Hamil-
tonian (18) read

˙̂a = −i�câ − ig0â(b̂† + b̂) − ig̃CKâb̂†b̂

−ig′
CKâb̂†2b̂2 − i� − κ â +

√
2κ âin, (C1a)

˙̂b = −iωMb̂ − ig0â†â − ig̃CKâ†âb̂

−i2g′
CKâ†âb̂†b̂2 − γ b̂ +

√
2γ b̂in, (C1b)

where g̃CK = gCK + 2g′
CK, and b̂in and âin are the correspond-

ing input noise operators with correlation functions

〈âin(t )â†
in(t ′)〉 = δ(t − t ′), (C2a)

〈b̂†
in(t )b̂in(t ′)〉 = n̄thδ(t − t ′), (C2b)

〈b̂in(t )b̂†
in(t ′)〉 = (n̄th + 1)δ(t − t ′). (C2c)

Conversely to Sec. II, we assume that the laser driving
term is intense. Then we can express the operators as the
sum of classical mean values and small fluctuations, that is,

â = α + δâ and b̂ = β + δb̂. First, we obtain the steady-state
mean values of the cavity and resonator modes

(i�eff + κ )α − � = 0, (C3a)

(iωeff + γ )β + ig0|α|2 = 0, (C3b)

where

�eff = �c + g0(β + β∗) + g̃CK|β|2 + g′
CK|β|4, (C4a)

ωeff = ωM + g̃CK|α|2 + 2g′
CK|α|2|β|2. (C4b)

We numerically solve Eqs. (C3) to obtain the values of α

and β (assuming α is real). The optomechanical parameters
should be chosen in such a way that the conditions |α|, |β| �
1 are satisfied to ensure that the linearization procedure is
applicable. From numerical calculation we find |α| ≈ 200
and |β| ≈ 5. Since the value of β is not sufficiently large,
we do our calculation for the case |gCK| � |β3g′

CK| in or-
der for the linearization approximation to be valid. In other
words, this additional condition guarantees that the general-
ized CK terms such as g′

CKαβ3δâδb̂ are bigger than the CK
term gCKαδâδb̂†δb̂, which is eliminated in the linearization
approximation.

The dynamics of the quantum fluctuations can be described
by the linearized quantum Langevin equations. Therefore, in
the case Im(β ) � 1, we have

δ ˙̂a = −(i�eff + κ )δâ + i
geff

2
(δb̂† + δb̂) +

√
2κ âin, (C5a)

δ ˙̂b = −(iωeff + γ )δb̂ + i
geff

2
(δâ† + δâ) +

√
2γ b̂in, (C5b)

where

geff = −2g|α|, g = g0 + g̃CKβ + 2g′
CKβ3. (C6)

APPENDIX D: ROUTH-HURWITZ CRITERION

The Routh-Hurwitz criterion for the stability of the system
gives the four independent conditions

2γ + 2κ > 0, (D1a)

κ�2
eff + γω2

eff + κ3 + γ 3 + 4κγ 2 + κ2γ > 0, (D1b)

4κγ
[
�4

eff + 2�2
eff

(
γ 2 + κ2 − ω2

eff

)
+ 4κγ

(
�2

eff + κγ + γ 2 + κ2 + ω2
eff

)
+ (

γ 2 + κ2 + ω2
eff

)2] + 4g2
eff�effωeff (γ + κ )2 > 0,

(D1c)(
γ 2 + ω2

eff

)(
κ2 + �2

eff

)
> ωeffg

2
eff�eff . (D1d)

While the first two conditions (D1a) and (D1b) are trivial, the
two other conditions (D1c) and (D1d) are nontrivial. If we
restrict the Hamiltonian (51) to the regime �eff > 0, then the
third condition (D1c) will always be satisfied. Note that the
last condition (D1d) depends on the system parameters and
hence should be satisfied.
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