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We discuss the properties of electromagnetic transverse electric and transverse magnetic (TE and TM) pulses
based on a family of oscillatory solutions of the wave equation. The energy and momentum densities of the TE
and TM pulses are annular. These pulses are sufficiently localized to have finite norm, total energy, momentum,
and angular momentum, which are evaluated analytically. All the solutions given are proved to be strictly forward
propagating (unidirectional). The wave function is characterized by a length a and a wave number K . The
longitudinal extent of the pulses and the number of oscillations are of order 2a and Ka, respectively. Far from the
focal region, the annular TE and TM pulses diverge from the axis of propagation on a cone, the angle of which
is determined.
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I. INTRODUCTION

The wave equation goes back to d’Alembert and Euler
(for the one- and three-dimensional cases, respectively). This
paper is about solutions ψ (r, t ) of the wave equation suf-
ficiently localized in space-time to have finite norm N =∫

d3r |ψ (r, t )|2, and, for the electromagnetic pulses derived
from ψ (r, t ), finite total energy and total momentum. We also
insist that the pulses be unidirectional, by which we mean that
no part of the pulse has negative momentum component in the
direction of propagation. We prove that the transverse electric
(TE) and transverse magnetic (TM) pulses formed from a
general superposition of the product of plane longitudinal and
Bessel-function transverse solutions of the wave equation are
all strictly forward propagating.

Recent interest in optics is in very short pulses, with a
small number of cycles. We shall give the properties of a class
of solutions characterized by a length and a wave number:
their norm, and the energy and momentum of the transverse
electric and transverse magnetic pulses formed from them.
The pulses can be subcycle to many cycle, depending on the
(freely chosen) length and wave-number parameters.

We first give an example of existing solutions. So,
Plachenov and Kiselev [1] discovered a simple unidirectional
and localized solution of the wave equation, u+. In cylindrical
coordinates (ρ, φ, z), the simplest version of u+ is (we nor-
malize the wave function to unity at the space-time origin)

G(ρ, z, t ) = a2

R(R − iz)
, R2 = (a + ict )2 + ρ2. (1.1)

The author [2] has found a family of solutions of the wave
equation, of which the simplest form is

�0(ρ, z, t ) = F (R − iz)

R

(F is any twice − differentiable function). (1.2)

An additional length parameter b may be introduced by a
complex translation in z, z → z−ib, as discussed in Ref. [3]
(Sec. 2.6 and Appendix 2B). Solutions of the wave equation

with azimuthal dependence of the form eimφ may be obtained
by operating repeatedly with ∂x + i∂y = eiφ (∂ρ + iρ−1∂φ ); for
example, �1(ρ, φ, z, t ) = eiφ∂ρ

F (R−iz)
R .

This paper is an exploration of the properties of oscillatory
pulses formed by setting F (X ) = X −1exp(−KX ), namely

GK (ρ, z, t ) = a2 eKa eiKz−KR

R(R − iz)
. (1.3)

We note that GK → G in the limit K → 0.
In Sec. II we shall give the basic properties of such pulses,

as functions of the length parameter a, and the wave number
K , both assumed to be positive. Section III will examine the
properties of TE and TM pulses formed from GK , and give
graphical examples. Section IV proves that for pulses based
on a large class of solutions of the wave equation (which
includes GK ) there is no backflow. This section also com-
pares and contrasts the isophase surfaces of GK pulses and of
monochromatic beams. Section V gives estimates of the TE
and TM pulse extent, and of the angle at which they converge
onto or diverge from the axis of propagation.

II. PROPERTIES OF PULSES IN TERMS OF THEIR
WAVE-NUMBER WEIGHT FUNCTION

Forward-propagating solutions of the wave equation may
be put in the form (Ref. [3], Sec. 2.4)

ψm(ρ, φ, z, t ) = eimφ

∫ ∞

0
dk e−ikct

∫ k

0
dqw(k, q)eiqzJm(κρ),

κ =
√

k2 − q2. (2.1)

Proof of the unidirectionality of TE and TM pulses based on
(2.1) will be given in Sec. IV.

The wave-number weight function w(k, q) determines the
wave function ψm. For the function GK the azimuthal quantum
number m is zero, and the weight function is

w(k, q) =
{

a2 e(K−k)a, k � K, q � K
0, otherwise

. (2.2)
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The factor a2 eKa normalizes the wave function to unity at
the space-time origin. The remaining exponential decay factor
e−ka provides the scale length a. Note the all-important cutoff:
both the total wave number k and its longitudinal component
q must exceed the characteristic wave number K.

The norm
∫

d3r |ψm|2, for a given wave function ψm de-
fined by (2.1), is given by Ref. [3], Sec. 2.4 (we have changed
the variable of integration from κ to q).

N =
∫

d3r |ψm|2 = (2π )2
∫ ∞

0
dk k−1

∫ k

0
dq |w(k, q)|2.

(2.3)

For the weight function given in (2.2) the norm evaluates to

N = 2π2 a3{1 − 2Kae2KaEi1(2Ka)},

Ei1(α) =
∫ ∞

1
dy y−1e−αy (α > 0). (2.4)

The wave-number weight function w(k, q) also determines
the total energy, total momentum, and total angular momen-
tum of particular electromagnetic pulses based on the wave
function (2.1). For both the transverse electric and the trans-
verse magnetic pulses these are given by [4]

U =
∫

d3r u(r, t )

= π

2

∫ ∞

0
dk

∫ k

0
dq|w(k, q)|2 (k2 − q2)k, (2.5)

cPz = c
∫

d3r pz(r, t )

= π

2

∫ ∞

0
dk

∫ k

0
dq|w(k, q)|2(k2 − q2)q, (2.6)

cJz = c
∫

d3rρ pφ

= π

2

∫ ∞

0
dk

∫ k

0
dq|w(k, q)|2(k2 − q2)m. (2.7)

The energy, momentum, and angular momentum densities
are the same for the TE and TM pulses, as we shall see in the
next section.

The expressions (2.5) to (2.7) for the total energy, mo-
mentum, and angular momentum show that a classical
electromagnetic wave packet can be thought of as a super-
position of light quanta, with energies h̄ck, z components of
momenta and of angular momenta h̄q and h̄m.

For the m = 0 wave function (1.3), corresponding to the
wave-number weight function (2.2), we find from (2.5) and
(2.6) that

U = π

16a
(4 + 5Ka + 2K2 a2),

cPz = π

32a
(3 + 6Ka + 4K2 a2). (2.8)

(It is understood that these values, obtained from a dimension-
less solution of the wave equation, are to be multiplied by a
factor of dimension energy times length.) The expressions in
(2.8) can be verified by integration over all space of the energy
and momentum densities to be derived in in Sec. III. Note that

cPz < U for all values of Ka, in accord with the general theo-
rem (Ref. [5], Sec. 16.5 and Problem 16.17; Ref. [3], Sec. 1.4).
Such pulses may be Lorentz transformed to a zero-momentum
frame [6–10], and one may accordingly associate a mass with
each pulse [11]. The behavior of the ratio cPz/U at small and
large Ka is

cPz

U
= 3

8
+ 9Ka

32
+ O(Ka)2,

cPz

U
= 1 − 1

Ka
+ O(Ka)−2.

(2.9)

When Ka � 1, Eq. (2.8) gives the energy and momentum of
pulses formed from G. In the large-Ka limit the TE and TM
pulses based on GK have the textbook ratio of momentum to
energy, associated with electromagnetic plane waves.

III. ELECTROMAGNETIC TE AND TM PULSES
BASED ON GK

Free-space electromagnetic fields which satisfy the
Maxwell equations may be constructed from a vector poten-
tial A(r, t ) and a scalar potential V (r, t ) which satisfy the
wave equation and the Lorenz condition ∇ · A + ∂ctV = 0.
For example, in Cartesian coordinates [x, y, z], the choice V =
constant, A = ∇ × [0, 0, ψ] = [∂y, −∂x, 0]ψ satisfies the
Lorenz condition, and gives us the transverse electric (TE)
pulse with

E = −∂ct A = [−∂y∂ct , ∂x∂ct , 0]ψ,

B = ∇ × A = [
∂x∂z, ∂y∂z, −∂2

x − ∂2
y

]
ψ. (3.1)

In cylindrical polars the complex fields simplify to

E = (−imρ−1∂ct , ∂ρ∂ct , 0)ψ,

B = (
∂ρ∂z, imρ−1∂z, ∂2

z − ∂2
ct

)
ψ. (3.2)

We have assumed azimuthal variation eimφ , as in Eq. (1.2), and
that ψ satisfies the wave equation. Note that in the plane-wave
limit, ψ → eiK (z−ct ), the fields vanish.

When m = 0 the TE pulse has one nonzero E component,
the azimuthal one. Its electric field is therefore linearly polar-
ized, but the direction of polarization is not fixed in space: the
field lines are circles, centered on the propagation axis.

Both the real and the imaginary parts of ψ are solutions
of the wave equation, giving two physical fields, the real and
imaginary parts of (3.2):

Er = (mρ−1∂ctψi, ∂ρ∂ctψr, 0),

Br = (
∂ρ∂zψr, −mρ−1∂zψi, ∂2

z ψr − ∂2
ctψr

)
, (3.3)

E i = (−mρ−1∂ctψr, ∂ρ∂ctψi, 0),

Bi = (
∂ρ∂zψi, mρ−1∂zψr, ∂2

z ψi − ∂2
ctψi

)
. (3.4)

A TM pulse is obtained from the TE pulse by the duality
transformation E → B, B → −E. The duality transfor-
mation leaves the energy density u = 1

8π
(E2 + B2) and the

momentum density p = 1
4πc E × B unchanged. Thus, for both

TE and TM pulses, with the fields given in (3.3) we have

8πu = (∂ρ∂zψr )2 + (∂ρ∂ctψr )2 + [
∂2

z ψr − ∂2
ctψr

]2

+ m2ρ−2[(∂zψi )
2 + (∂ctψi )

2], (3.5)
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4πcpρ = EφBz − EzBφ = EφBz = (∂ρ∂ctψr )
(
∂2

z ψr − ∂2
ctψr

)
,

(3.6)

4πcpφ = EzBρ − EρBz = −EρBz

= −mρ−1(∂ctψi )
(
∂2

z ψr − ∂2
ctψr

)
, (3.7)

4πcpz = EρBφ − EφBρ

= −m2ρ−2(∂ctψi )(∂zψi ) − (∂ρ∂ctψr )(∂ρ∂zψr ). (3.8)

The energy density u is non-negative. The φ component
of the momentum density is proportional to the azimuthal
winding number m, and hence so is the angular momentum
density component along the direction of propagation, jz =
xpy−ypx = ρpφ . For a TE or TM pulse formed from the real
parts of the fields,

jz = − m

4πc
(∂ctψi )

(
∂2

z ψr − ∂2
ctψr

)
. (3.9)

The energy- and momentum densities obtained by choosing
the fields (3.4) have the same form, with ψr and ψi inter-
changed and a change of sign in pφ (and hence of jz).

Figures 1 and 2 show the energy and the momentum den-
sities for the case Ka = 2. Figure 1 is based on the fields
of (3.3), the real parts of (3.2); Fig. 2 is based on (3.4), the
imaginary part of (3.2).

Figures 3 and 4 show the energy and the momentum den-
sities for the case Ka = 2π . Figure 3 is based on the fields
of (3.3), the real parts of (3.2); Fig. 4 is based on (3.4), the
imaginary part of (3.2).

We see from Figs. 1–4 that the TE and TM pulses based on
GK are annular, with a complex structure in their focal region
(here coinciding with the space-time origin), but becoming
more simply organized as they diverge away from the focal
region. The longitudinal component of the momentum density
pz is zero on the axis ρ = 0 when m = 0. This follows from
(2.1) and (3.6): ∂ρJ0(κρ) = −κJ1(κρ), and this is zero when
ρ = 0. When m = 0 the momentum-density component pρ is
also zero on axis, for the same reason, and pφ is identically
zero.

IV. ABSENCE OF BACKFLOW IN TE AND TM PULSES

Backflow (regions where pz < 0) follows from the topolog-
ically necessary zeros in the focal region of electromagnetic
beams (Ref. [12], Sec. 1.6); it also arises in the superposition
of plane electromagnetic waves [13].

Here we give a proof of the absence of backflow for TE and
TM pulses based on the integral representation of the wave
function,

ψ (ρ, z, t ) =
∫ ∞

0
dke−ikct

∫ k

0
dqw(k, q)eiqzJ0(κρ)

= 1

2π

∫ π

−π

dχ

∫ ∞

0
dke−ikct

∫ k

0
dqw(k, q)

× eiqzeρ(q cos χ+ikχ ). (4.1)

The second equality follows from Bessel’s integral
(Ref. [14], Sec. 2.21). We shall first assume that the wave-
number weight function w(k, q) is real, as it is for GK . Then,

FIG. 1. Energy density (contours) and momentum density (ar-
rows) of TE or TM pulses formed from real part of GK , with Ka = 2
and at times ct = 0, a, and 2a. Propagation is from left to right.
Three-dimensional picture is obtained by rotation about propagation
axis (z axis).

the real part of ψ is

ψr = 1

2π

∫ π

−π

dχ

∫ ∞

0
dk

∫ k

0
dqw(k, q)eρq cos χ

× cos {qz − kct + kρ sin χ}. (4.2)

From (3.8) the z component of the momentum
density is proportional to −(∂ρ∂ctψr )(∂ρ∂zψr ). The
derivatives we need have integrands w(k, q) times
eρq cos χ cos{qz−kct + kρ sin χ}. For ∂ρ∂zψr and ∂ρ∂ctψr

the derivatives are, respectively,

− q eρq cos χ [q cos χ sin{qz − kct + kρ sin χ}
+ k sin χ cos{qz − kct + kρ sin χ}], (4.3)

k eρq cos χ [q cos χ sin{qz − kct + kρ sin χ}
+ k sin χ cos{qz − kct + kρ sin χ}]. (4.4)

The proof of the absence of backflow follows from the
fact that the ratio of the integrands of ∂ρ∂zψr and ∂ρ∂ctψr is
−q/k. In the integration over k, q, and χ of the integrands

063502-3



JOHN LEKNER PHYSICAL REVIEW A 108, 063502 (2023)

FIG. 2. Energy density (contours) and momentum density (ar-
rows) of TE or TM pulses formed from imaginary part of GK , with
Ka = 2 and at times ct = 0, a, and 2a. Note that in contrast to real
part in Fig. 1, energy and momentum densities are zero at space-time
origin.

of −∂ρ∂ctψr and of ∂ρ∂zψr , the sign of these quantities will be
the same at the same k, q, and χ . The same argument holds for
the pulses based on the imaginary part of ψ . Thus pz cannot
be negative: backflow does not happen for TE and TM pulses
based on GK with real w(k, q).

The integrands for general complex w(k, q) = wr (k, q) +
iwi(k, q) are also in the ratio −q/k. Any TE or TM pulse
based on m = 0 wave functions of the form (4.1) will not have
pz < 0, anywhere.

It remains to consider general TE and TM pulses with
angular momentum, based on solutions of the wave equation
of the form (2.1), namely

ψm(ρ, φ, z, t ) = eimφ

∫ ∞

0
dk e−ikct

∫ k

0
dqw(k, q)eiqzJm(κρ).

(4.5)

The z component of the momentum density is given by

4πcpz = −m2ρ−2(∂ctψi )(∂zψi ) − (∂ρ∂ctψr )(∂ρ∂zψr ). (4.6)

In the first term on the right of (4.6) the integrands of ∂ctψi

and ∂zψi are again in the ratio −q/k. Hence, the m2 term is
positive. In the second term we use the integral representation
of J0(κρ), as in (4.1), and the fact that higher-order Bessel
functions can be generated from J0(κρ) by repeated operation

FIG. 3. Energy density (contours) and momentum density (ar-
rows) of TE or TM pulses formed from real part of GK , with Ka =
2π and at times ct = 0, a, and 2a.

with ∂x + i∂y = eiφ (∂ρ + iρ−1∂φ ):

{eiφ (∂ρ + iρ−1∂φ )}m
J0(κρ) = (−κ )meimφJm(κρ). (4.7)

The ratio of the integrands of ∂ρ∂zψr and ∂ρ∂ctψr is again
−q/k, for any m and any complex weight function. TE or TM
pulses based on wave functions of the form (4.5), with integer
m and general w(k, q), do not have backflow.

Backflow does exist near the focal plane of monochromatic
beams, but it is weak and localized. See for example Figs. 3.2,
3.5, and 3.6 of Ref. [12], which show regions in which the
cycle-averaged value of pz for TE and TM beams is negative.

It is interesting to compare the focal regions of pulses and
of monochromatic beams. There is a topological difference
between the isophase surfaces in each: the beam surfaces of
constant phase are concave towards the focal center, and are
singular at circles on or near the focal plane. These singular
points are at the zeros of the complex wave function (both
ψr and ψi zero) at which the phase is not defined. Isophase
surfaces corresponding to adjacent phases can meet on these
circles, enabling the concave structure necessary for focal
concentration (Sec. 1.6 of Ref. [12], and references therein).
In contrast, the isophase surfaces of a scalar pulse have a topo-
logically different structure. Figure 5 compares the isophase
surfaces and moduli (at time zero) of a scalar pulse and of a
scalar beam in their focal regions.
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FIG. 4. Energy density (contours) and momentum density (ar-
rows) of TE or TM pulses formed from imaginary part of GK , with
Ka = 2π and at times ct = 0, a, and 2a.

For the pulse GK , the modulus and phase at t = 0 are

|GK (ρ, z, 0)| = a2 eK (a−
√

a2+ρ2 )√
(a2 + ρ2)(a2 + ρ2 + z2)

,

P(ρ, z, 0) = Kz + arctan
z√

a2 + ρ2
. (4.8)

The modulus has no zero except at infinity, and the phase
varies smoothly, without singularity.

We shall compare the modulus and phase of the scalar
pulse GK with those of the scalar beam family ψb (Ref. [12],
Sec. 2.6):

ψb(ρ, z) =
∫ k

0
dq q eq(b+iz)J0(ρ

√
k2 − q2). (4.9)

The time dependence e−ikct is understood: the beams whose
spatial dependence is defined in (4.9) are monochromatic,
with angular frequency ω = kc. The function ψb(ρ, 0) is real,
and has an infinity of zeros. The first zero, for kb = 2, lies
on the circle kρ ≈ 4.77, z = 0. At the focal-plane zeros of ψb

the surfaces of different phases can meet. Phases differing by
multiples of 2π (such as −π, π in the lower diagram of Fig. 5)
can meet anywhere, since phase is defined as mod 2π .

FIG. 5. Upper part: contours |GK |2, and isophase surfaces for
scalar pulse GK at time zero. Lower part: contours of |ψb|2 and
isophase surfaces for scalar beam of Eq. (4.9), again at t = 0. In both
parts contours are of logarithms of moduli, and phase surfaces are at
multiples of π/4. Propagation is from left to right.

V. EXTENT AND DIVERGENCE ANGLE OF TE AND TM
PULSES BASED ON GK

Figures 1 to 4 show that the TE and TM pulses based on
GK are annular. We wish to estimate the dependence on the
length a and wave number K of the following:

(i) longitudinal and transverse extents,

(ii) number of annuli, and

(iii) angle of divergence from the axis of propagation.

It will help to use the spheroidal-like coordinates
ξ, η, and ζ introduced in Appendix 2C of Ref. [3], in terms
of which ρ, z, and ct are given by

ρ = a
√

(ξ 2 − 1)(η2 + 1), ct = aξη, z = aζ . (5.1)

The variable ranges are 1 � ξ < ∞, −∞ < η < ∞, and
−∞ < ζ < ∞. The complex distance R becomes R =
a(ξ + iη), and the scalar pulse GK (ρ, z, t ) of (1.3) and its
modulus squared transform to

GK (ξ, η, ζ ) = eKa(1−ξ )eiKa(ζ−η)

(ξ + iη)[ξ + i(η − ζ )]
,

|GK |2 = e2Ka(1−ξ )

(ξ 2 + η2)[ξ 2 + (η − ζ )2]
. (5.2)
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The modulus squared is a Lorentzian, with maximum on
the axis (ρ = 0, ξ = 1) when ζ = η, that is, at z = ct . It
falls to half maximum when ζ = η ± 1. Thus defined, the
longitudinal extent of the scalar pulse is �ζ = 2 or �z = 2a.
The dominant wave number is K , so we expect the number
of oscillations within the wave packet to be of order Ka.
The main factor determining the transverse extent of pulses
derived from GK is e−2Kaξ . The transverse extent is thus of
order K−1.

For the TE and TM pulses the momentum is zero on the
axis, and the energy density has maxima on annuli. To apply
the spheroidal-like coordinates, we need the derivatives. The
z coordinate is just scaled, so a∂z = ∂ζ . The other derivatives
are given by

a∂ρ =
√

(ξ 2 − 1)(η2 + 1)

ξ 2 + η2
(ξ∂ξ − η∂η ),

a∂ct = −η(ξ 2 − 1)∂ξ + ξ (η2 + 1)∂η

ξ 2 + η2
. (5.3)

The wave-equation operator ∇2−∂2
ct becomes a−2 times

(ξ 2 − 1)∂2
ξ − (η2 + 1)∂2

η + 2ξ∂ξ − 2η∂η

ξ 2 + η2
+ ∂2

ζ . (5.4)

The real and imaginary parts of GK are

ψr = eKa(1−ξ )

(ξ 2 + η2)[ξ 2 + (η − ζ )2]
{(ξ 2 + ηζ − η2)

× cos Ka(η − ζ ) − (2η − ζ ) sin Ka(η − ζ )}, (5.5)

ψi = eKa(1−ξ )

(ξ 2 + η2)[ξ 2 + (η − ζ )2]
{(ξ 2 + ηζ − η2)

× sin Ka(η − ζ ) + (2η − ζ ) cos Ka(η − ζ )}. (5.6)

Both ψr and ψi annihilate ∇2−∂2
ct in the form (5.4).

The electric and magnetic fields of TE and TM pulses
are given in terms of the derivatives of the wave function
in Sec. III. On using (5.3) and the wave functions (5.5) or
(5.6), we obtain expressions in the spheroidal-like coordinates
ξ, η, and ζ . Of special interest are the energy densities ur and
ui derived from the wave functions ψr and ψi of (5.5) and
(5.6). These have the denominator

d = (ξ 2 + η2)
10

[ξ 2 + (η − ζ )2]
6
. (5.7)

There is thus a strong peaking around ζ = η (as there was in
|GK |2 and in ψr and ψi). We therefore examine the energy
density at ζ = η. Far from the focal region (on the scale of
the length a), and at positive times, the annular pulses diverge
from the axis of propagation on a cone. We wish to estimate
the polar angle θ at which they diverge. From the inverse
relations to (5.1) (see equation (C7) in Chap. 2 of Ref. [3]),
we find that

ξ = ct√
(ct )2 − ρ2

+ O(a2),

η =
√

(ct )2 − ρ2

a
+ aρ2

2[(ct )2 − ρ2]
3/2 + O(a3). (5.8)

FIG. 6. Energy density contours at ct = 8a for Ka = 2π pulse
based on ψi. Divergence angle θ ≈ 23.8◦ is found from (5.10).

On the cone of half-angle θ , and near the maximum energy
density, we set ρ = ct sin θ and z = ct cos θ . Then, with C =
cos θ ,

ξ → C−1, η → ct

a
C + a

2ct
(1 − C2)C−3. (5.9)

We examine the energy density based on ψi because this has
a maximum on r =

√
ρ2 + z2 = ct , whereas that based on ψr

has maxima on either side of r = ct , as seen in Figs. 1–4.
With the substitutions (5.9), we find that the energy density is
maximum on the angle determined by a quintic in C = cos θ :

2C5 + 2KaC4 + (Ka)2 C3 + (Ka)3 C2 − (Ka)3 = 0. (5.10)

For the Ka parameter values used in the figures, the di-
vergence angles are Ka = 2 : θ ≈ 41.2◦, and Ka = 2π :
θ ≈ 23.8◦. When Ka 	 1 the divergence angle θ tends
to (Ka)−1/2, in contradistinction to diffraction of a plane
monochromatic wave of wave-number K through an aperture
of size a, which has angular spread of order (Ka)−1. Figure 6
shows the energy density of the ψi pulse at ct = 8a when
Ka = 2π .

VI. SUMMARY AND DISCUSSION

An exact oscillatory solution of the wave equation, charac-
terized by a length a and a wave number K , is discussed and
used to generate electromagnetic TE and TM pulses. The en-
ergy and momentum densities of these pulses are calculated,
and the total energy and total momentum are found in two
ways, in terms of a and K . The TE and TM pulses are annular,
and converge onto or diverge from the axis of propagation,
asymptotically on a cone, whose angle is determined.

These pulses, and all of the possible pulses that can be
formed as a superposition of plane waves eiqz multiplied by
Bessel functions Jm(ρ

√
k2 − q2), are shown to be strictly

forward propagating, with momentum density pz � 0 every-
where.

In this context, it is interesting to note that recent analyses
of electromagnetic pulses [15,16] use the wave function (see
Ref. [3], Sec. 2.3 for discussion of this function and its origins)

ψ (ρ, z, t ) = ab

ρ2 + [a − i(z + ct )][z + i(z − ct )]
. (6.1)
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This wave function cannot be put in the form (2.1). Note
the dependence on z + ct as well as on z−ct . The modulus
of (6.1) has maxima at z = ±ct , and it was pointed out in
Ref. [2] that the scalar pulse has backward propagation. For
TE and TM pulses based on the real part ψr , the longitudinal
component pz of the momentum density, given in (3.8), has
at ct = −z and |z| 	 a, b, the leading term proportional to
a2−2ab − 3ρ2, which will be negative far from the axis, or at
all ρ if b > a/2. The ratio of momentum densities at ct = −z
and ct = z has negative leading term for large |z|:
pz(ct = −z)

pz(ct = z)
= (a2 − 2ab − 3ρ2)(a2 + 2ab + 3ρ2

a8(4a2 b2 − b4 + 12abρ2 + 9ρ4)
+O(z−2).

(6.2)

For TE and TM pulses based on the imaginary part ψi, the
situation is worse: the ratio of momentum densities at ct = −z
and ct = z has negative leading term for large |z|:

pz(ct = −z)

pz(ct = z)
= −b6

a6
+ O(z−2). (6.3)

In both cases the wave function (6.1) leads to unphysical back-
ward propagation. The total momentum is however positive,
provided a > b (Ref. [3], Sec. 3.5 and references therein):

U = π

16

a + b

ab
, cPz = π

16

a − b

ab
(ψr or ψi ). (6.4)

The above comments are in relation to the wave function
(6.1), and in no way a criticism of the experimental results
presented in [15] and [16].

A referee has drawn my attention to the paper by Smith and
Strange [17], about chirality and the topology of field lines.
Their fields are quite different: the electric and magnetic fields
are the real and imaginary parts of the cross product of two
gradients:

E + iB = E0∇α × ∇β, (6.5)

α = ρ2 + (z − ib)2 − (ct )2

ρ2 + z2 − (ct − ib)2 , β = 2bρe−iφ

ρ2 + z2 − (ct − ib)2 ,

(6.6)

These fields are sufficiently localized for the pulse to have
finite energy, momentum, and angular momentum. They are
interesting topologically: the field lines are linked or knotted.
The pulse is characterized by a single length b; it is not
oscillatory. Of particular interest here is that the construction
given above combines complex translation along z with the
same complex translation along ct .

The complex translation z → z−ib along the propagation
direction may be applied to generalize the pulses based on
GK discussed here, which have ct → ct−ia incorporated ab
initio. The lengths a and b will in general be different. In
contrast, with b replaced by a in the denominators of α and
β, the fields defined above do not satisfy the Maxwell curl
equations.
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