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The frozen mode regime is a unique slow-light scenario in periodic structures, where the flat bands (zero
group velocity) are associated with the formation of high-order stationary points (also known as exceptional
points). The formation of exceptional points is accompanied by enhancement of various optical properties such
as gain, Q factor, and absorption, which are key properties for the realization of a wide variety of devices such as
switches, modulators, and lasers. Here we present and study an integrated optical periodic structure consisting
of three waveguides coupled via microcavities and a directional coupler. We study this design theoretically,
demonstrating that a proper choice of parameters yields a third-order stationary inflection point (SIP). We also
show that the structure can be designed to exhibit two almost overlapping SIPs at the center of the Brillouin
zone. We study the transmission and reflection of light propagating through realistic devices composed of a finite
number of unit cells and investigate their spectral properties in the vicinity of the stationary points. Finally, we
analyze the lasing frequencies and threshold level of a finite structure (as a function of the number of unit cells)
and show that it outperforms conventional lasers utilizing regular band-edge lasing (such as distributed-feedback
lasers).
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I. INTRODUCTION

Optical structures operating in the slow-light regime ex-
hibit group velocities that are substantially lower than the
speed of light in vacuum. These optical structures exhibit
numerous interesting properties; hence, they are highly attrac-
tive for many applications. In particular, such structures have
been found to exhibit enhancement of properties such as gain,
absorption, and quality factor (Q factor) [1–5]. The frozen
mode regime is a special case of slow light, which describes a
solution of Bloch wave points with zero-group-velocity points
(stopped light); this point is an outcome of the coalescence of
Bloch waves (both eigenvalues and eigenvectors) at a single
frequency. The points are called stationary points (or excep-
tional points [6]), and they appear in various types. These
types differ in their dispersion properties (the relation between
the k vector and the angular frequency ω) in the vicinity of
these points [7].

In particular, there is a distinct difference between sta-
tionary points corresponding to the coalescence of an even
and an odd number of modes. The latter are called stationary
inflection points (SIPs). The lowest order of this class corre-
sponds to the coalescence of three eigenvalues, and they are
characterized by a cubic dispersion relation:

ω − ωSIP ∝ (k − kSIP)3. (1)

*kessemzamir@mail.tau.ac.il
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Compared to stationary points with a coalescence of an
even number of eigenvalues and eigenvectors, SIPs exhibit
several unique properties. More specifically, SIPs are not
formed at the band edge, but rather within the Brillouin zone
(BZ). Since SIPs correspond to the coalescence of three Bloch
waves propagating in the same direction, they do not form a
standing wave. This property renders SIPs interesting scientif-
ically, as well as attractive for various applications involving
slow and stopped light. For example, coupling light into and
out of an optical structure supporting an SIP is more efficient,
as the excitation of counterpropagating modes can be elimi-
nated [8]. This is because in the vicinity of the SIP frequency,
the k vector preserves its sign. As a result, counterpropagating
waves can be suppressed, contrary to what occurs for sta-
tionary points of even order, such as degenerated band edges
(DBEs). Moreover, the slow light regime helps match a slowly
propagating mode to a fast mode across the interface of the
structure [9]. Furthermore, the SIP resonance has been shown
to be remarkably robust to structural disorder and perturba-
tion [10]. In addition, SIPs have various applications such
as noise-resilient sensors [11], ultrasensitive rotation sensors
[12], broadband filters [13], broadband impedance matching
[14], true time delay applications [15], and lasers [16].

There are many ways to generate stationary points [17–19],
one of them being the use of optical periodic structures.
In particular, previous studies have presented several peri-
odic structures supporting SIPs, such as waveguides with
multiple gratings [9,20], coupled resonators optical waveg-
uides, [6], three-way periodic microstrip coupled waveguides
[21], asymmetric serpentine optical waveguides [22], and
coupled transmission lines for traveling wave tubes [23]. In
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FIG. 1. Three periodic waveguides coupled with a ring resonator
and directional coupler structure. The boundaries of the unit cell are
marked by a dashed red line.

addition, previous studies have investigated lasers operating in
the frozen mode and stopped light regimes. Lasers operating
at a regular band edge (RBE), such as distributed-feedback
lasers, have been investigated thoroughly. A laser operating
at a DBE was investigated in Ref. [24]. There is a limited
amount of research on lasers utilizing odd-order stationary
points. In Ref. [25], the theory of unidirectional lasers op-
erating in the frozen mode regime has been proposed and
studied theoretically. The laser was designed to lase in the
vicinity of an SIP, where nonreciprocity was introduced (by
means of a magnetic layer) to obtain unidirectional lasing.
More recently, an alternative structure, which also exhibits an
SIP, was investigated theoretically as a potential laser near an
SIP [16]. This structure, employing an asymmetric serpentine
optical waveguide, was shown to exhibit a lower lasing thresh-
old level than that of the same structure operating at an RBE
instead.

In this paper, we propose and study an integrated, periodic
structure that exhibits SIPs, and can be highly attractive for
low-threshold laser applications. The structure consists of a
repeating unit cell composed of three parallel waveguides
coupled through a directional coupler and a ring resonator, as
shown in Fig. 1. The central waveguide is coupled to the top
waveguide with a ring resonator, and to the bottom one with
a directional coupler. By properly setting the parameters of
the structure—the resonator radius (R), the length of the unit
cell (2d), and the power coupling coefficients of the coupler
and the resonators (κ1, κ2, κ3)—it is possible to obtain a
dispersion relation exhibiting an SIP, and to control the prop-
erties of the structure. We show that this structure is versatile,
in the sense that it can support SIPs at various frequencies,
depending on the structure parameters. In contrast to many of
the previously proposed structures (such as those presented
in Ref. [22]), this structure’s unit cell is robust and relatively
simple to fabricate. It consists of simple and standard inte-
grated optical elements, whose designed parameters can be
readily adjusted and modified to tune the characteristics of
the structure. We also perform a comprehensive analysis of
the power transmission and reflection characteristics of this
structure in two cases: (1) when all six input-output (IO)
ports are available and (2) when only one input port and one
transmission port are available. This is in contrast to previous
studies that are only examined the latter case. In addition,
we also analyze finite segments of the proposed structure
when gain material is incorporated. We calculated the lasing
threshold of this geometry, and found that the threshold gain

FIG. 2. The two sections of a unit cell: (a) the directional coupler
and (b) the add-drop multiplexer of length 2d

of our structure decreases proportionally to N−3, where N
is the number of unit cells. We learn that SIP-based devices
outperform their RBE counterparts in terms of lasing thresh-
old level. Our results regarding the properties of the threshold
gain reinforce the results obtained in previous studies [16,25],
especially in the context of SIP-based laser applications.

The rest of the paper is organized as follows: In Sec. II,
we calculate the dispersion relation of the structure by find-
ing a general analytic expression for the transfer matrix of
a unit cell. The structure parameters are then optimized in
order to obtain SIPs. In Sec. III, we numerically calculate the
transmission and reflection for a finite structure. We discuss
the spectral properties of the structure with three IO ports,
and also with a single input and single transmission port. In
Sec. IV we provide a brief analysis of the impact of fabrication
imperfections on the spectral properties of a finite structure
with three IO ports. We show some of the preliminary results,
but the study will be continued in a separate paper. In Sec. V,
we analyze an active version of this structure, incorporating
optical gain material, and in Sec. VI we summarize the results
and conclude. The time convention eiωt is used throughout the
paper.

II. DISPERSION RELATION AND STATIONARY
INFLECTION POINTS

We present the derivation of the unit-cell transfer matrix
and obtain the dispersion relation of the eigenmodes in the
infinitely long waveguiding structure. To calculate the Bloch
wave-number dispersion relation of the structure shown in
Fig. 1, we use the transfer-matrix method. For simplicity, we
divide the unit cell into two sections: two coupled waveguides
with a third separate waveguide seen in Fig. 2(a), and an
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add-drop multiplexer (ADM) of length 2d seen in Fig. 2(b).
Here we assume the coupling sections are infinitely small
(e.g., point coupling, ε → 0).

Following the unit-cell separation, obtaining the transfer
matrices for each section is straightforward. The transfer ma-
trix for the three waveguides with a single directional coupler
κ1 is written in Eq. (2):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E+
1 (ε)

E−
1 (ε)

E+
2 (ε)

E−
2 (ε)

E+
3 (ε)

E−
3 (ε)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1 0 r1 0 0 0

0 t1 0 −r1 0 0

0 0 t1 0 r1 0

0 0 0 t1 0 −r1

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E+
1 (0)

E−
1 (0)

E+
2 (0)

E−
2 (0)

E+
3 (0)

E−
3 (0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

where t1
�= √

1 − κ1 and r1
�= −i

√
κ1. Here, κ1 is the intensity coupling between the two waveguides. En is the electric-field

phasor in the nth waveguide.
Similarly, the transfer matrix for the section of the add-drop multiplexer is written in Eq. (3), where T1,2 and D1,2 are the

field transmission functions of the through and drop port of two ADMs. T1,2 and D1,2 are written in Eq. (4). Index 1 (T1, D1)
corresponds to an ADM with coupling coefficients κ3 at the through port and κ2 at the drop port. Index 2 (T2, D2) corresponds
to the opposite case of the ADM (κ2 at the through port and κ3 at the drop port):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E+
1 (2d )

E−
1 (2d )

E+
2 (2d )

E−
2 (2d )

E+
3 (2d )

E−
3 (2d )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e−2iφ 0 0 0 0 0

0 e2iφ 0 0 0 0

0 0
(
T2 − D1D2

T1

)
e−2iφ 0 0 D1

T1

0 0 0 1
T2

e2iφ −D1
T2

0

0 0 0 D2
T2

(
T1 − D1D2

T2

)
e−2iφ 0

0 0 −D2
T1

0 0 1
T1

e−2iφ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E+
1 (0)

E−
1 (0)

E+
2 (0)

E−
2 (0)

E+
3 (0)

E−
3 (0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

T1 =
√

1 − κ3 − √
(1 − κ2)(1 − α)e−iϕ

1 − √
(1 − κ3)(1 − κ2)(1 − α)e−iϕ

, D1 = −√
κ3κ2(1 − α)

1
4 e−i ϕ

2

1 − √
(1 − κ3)(1 − κ2)(1 − α)e−iϕ

,

T2 =
√

1 − κ2 − √
(1 − κ3)(1 − α)e−iϕ

1 − √
(1 − κ2)(1 − κ3)(1 − α)e−iϕ

, D2 = D1. (4)

φ = k0nw d and ϕ = k0nr 2πR are phase accumulations in a
straight waveguide with length d and a ring resonator with
radius R, respectively. nw is the effective refractive index of
the straight waveguide, and nr is the effective refractive index
of the curved ring waveguide. α represents intensity loss per
revolution inside the resonator ring. For the dispersion relation
analysis, we assume α = 0. The complete transfer matrix of
the unit cell, M, is obtained by multiplying the matrices of the
two sections. By invoking the Bloch theorem, the dispersion
relation of the periodic structure is obtained from Eq. (5):

|M − Ie−ik2d | = 0 (5)

where || denotes the determinant operation, and I is the 6 × 6
identity matrix.

A. Separated stationary inflection points

Equation (5) provides the foundation for analyzing the
eigenmodes in the structure depicted in Fig. 1, leading to
the dispersion relation of an infinitely long structure for a
specific set of parameters (d, R, κ1, κ2, κ3). Obtaining an SIP
requires a specific choice of parameters. Figure 3(a) depicts

the magnitude of the determinant of the matrix M − I e−ik 2d

for the set of parameters: set 1 listed in Table I. The blue-
green lines in the figure indicate magnitude close to zero,
i.e., solutions of Eq. (5), thus indicating the k − ω dispersion
relation. The red circles denote potential SIPs at λ ≈ 1.54 µm,
related to frequency ωs = 2π c

λ
. Note that two symmetric SIPs

are obtained due to reciprocity. The inset in Fig. 3(a) shows a
zoom-in on the right SIP. It can be seen that at this point we
obtain ∂ω

∂k = 0, and a third-degree polynomial in its vicinity,
which is indicative of a frozen mode regime. Nevertheless,
this does not guarantee an SIP, as the coalescence of both
eigenvalues and eigenvectors still needs to be verified.

To verify that this is indeed a stationary point of order 3, we
consider the eigenvalues of the transfer matrix M. Any input
field in this structure can be spanned by a basis of six prop-
agating and evanescent waves which are the eigenvectors of
M. At a given frequency, the eigenvalues of M are designated
as {γ }6

i=1, where the relation between the eigenvalues and the
corresponding wave numbers k is given by Eq. (6):

γ = e−ik 2d . (6)
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FIG. 3. Set 1 parameter dispersion relation. (a) Logarithmic scale
(using a base of 10) of the determinant |M − I e−ik 2d |, for varying
angular frequency and Bloch wave number. The SIPs are denoted
with red circles. A zoom-in on the right SIP is shown in the inset.
(b) Normalized k’s related to the eigenvalues of the transfer matrix
M at a range of frequencies near the SIP. The magenta lines indicate
the propagating modes, marked as {kp}. The light blue lines indicate
the decaying modes, marked as {kd}. Black dotted lines and solid
lines represent the imaginary and real parts of the normalized wave
numbers, respectively.

A stationary point of third order (i.e., an SIP) is charac-
terized by the coalescence of three eigenvalues and three
eigenvectors. Figure 3(b) plots the dispersion relation of the
structure (normalized complex wave number k 2d

π
vs angular

frequency). At each frequency, there are six Bloch modes
with six eigenvalues. The magenta lines in Fig. 3(b) indicate
propagating modes. The solid magenta lines correspond to the
real parts of the eigenvalues, while the dotted ones indicate
the imaginary parts. These eigenvalues are purely real, and
the real parts of the eigenvalues match exactly the green lines
near the SIP in Fig. 3(a). The light blue lines in Fig. 3(b)
indicate the nonpropagating (decaying) modes. Similar to the

TABLE I. Two sets of parameters for the studied structure.

Parameter κ1 κ2 κ3 α 2d (µm) R (µm) nw nr

Set 1 0.30 0.16 0.56 0 44 7 2.21 2.21
Set 2 0.20 0.42 0.73 0 20 4 3.42 3.42

propagating modes, the solid and dotted lines indicate the
real and imaginary parts of the wave numbers, respectively.
Note that there are four decaying modes: two that are complex
conjugates. In other words, two modes have eigenvalues with
a positive real part, and the other two with a negative real part.
From Fig. 3(b) we identify the SIP frequency as the frequency
at which three of the wave numbers coalesce into a single
real value. It corresponds to the frequency marked by a red
circle in Fig. 3(a), ω = ωs. Due to reciprocity, two SIPs are
obtained (at the same frequency), corresponding to two triply
degenerate counterpropagating modes.

We emphasize that an SIP is a condition where both eigen-
values and eigenvectors coalesce. However, Fig. 3(b) only
shows the coalescence of the eigenvalues. The coalescence of
the eigenvectors is verified through the coalescence parameter
that was defined in Refs. [21,22] for the SIP (see Appendix A
for details). Appendix A also describes the structure design
and optimization process used for obtaining the parameters in
Table I. Consequently, it can be inferred that Fig. 3(b) verifies
that the marked points in Fig. 3(a) are indeed SIPs, meaning
that ωs = ωSIP.

B. Almost-overlapping stationary inflection points

The proposed structure can exhibit SIP dispersion prop-
erties in a range of frequencies and locations in the BZ,
controlled by the design parameters. Modifying the parame-
ters (d, R, κ1, κ2, κ3), depicted in Fig. 1, enables us to generate
an SIP in different locations in the dispersion relation. This
section considers the set of parameters designated as set 2 in
Table I. As in Sec. II A, Fig. 4(a) plots the colormap of the
determinant of the matrix: M − I e−ik 2d . Figure 4(b) depicts
the Bloch wave numbers of the transfer matrix as a function
of frequency. At first glance, it seems that a flat band with
zero group velocity is formed at the center of the BZ with
wavelength λ ≈ 1.55 µm, represented with a red circle. A
zoom-in on the dispersion relation in the red circle is shown in
the inset. We define the frequency related to this wavelength
as before, ωs. In a scenario of a flat band, the transfer matrix of
the structure should exhibit a degeneracy of six eigenvalues re-
lated to k = 0. However, the eigenvalues depicted in Fig. 4(b)
indicate that this so-called flat band consists, in fact, of two
very close SIPs located at both sides of the BZ center. This
should not be surprising as it is well known that an intersec-
tion of different spectral branches at k = 0 is only possible
for a one-dimensional periodic structure that exhibits glide
plane symmetry [26–29]. However, as the structure depicted
in Fig. 1 does not exhibit glide symmetry, the two SIPs cannot
fully intersect at the center of the BZ and therefore cannot
support degenerate SIPs.

Thus, we understand that the studied structure can support
the formation of SIPs over large domains in the BZ, and at
different wavelengths. The frequencies and wave numbers of
such SIPs can be controlled by modifying and optimizing the
set of parameters that describe the structure. In Sec. II A we
showed an SIP that is located at k 2d

π
≈ 0.2, which makes this

SIP separated from its backward propagating counterpart. In
this section, we described an SIP that is formed almost at the
center of the BZ, at k 2d

π
≈ 0.05. This shows that this structure
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FIG. 4. Set 2 parameter dispersion relation. (a) Logarithmic scale
(using base of 10) of the determinant |M − I · e−ik 2d |, for varying
angular frequency and Bloch wave number. The two close SIPs are
marked by the red circle. A zoom-in on the SIPs is shown in the inset.
(b) Normalized k’s related to the eigenvalues of the transfer matrix
M at a range of frequencies near the SIP. The magenta lines indicate
propagating modes, marked as {kp}. The light blue lines indicate
decaying modes, marked as {kd}. Black dotted lines and solid lines
correspond to the imaginary and real parts of the normalized wave
numbers, respectively.

is incredibly versatile since it can generate SIPs at various
locations in the BZ.

III. FINITE LENGTH STRUCTURE

A. Single input–multiple output transmission and reflection

The dispersion relation and frozen mode regimes discussed
in Sec. II are obtained only for infinitely long structures.
However, any realistic structure is finite in length, thus leading
to resonances with optical properties that may differ a bit from
those of the infinitely long structure. Resonances in such a
realistic finite-length structure may not support a “perfect”
frozen light mode. However, as more unit cells are added,
the closer the SIP resonance is to the SIP frequency, and the
smaller the group velocity is at the resonance. Thus, the longer
the structure, the closer the characteristics of the propagating
waves in the structure become to those expected at an SIP.
Therefore, we expect to obtain enhancement of properties,
such as the Q factor, by using finite-length structures with a
sufficient number of unit cells.

In order to investigate the transmission and reflection prop-
erties of a finite-length structure, we analyze a waveguide with
length l = 2d N where N is the number of unit cells. Any
resonance response of such structure in the vicinity of an SIP
is expected to be enhanced due to the small group velocity.
In addition, the larger the number of unit cells, the closer
the resonance frequency to the SIP. Recall that the structure
consists of three parallel waveguides, (see Fig. 1) with three
IO ports. Consequently, the structure can be excited in many
ways. We analyze the power transmission and reflection prop-
erties, for the case where an input field excites only the upper
waveguide (port 3) from the left. We use the transfer-matrix
approach to obtain the intensity of the fields exiting from
the three left-hand-side waveguides (i.e., reflection) and from
the three right-hand-side waveguides (transmission) of the
structure. Equation (7) defines the transmission and reflection
power, which are denoted as T 2

m and R2
m, respectively. The plus

and minus signs indicate forward and backward propagating
fields and the subscript m denotes at which port the field is
calculated. The number in the brackets is the point on the
propagation axes where the field is calculated. Figure 2 shows
the port numbers:

T 2
m =

∣∣∣∣
E+

m (l )

E+
3 (0)

∣∣∣∣
2

, R2
m =

∣∣∣∣
E−

m (0)

E+
3 (0)

∣∣∣∣
2

, m = 1, 2, 3. (7)

Figure 5(a) shows the transmission and reflection spectra of a
finite-length structure with N = 60, excited through the upper
waveguide input (port 3). In this figure, the SIP frequency
obtained for set 1 is designated as ωSIP. It can be seen that the
transmitted signal through port 3 and those reflected through
ports 1 and 2 exchange power as a function of frequency,
while the signals at the other ports are zero. At frequencies
around the SIP, the spectral profiles in the transmission and
reflection ports become more oscillatory and exhibit narrower
peaks. This is clearly seen in Fig. 5(b), which is a zoom-
in of T 2

3 [marked in the black rectangle in Fig. 5(a)]. At
ω ≈ 0.999ωSIP, the fast oscillations in the spectral responses
stop and a resonance in the reflection from port R2

1 is formed,
accompanied by zero transmission through ports T 2

3 and a
complementary decrease in R2

2. At ωSIP, all the power is
reflected through the lower waveguide (R2

1). The observed
increase in the density of the spectral peaks in the vicinity
of the SIP indicates that the group velocity is indeed smaller
close to the SIP frequency. It also implies that by introducing
optical gain into the structure, it should be possible to obtain
large optical amplification and even lasing.

B. Single input–single output transmission port

In order to obtain an SIP, it is necessary for the structure to
support at least three modes in each direction, thus necessitat-
ing the three-path waveguide arrangement. However, for any
practical application such as a high-gain amplifier or laser, it is
advantageous to have a single input and two outputs, reflection
(from the input port) and transmission from a second port.
This can be achieved by closing the IO ports at the end of the
(finite) structure as shown in Fig. 6: Input ports 1 and 2 and
output ports 2 and 3 are closed by introducing reflectors which
can be implemented as distributed Bragg reflectors (DBRs).
A DBR is a natural choice for implementing an integrated
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FIG. 5. (a) Transmission and reflection from six ports of a finite-length waveguide structure with 60 unit cells. (b) Transmission from input
port 3 to output port 3, near the SIP frequency. The parameters in set 1 are used.

waveguide reflector. In this scenario, we chose the reflectors
to exhibit perfect reflectivity. Different DBR designs facilitate
high reflectivity as well as control over the reflected spectral
band [30,31]. The closed structure possesses two ports which
can be considered as IO for optical amplification purposes or
two output ports for lasing, similar to a Fabry-Pérot (FP) laser.
Consequently, the reflection and transmission ports of the
structures are at port 3 (left) and at port 1 (right), respectively.
The choice between different waveguides for the IO ports
stems from the fact that an SIP formation necessitates cou-
pling between forward and backward propagating waves. The
position of the DBRs ensures that the input signal propagates
through all the waveguides in both directions. Nevertheless,
additional configurations for “closing” the structure (i.e., ob-
taining single input and single output) are possible. The study
of such configurations is beyond the scope of this paper. In
this finite-length model, we assume no losses, therefore due
to energy conservation the sum of the transmission and the
reflection powers equals 1.

Figure 7 plots the transmission spectrum T 2, for two struc-
ture lengths of 30 and 70 unit cells. There are several things
to note in the transmission spectrum of the device. The trans-
mission exhibits oscillations similar to a FP cavity [compared
to the spectral properties of the “open” structure shown in
Fig. 5(a)]. This result is not surprising, since the closing of
some of the ports in the structure introduces feedback that
couples between forward and backward propagating waves (as
in an FP cavity). However, in the vicinity of the SIP frequency,
these oscillations corresponding to the FP resonances become
dense and sharper (higher Q factor). This is attributed to the
slow-light effect in the vicinity of the SIP which effectively
reduces the local free spectral range (FSR) of the FP cavity.

The resonances of the structure consisting of N = 70 unit cells
are denser and sharper than those of the N = 30 device. This
is due to the longer FP cavity, which, similar to the slow-light
effect, reduces the FSR. This effect is particularly strong near
the SIP frequency (shown in the inset of Fig. 7), where the
resonances of the longer structure are much sharper than those
of the shorter one due to the combination of the longer device
and slow-light effect.

IV. TOLERANCE TO GEOMETRICAL IMPERFECTIONS

Any realistic structure comprising periodic unit cells is
expected to exhibit variations between the unit cells due to
fabrication tolerances and errors. Such variations might have
a non-negligible impact on the spectral properties of the de-
vice and impair its performance. In this section, we present a
preliminary study of the impact of fabrication tolerances and
errors on the transmission properties of the device analyzed
in Sec. III A [see also Fig. 5(a)]. To account for random
fabrication errors, we assume that they can be represented
as random variations in the structure parameters (coupling
coefficients and the radii of the rings). We note that there
are additional structure parameters that might be subjected to
fabrication tolerances (e.g., the widths and thicknesses of the
right), leading to modification of the device’s spectral prop-
erties. Nevertheless, variations in these parameters essentially
modify the resonances of the microrings, and, therefore, their
impact can be incorporated as effective variations in the rings’
radii. We consider the structure whose ideal spectral response
is depicted in Fig. 5(a). As stated in Sec. III A, the structure
consists of three transmissions and three reflections, and is
composed of 60 unit cells. We model fabrication errors by

FIG. 6. Finite-length model, closed with reflective mirrors. This arrangement has one input port and one transmission port.
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FIG. 7. Transmission of the closed model with mirrors, for 30
and 70 unit cells.

assuming that the coupling coefficients and the radius of the
ring in each unit cell follow a Gaussian distribution (the mean
being the ideal value). Figure 8(a) depicts an example for the
reflected spectral power from port 1, in the vicinity of the SIP
frequency obtained for set 1. In this example, the coupling
coefficients follow a Gaussian distribution with a standard
deviation of 5% of each coefficient value. The microrings’
radii are also assumed to exhibit Gaussian distribution with
standard deviation (STD) of 3 nm. It can be seen that although
the reflection spectrum is noisy, the overall profile is retained,
and the main peak of the resonance remains. We repeated
this calculation 40 times, using the same Gaussian distribution
noted above in order to obtain a statistical overview of the ex-
pected spectrum of imperfect structures. For each frequency,
we obtained the STD of the reflection power distribution and
plotted corresponding error bars in Fig. 8(b). Note that al-
though the variations in the spectrum are noticeable, the main
feature of the peak still remains. Analogous conclusions were
obtained in Ref. [32] when analyzing the quality factor of
DBE resonances, where the standard deviation was growing
with the length of the DBE resonator. The present analysis
is just an example of the potential impact of imperfections
on the performances of a device operating near an SIP. A
comprehensive analysis of this topic is beyond the scope of
this paper and the results of a detailed study will be published
in a separate paper.

V. ANALYZING GAIN PROPERTIES

The sharp resonances associated with a high quality factor
and the SIP frequency indicate that such a structure could be
useful for the realization of low-threshold lasers [16,24,33].
To identify the lasing threshold of the structure we introduce
an imaginary part to the refractive index of the resonators
and waveguides, and consider the dependence of the thresh-
old level on the number of unit cells. The lasing condition
is a singular point, which is characterized as a pole in the
transmission spectral response. In other words, at the lasing
threshold, the output power calculated using the transfer ma-
trix approaches infinity regardless of the input intensity level,
as shown in Ref. [34], chap. 5. In practice, gain saturation
effects, which are often not considered in a linear transfer-
matrix analysis, limit the actual output power. Nevertheless,
such effects do not affect the lasing threshold.

As the structure supports many resonances that can po-
tentially lase, we consider the resonance which is closest to
the SIP frequency because it is the one that retains the SIP
properties the most. As the group velocity in the vicinity of
this frequency is lowest, the intensity buildup at this frequency
is expected to be enhanced substantially and exhibit the lowest
threshold level. We continue to focus on the SIP obtained
with set 1 parameters. Figure 9(a) depicts the resonance (i.e.,
the lasing) angular frequency (denoted by magenta dots) as a
function of the number of unit cells. The resonance frequency
approaches ωs, which corresponds to ωSIP frequency for the
magenta points, as the number of the unit cells increases.

As a comparison, we also calculate the threshold level of
a structure exhibiting a RBE of a coupled-resonator optical
waveguides (CROW) structure [35] composed of ring res-
onators with radius R = 7 µm (which is the same as the one in
set 1 of Table I here considered) coupled to each other with the
coupling coefficient κr = κ2 from set 1. The unit-cell length
of the CROW is l = 4R, which is smaller than the unit-cell
length of our structure. Any realistic structure exhibits losses
that should be included in the calculation of the lasing thresh-
old. Thus, we introduce a loss parameter of α = 0.01 to the
ring resonators, equivalent to a 1% power loss per revolution.

Although the comparison is not perfect, it does allow us
to get a better understanding of the lasing properties of a
device operating in the vicinity of an SIP. The process of

FIG. 8. (a) Reflection from port 1 of a finite-length waveguide structure with 60 unit cells, which has a geometrical error in each unit cell.
(b) Reflection from port 1 with error bars representing the standard deviation for each frequency. The parameters in set 1 are used.
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FIG. 9. Dependence of the threshold gain in the waveguides, and
the lasing frequency vs the number of unit cells of the structure.
(a) The angular resonance frequency ωres, which is the closest to the
stationary point ωs, as a function of the number of unit cells. ωs refers
to the stationary point frequency, either ωSIP (for the magenta dots) or
ωRBE (for the blue dots). Magenta points denote change in resonance
frequency normalized by the SIP frequency in our structure. Blue
points denote change in resonance normalized by the RBE frequency
in the CROW. (b) The threshold gain for RBE in the CROW model,
and SIP in the proposed model vs the number of unit cells. The y
axis is in logarithmic scale. Magenta points denote SIP threshold
gain. Blue points denote RBE threshold gain. The two insets show
polynomial fitting of the SIP (magenta) and the RBE (blue). Note
that the y axis in those figures is in linear scale.

calculating the threshold gain for a finite structure is detailed
in Appendix B.

Figure 9(a) also shows the lasing frequency of a CROW
structure as a function of the number of unit cells, N (blue
dots). The lasing frequencies are normalized to either ωSIP or
to ωRBE, according to the relevant structure. Note that in this
case ωRBE ≈ 1224(rad/ps). It can be seen that the number of
unit cells N has more impact on the lasing frequency of the
SIP supporting structure than on that of the RBE. However,
although the lasing frequency of the RBE supporting structure
seems to be independent of N , this is not the case. The inset
of the figure shows a zoom-in on the lasing frequency of
the RBE structure, indicating that it also approaches ωRBE

as N increases. In both cases, the dependence of the reso-
nances on N can be described as ωth ∝ α + βN−1 + γ N−3.

Figure 9(b) depicts a comparison between the threshold gain
(in the waveguides) near the SIP (in pink) of the structure
depicted in Fig. 6, and that corresponding to the RBE in the
CROW. The parameters of set 1 in Table I have been used in
the comparison. The threshold gain is presented as a function
of the number of unit cells in each structure. The scale of the
y axis is in logarithmic scale. There are a couple of important
points to be noted: first, the lasing threshold gain of the SIP
supporting structure decreases rapidly with the number of unit
cells, reaching a minimal level of ≈4.5 dB/cm at N = 64,
and second is that the lasing threshold stabilizes for longer
structures. We attribute the threshold gain stabilization to the
fact that the loss in structure is also proportional to the number
of unit cells. Thus, for a sufficiently long structure, this loss
mechanism dominates all other mechanisms in the structure
(e.g., output coupling loss), and the lasing threshold is ob-
tained when the gain becomes equal to the loss at each unit
cell. In contrast, the dependence of the threshold gain on N
for the RBE case seems to be approximately constant. How-
ever, zooming in on the RBE lasing threshold N dependence
[shown as the left inset in Fig. 9(b)] indicates that this is not
the case. The threshold gain near the RBE of the CROW is
not constant, but rather decreases slowly with N , at a slope
that is substantially slower than that of the SIP supporting
structure.

Second, by fitting the two calculated curves [see insets of
Fig. 9(b)] we find that the threshold gain dependence on N
in both cases can be described by a third-order polynomial in
N−1: a + b N−1 + c N−3. This dependence agrees with previ-
ous results [6,7,16]. The main difference between the curves
is the value of the fitting coefficients b and c corresponding to
the dependence on N−1 and N−3 respectively. In the CROW
structure we find that |bRBE| ≈ 10−1 dB/cm and cRBE ≈ 2 ×
104 dB/cm, while in the SIP supporting structure we find that
|bSIP| ≈ 2 × 10−4 dB/cm and cSIP ≈ 2 × 107 dB/cm. There is
a substantial difference (of orders of magnitude) between
these coefficients, which has a dramatic impact on the prop-
erties of the two stationary points (the SIP and RBE). The
decrease of the lasing threshold as a function of N is signifi-
cantly faster for the structure supporting an SIP. This is seen
by the larger fitting coefficient of the N−3 term and the smaller
coefficient of the N−1 term for that structure. Consequently,
the dominant dependence of the lasing threshold of the SIP
structure and the CROW is N−3 and N−1, respectively. It
should also be noted that although the threshold value of the
SIP structure is larger than that of the CROW for N < 54,
once the structure length exceeds 54 unit cells, the SIP lasing
threshold becomes smaller. Although a direct comparison be-
tween the structures is difficult because they are very different
from each other, the overall trend indicates the advantages
of operating near a SIP. Clearly, a laser operating at an SIP
can potentially exhibit a lower lasing threshold than that of
conventional lasers.

VI. CONCLUSION

In this paper, we introduced a periodic structure com-
posed of three parallel waveguides that are coupled to each
other by ring resonators and directional couplers. We calcu-
lated the dispersion relation of the structure by means of the
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transfer-matrix method and showed that a proper choice of
the structure parameters (coupling coefficients, ring radius,
and length of the unit cell) leads to the formation of SIPs in
the dispersion relation. We also showed that it is possible to
control the frequency and wave number of the SIPs. Moreover,
we studied the properties of finite-length structures (i.e., with
a finite number of unit cells). We calculated the spectral trans-
mission and reflection at each port and studied their properties
in the vicinity of the SIP frequencies. We then studied the
transmission and reflection properties of a closed structure,
exhibiting only two ports, by introducing reflectors at the
other four ports. This is only one of the possibilities of clos-
ing such a structure, and other closed-structure configurations
might lead to different spectral transmission and reflection.
Specifically, we focused on two structures with N = 30 and
70 unit cells. We found that longer structures yield sharper
resonances exhibiting higher Q factors. We attribute this to
the fact that the longer the structure, the closer the resonance
gets to the zero-group-velocity point in the dispersion rela-
tion. We briefly discussed the impact of imperfections due
to fabrication errors and tolerances on the spectral proper-
ties of this structure. Finally, we analyzed the ability of this
structure to serve as a laser by introducing optical gain into
the structure. Specifically, we focused on the dependence of
the lasing threshold gain on the number of unit cells, N . We
compared the lasing threshold gain at the SIP frequency and
that of a structure supporting a second-order stationary point
(i.e., RBE). We found that although the dependence of the
threshold gain on N is similar in both cases and can be de-
scribed by a third-order polynomial in N−1, the threshold level
of SIP-supporting structure decreases faster with increasing
N . Thus, we conclude that this structure is highly attractive
for low-threshold laser devices.
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APPENDIX A: OPTIMIZATION PROCESS

This Appendix describes the design and optimization pro-
cess of the SIP-supporting structure. For this design, there are
five independent parameters that need to be determined (and
optimized): the power coupling coefficients (κ1, κ2, κ3), the
ring radius (R), and a length parameter, which is related to the
length of the unit cell (d). There is an additional degree of
freedom, which is the position of the directional coupler (in
the longitudinal direction) between the middle and the lowest
waveguide. Here, we choose to position it at the center of the
unit cell, equally distanced from the two microrings. Never-
theless, this is just a specific choice. Changing the position
of the directional coupler breaks mirror symmetry, in the z
direction inside the unit cell, which might allow us to get
another SIP because it is a nonsymmetric stationary point.
This structure does not exhibit any symmetry in the vertical
axes, which is a requirement for obtaining an SIP.

Since there are many parameters that need to be deter-
mined, a numerical optimization approach is required. To
determine the design parameters we minimize the coalescence

FIG. 10. Convergence of the optimization process. The
x, y, and z axes denote the intensity coupling coefficients. The size
of the dots and their color indicate the value of Dh in dB. The bigger
and darker the dots are the smaller Dh is.

parameter in Eq. (A1), introduced in Ref. [36]. This parameter
quantifies the degree of coalescence between a number of
complex vectors, determined by the order of the stationary
point So. For example, in the case of an SIP, the degree
of coalescence of three eigenvectors of the transfer matrix
{φk}, having the same eigenvalue, is minimized. When the
angles between all of the eigenvectors approach zero (i.e.,
all the eigenvectors are parallel), the coalescence parameter
approaches zero as well, i.e., Dh → 0. At the start of the opti-
mization process, the length of the unit cell and the radius of
the microring are chosen randomly. The coupling coefficients
are then varied manually by means of trial and error until a
potential SIP is formed in the dispersion relation at a certain
wavelength λp. Then, the coupling coefficients are optimized
numerically in an attempt to minimize Dh for the wavelength
λp. Here we employ the Nelder-Mead simplex algorithm for
the optimization [37]. Our objective function is f ({φk}) =
Dh({φk}) + 102[D(γ ) − Ddesired]. The term Dh corresponds to
the coalescence parameter of a group of eigenvectors having
the same eigenvalue γ . The “degeneracy” parameter corre-
sponds to the degeneracy (i.e., algebraic multiplicity) of the
eigenvalue γ , related to the group of eigenvectors {φk}. The
Ddesired parameter is the desired order of the degeneracy of
the eigenvalue γ (e.g., Ddesired = 3 for an SIP). Therefore, the
use of this objective function favors the formation of Ddesired

identical eigenvectors and eigenvalues:

Dh = 1(So

2

)
So∑

m=1,n=1
m>n

sin(θn,m), cos(θn,m) = 〈φn|φm〉
‖φn‖‖φm‖ . (A1)

Figure 10 depicts the convergence of the optimization pro-
cess that yielded the coupling coefficients of set 1. In this
case, λp is the wavelength of the SIP λ ≈ 1.54 µm, and the
ring radius and the unit-cell length are defined in Table I. The
dots in the figure indicate the position in the three-dimensional
coupling coefficients space {κ1, κ2, κ3} of the structure during
the optimization process. The size and the color of the dots
indicate the value of the coalescence parameter. The small
yellow dot located at {κ1, κ2, κ3} = {0.32, 0.15, 0.55} indi-
cates Dh in the initial point (obtained manually as described
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above) of the optimization process. At this point, Dh > 0.3,
indicating that the eigenvectors have not coalesced yet. The
dots show the progress of the optimization process, indicating
the trajectory in the coupling coefficients space and the corre-
sponding coalescence parameter. At the end of the process we
get Dh ≈ −30 dB [dB stands for 10 log10(Dh)].

APPENDIX B: CALCULATING THE THRESHOLD GAIN

In this Appendix, we present the process for calculating the
threshold gain level and the resonance frequency for a finite-
length structure with single input and transmission ports, as
depicted in Fig. 6. A uniformly distributed gain is added to
the structure, by introducing an imaginary part (ni) to the
refractive index of the waveguides and the ring resonators.
First, we find the amplitude transmission of the structure
as a function of the frequency and gain. We then plot the
absolute value of the amplitude transmission log10|T 2| as a
function of these parameters, as depicted in Fig. 11 for a
structure composed of 56 unit cells (in logarithmic scale). This
plot allows for the identification of the resonance (i.e., las-
ing) frequencies and their corresponding lasing thresholds. A
threshold condition corresponds to a pole in the transmission
function, which is manifested as a peak in the transmission
function. Next, we identify the resonance frequency closest
to the SIP frequency (the SIP frequency was obtained by
using the optimization process described in Appendix A).
While the resonance frequency does not coincide with the SIP

FIG. 11. Log scale of the transmission power for a finite-length
structure with 56 unit cells, and single input port and transmission
port. The transmission is plotted as a function of the angular fre-
quency and the imaginary part of the effective refractive index of a
uniform (single mode) waveguide. Three lasing conditions are visible
as the narrow frequency sharp peaks.

frequency, it approaches it for a very large number of unit

cells, i.e., ωres
N→∞−−−→ ωSIP [5]. The gain level at which the

transmission is maximal is the threshold gain of the structure
at the relative resonance (i.e., lasing) frequency. The lasing
threshold is identified as the gain at which the transmission is
maximal at the resonance frequency of interest.
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