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Multipole solitons in competing nonlinear media with an annular potential
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We address the existence, stability, and propagation dynamics of multipole-mode solitons in cubic-quintic
nonlinear media with an imprinted annular (ring-shaped) potential. The interplay of the competing nonlinearity
with the potential enables the formation of a variety of solitons with complex structures, from dipole, quadrupole,
and octupole solitons to necklace complexes. The system maintains two branches of soliton families with
opposite slopes of the power-vs.-propagation-constant curves. While the solitons’ stability domain slowly shrinks
with the increase of even number n of lobes in the multipole patterns, it remains conspicuous even for n > 16.
The application of a phase torque gives rise to stable rotation of the soliton complexes, as demonstrated by means
of analytical and numerical methods.
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I. INTRODUCTION

Various types of self-bound states exist in diverse nonlinear
systems [1–3]. Generic species of such states include dipole
[4–6], quadrupole [6,7], and necklace solitons [8–12], as well
as vortex solitons carrying angular momentum [13–15]. These
are fundamentally important modes in nonlinear optics, Bose-
Einstein condensates (BECs), plasmas, and so on.

In addition to the ubiquitous cubic (Kerr) nonlinearity,
a variety of competing nonlinearities, aiming to arrest the
two-dimensional (2D) critical collapse, driven by the cubic
self-focusing, and thus stabilize 2D solitons, were proposed
theoretically and observed experimentally [3]. Representa-
tive examples include quadratic-cubic [χ (2) : χ (3)] [16] and
cubic-quintic [χ (3) : χ (5), alias CQ] [17–19] optical media,
where the focusing lower-order nonlinear term is necessary
for self-trapping of the localized states, while the higher-order
defocusing nonlinearity secures the arrest of the collapse. In
this case, the nonlinear index of refraction is negative at the
peak (center) of the self-trapped light beam, while remain-
ing positive in the beam’s wings. The dielectric response of
some materials used in nonlinear optics is accurately approx-
imated by the CQ combination of nonlinear terms [20,21].
Spatial optical solitons were also observed in a setting featur-
ing quintic-septimal (focusing-defocusing) nonlinearities with
negligible third-order nonlinearity [22]. Competing nonlinear-
ities have also been studied in plasma physics [23], as well as
in the context of Bose superfluids [24].

Multipole solitons feature a periodic azimuthal structure
consisting of an even number n of lobes (poles), which are
distributed evenly on a ring. Adjacent lobes have opposite
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signs, hence n cannot be odd (except for n = 1, which corre-
sponds to the axisymmetric ground-state mode). The simplest
structured state is the dipole, which corresponds to n = 2.
The thickness of the lobes is usually much smaller than the
effective radius of the ring. Though the diffraction of mul-
tipole modes can be effectively stymied by the nonlinearity,
the expansion in the radial direction [25] or spiral rotation
[26] eventually destroys the patterns in the course of long
propagation.

The concept of 2D multipole solitons was put forward
in Refs. [27,28], where stabilization of multipole structures
was achieved due to cross-phase-modulation coupling with
a nodeless field in a two-component system. The existence
of such solitons requires a focusing saturable nonlinearity.
On the other hand, the expansion of necklace-like beams in
focusing Kerr media can be slowed down by the angular
momentum imprinted upon the pattern [29]. Another method
for suppressing the expansion of necklace beams was elab-
orated in saturable systems with fractional diffraction [12].
Metastable necklace beams were also predicted in settings
with competing quadratic-cubic [30] and cubic-quintic [8,31]
nonlinearities and observed in local [32] and nonlocal nonlin-
ear media [33].

Relevant alternatives for trapping stable multipole solitons
are provided by confinement, with radial modulation of the
local refractive index inducing an effective trapping potential
[6,34]. Although local variation of the index is always small
in comparison to its background value, the corresponding
potential may be sufficient to strongly affect properties of
nonlinear modes (in particular, to stabilize them). Multipole-
mode solitons can be supported by different forms of photonic
lattices (potentials) and various types of optical waveguides
[35–47]. Particularly, multipole solitons may be made stable
under appropriate conditions in passive [35,38–40] and PT -
symmetric lattices [42,43], circular waveguide arrays [44],
and axially symmetric Bessel lattices [45–47].
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In addition to multipole solitons in optics, patterns with
different values of n were also predicted in BECs with
contact [48] and dipole-dipole [49] interactions. In binary
BECs, metastable quantum droplets in the form of ring-
shaped clusters were constructed in systems modeled by
the amended Gross-Pitaevskii equation with the Lee-Huang-
Yang (beyond-mean-field) correction [50]. Stable multipole
quantum droplets were predicted in a weakly anharmonic
potential [51].

Though many efforts were put forth to suppress the
instability of multipole solitons induced by the repulsive
force between adjacent poles, the search for stable multi-
pole solitons with large n is still a challenging problem,
while most works were focused on the stability of dipoles
and quadrupoles. Very recently, Liu et al. predicted that sta-
ble multipole solitons can exist in CQ media modulated by
a harmonic-Gaussian potential [52]. However, the stability
region of necklace-like solitons quickly shrinks with the in-
crease of n, the solitons with n � 8 being unstable in their
entire existence domain.

In this work, we put forward a model admitting the self-
trapping of stable multipole solitons with large n. The CQ
nonlinearity, combined with an imprinted ring-shaped poten-
tial is shown to support two branches of multipole families.
The radius of the multipole complexes and the respective
value of n can be controlled adjusting the radius of the po-
tential ring. The stability domain for the solitons shrinks very
slowly with the growth of n, allowing the existence of stable
modes with n > 16, greatly exceeding values of n that were
previously reported for stable multipole solitons. Unstable
lower-branch solitons can survive over a long propagation
distance, while unstable upper-branch ones are quickly de-
stroyed.

The following presentation is arranged as follows. The
model is formulated in Sec. II, and numerical results for static
patterns, produced by a systematic numerical analysis, are
summarized in Sec. III. Analytical and numerical findings for
rotating multipole solitons are reported in Sec. IV. The paper
is concluded by Sec. V.

II. MODEL

We consider an optical beam propagating along the z axis
in a bulk medium with the CQ nonlinearity and imprinted
transverse modulation of the refractive index, which induces
the effective radial potential. This setting is governed by the
2D nonlinear Schrödinger equation (NLSE) for the complex
field amplitude �, written here in the normalized form

i
∂�

∂z
=

[
−

(
∂2

∂x2
+ ∂2

∂y2

)
− pV (r) − |�|2 + |�|4

]
�. (1)

The effective ring potential, with radius r0, radial width d ,
and depth p, is adopted in the form of a Gaussian whose
maximum resides on a circle with a radius r0

V (r) = exp[−(r − r0)2/d2], (2)

where r =
√

x2 + y2 [in terms of the similar Gross-Pitaevskii
equation (GPE), with z replaced by time t , the potential
is −V (r)]. Equation (1) conserves the net power (alias the

energy flow) P, angular momentum M, and Hamiltonian H :
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|ψ |4 + 1
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|ψ |6

]
dxdy, (3)

where ∗ stands for the complex conjugate.
Stationary solutions of Eq. (1) are looked for as

�(x, y, z) = ψ (x, y) exp(ibz), (4)

where ψ is the soliton’s stationary profile and b is the longi-
tudinal propagation constant (in terms of the corresponding
GPE, −b is the chemical potential). Substituting ansatz (4) in
Eq. (1), we obtain the stationary equation

bψ = ∂2ψ

∂x2
+ ∂2ψ

∂y2
+ pV ψ + |ψ |2ψ − |ψ |4ψ, (5)

which can be solved numerically by means of the relaxation
or Newton-conjugate-gradient method [2].

Soliton families are defined by propagation constant b,
potential depth p, and geometric parameters r0 and d . By
means of scaling, we fix

r0 = 2π, (6)

and select d = √
6 and p = 10, which makes it possible

to produce generic results. Variation of the remaining free
parameter b produces families of soliton states which are
reported below. Other values of d and r0 produce quite similar
results.

The effective ring-shaped potential is displayed in
Fig. 1(a). Note that it is symmetric about the central circle with
r = r0, i.e., V (r = r0 − r′) = V (r = r0 + r′) for all 0 < r′ <

r0, see Fig. 1(b). This feature is important for the stabilization
of nonlinear modes due to the fact that the fields propagating
in the inner and outer annuli (r < r0 and r > r0, respectively)
experience the same guidance, in contrast to the case of the
harmonic-oscillator trapping potential, which is commonly
used to guide optical beams or trap BEC. Potential (2) indeed
favors the existence of stable vortex solitons with high topo-
logical charges [53], and of stable higher-order solitons with
a multiring profile, as shown by additional numerical results.

Before unveiling properties of multipole modes produced
by the full nonlinear equation (1), it is instructive to under-
stand the dispersion relation of its linearized counterpart, as
linear eigenvalues and eigenmodes essentially affect the build
of the nonlinear modes. The linear spectrum produced by the
numerical solution of the linearized version of Eq. (5), which
is displayed in Fig. 1(c), includes a finite number of discrete
real eigenvalues, in addition to the obvious continuous spec-
trum (not shown here). The growth of the potential depth
p results in a shift of the spectrum to the right. The varia-
tion of thickness d and radius r0 also alters the distribution
of the eigenvalues. Unlike the system with the harmonic-
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FIG. 1. The (a) top view and (b) radial cross-section of the ring
potential (2) with p = 10, r0 = 2π , d = √

6. (c) The respective spec-
trum of real eigenvalues bre produced by the linearized equation (5).
The bim denotes the imaginary part of b. The values of n denote
the pole number of the linear states from which multipole solitons
bifurcate out. (d)–(f) Linear eigenstates of fundamental, quadrupole,
and octupole modes corresponding to the eigenvalues marked in (c).
Insets in these panels and similar figures displayed below demon-
strate the phase structure of the eigenstates (alternation of values 0
and π ). All quantities are plotted in dimensionless units.

oscillator potential, the discrete part of the present spectrum
is not equidistant. While the lowest (ground-state) eigenvalue
is nondegenerate (as it must be, according to the general
principles of quantum mechanics), the eigenvalues of the ex-
cited states are doubly degenerate, with mutually orthogonal
eigenmodes corresponding to pairs of equal eigenvalues. Due
to the degeneracy, the eigenmodes with n � 2 poles corre-
spond to the (2n − 2)th and (2n − 1)th eigenvalues, while the
first eigenvalue corresponds to the ground-state eigenmode
shown in Fig. 1(d). A linear superposition of the two degen-
erate eigenmodes also produces an allowed state of the linear
system. For example, two superpositions of two orthogonal
dipole modes (i.e., those oriented along x and y directions),
with n = 2, build two counterrotating vortex states, which
carry the angular momentum and opposite winding numbers
(topological charges) m = ±1.

III. NUMERICAL RESULTS FOR STATIC
MULTIPOLE SOLITONS

Bearing the linear case in mind, we now focus on the
properties of multipole-mode solitons. First, dipole solitons
bifurcate from the linear eigenstates corresponding to the co-
inciding (mutually degenerate) second and third eigenvalues,
b = 8.753, which are shown in Fig. 1(c). The power and
amplitude initially increase with the growth of propagation
constant b, see the short bottom branch in the inset to Fig. 2(c).
As b increases to 8.903, the peak value of the dipole soliton
attains value |ψ |max = 1 (in the scaled notation adopted here).
Thus, the nonlinearity experienced by the dipole solitons is
entirely focusing at b < 8.903. At b > 8.903 (|ψ |max > 1), the
effect of the quintic defocusing becomes dominant in the core
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FIG. 2. (a), (b) |ψ (x, y)| for the unstable upper-branch and stable
lower-branch dipole solitons with b = 3.0 and b = 8.85, which are
marked by circles in the main plot and inset in (c), respectively. Insets
in (a) and (b) show the corresponding simple phase distribution in the
dipole modes. (c) Power of the dipole solitons P versus propagation
constant b. Inset: Zoom of the P(b) curve near the turning point. The
square denotes the merging point (cutoff of b). The solid and dashed
lines denote, severally, stable and unstable segments of the dipole-
soliton families. (d) The instability growth rate δre (real part of δ)
versus b for the upper-branch dipole solitons. Parameters are p =
10, r0 = 2π , d = √

6 in all the panels. All quantities are plotted in
dimensionless units.

region with |ψ (x, y)| > 1. The defocusing nonlinearity in the
core region arrests the growth of |ψ |max and accelerates the
increase of the soliton’s width, defined as

W 2 ≡
∫∫

(x2 + y2)ψ2dxdy/P. (7)

The gradual transition to the defocusing nonlinearity, along
with the action of the trapping potential, prevents the existence
of dipole solitons for the propagation constant exceeding
a cutoff value, viz., at b > b cut = 8.933, the correspond-
ing power being P = 21.693. Instead, further increase of
P is accommodated by the top branch of the P(b) depen-
dence in Fig. 2(c), with the negative slope, dP/db < 0,
which continues the short bottom branch through the turning
point, b > bcut.

Dipole solitons belonging to the lower branch in Fig. 2(c)
are composed of two far-separated crescent-shaped lobes
with opposite signs, tightly attached to the potential ring
[Fig. 2(b)]. With the increase of b, the crescent lobes elon-
gate, becoming thinner, while their amplitude grows under
the action of the dominant cubic focusing nonlinearity. On the
other hand, the dipole solitons belonging to the upper branch
in Fig. 2(c) are shaped mainly by the dominant defocusing
quintic nonlinearity, which results in the expansion of the
lobes along the radial and azimuthal directions. As a result,
the two lobes with opposite signs are separated by narrow
fissures, rather than wide gaps, see Fig. 2(b). The expansion
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FIG. 3. (a), (b) |ψ (x, y)| for stable upper-branch and unstable
lower-branch quadrupole solitons with b = 7.0 and b = 8.8, respec-
tively, which are marked in Fig. 4(a). (c), (d) The same for upper- and
lower-branch stable and unstable octupole solitons with b = 7.2 and
b = 8.5, respectively, which are marked in Fig. 4(b). All quantities
are plotted in dimensionless units.

is more salient for solitons with higher power, which tend to
develop a flat-top profile.

The stability of the stationary states can be analyzed by
taking perturbed solutions to Eq. (1) as

�(x, y, z) = [ψ (x, y) + f (x, y) exp(δz)

+ g∗(x, y) exp(δ∗z)] exp(ibz), (8)

where f and g are infinitesimal perturbations and δ is the
instability growth rate. The linearization of Eq. (1) around ψ

leads to an eigenvalue problem for f (x, y) and g(x, y):

i

[
M1 M2

−M∗
2 −M∗

1

][
f
g

]
= δ

[
f
g

]
. (9)

Here, M1 ≡ ∂2

∂x2 + ∂2

∂y2 + pV − b + 2|ψ |2 − 3|ψ |4, M2 ≡
ψ2(1 − 2|ψ |2), and ∗ denotes the complex conjugate.
Equations (9) can be solved by means of the Fourier
collocation method [2]. Solitons are stable if all eigenvalues δ

are imaginary.
Instability growth rates for the upper- and lower-branch

dipole solitons were obtained from the numerical solutions
of Eqs. (9). The results demonstrate that the lower branch is
stable in its entire existence domain, while the upper branch
is stable if the propagation constant exceeds a certain critical
value (which is a generic feature of 2D NLSEs with the CQ
nonlinearity), viz., b > bcr = 5.751 [see Fig. 2(c)]. At b < bcr,
the instability growth rate rapidly increases with the decrease
of b, see Fig. 2(d).

Next, we address multipole-mode solitons with a larger
number n of the lobes. The patterns of |ψ (x, y)| for
quadrupole and octupole solitons are shown in Fig. 3.
Similar to the dipoles, the lobes forming the lower-branch

(c) (d)

(a) (b)

FIG. 4. (a), (b) Integral power P versus propagation constant b
for quadrupole and octupole solitons, respectively. Insets: The P(b)
curves near the merging (turning) point. Solid and dashed lines de-
note stable and unstable solitons. (c), (d) The instability growth rate
δre versus b for the upper-branch and lower-branch (inset) quadrupole
and octupole solitons, respectively. All quantities are plotted in di-
mensionless units.

quadrupoles are separated by relatively wide fissures
[Fig. 3(b)], while the lobes of their upper-branch counterparts
are “fatter,” being tightly packed along the potential ring [see
Fig. 3(a)]. These features indicate that the repulsion between
adjacent lobes of the upper-branch quadrupoles is strong.

Adjacent lobes of octupole solitons are pressed onto each
other tighter than in the quadrupoles, cf. Figs. 3(b) and 3(c).
Due to the confinement imposed by the annular (ring-shaped)
potential, the radial size of the multipole solitons (the distance
from the center of each lobe to the origin) does not change
with the growth of n. As mentioned above, the adjacent lobes
in all multipole solitons have alternating signs, see inset phase
plots in Fig. 3.

The lower P(b) branch for the quadrupole solitons, orig-
inating from the linear mode at b = 8.674, merges with the
upper branch at bcut = 8.864 [see Fig. 4(a)]. The merging
(turning) point for the octupole solitons is bcut = 8.555, see
Fig. 4(b). The shift of bcut for solitons with different numbers
of poles is a straightforward consequence of the difference
in the linear eigenvalues of b from which the lower-branch
solitons bifurcate. The upper P(b) curves can extend to still
larger values of P for smaller b. We do not pay more attention
to the corresponding multipole solitons as they are definitely
unstable.

Unlike the dipole solitons which are completely stable on
the lower branch [see Fig. 2(c)], weak instability occurs for
the lower-branch quadrupole and octupole solitons, as seen in
insets in Figs. 4(a) and 4(b). The instability region expands
slowly with the growth of the pole number, as seen in in-
sets to Figs. 4(c), 4(d), and 5(d). Further, the upper-branch
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FIG. 5. (a), (b) |ψ (x, y)| of 16-pole solitons with b = 7.3 and 7.2,
which are marked, respectively, in the main plot and inset in (c). In-
sets in (a) and (b) show the corresponding phase distribution. (c) The
P(b) dependence for the 16-pole solitons. Inset: The P(b) curve
near the merger (turning) point. The solid and dashed lines denote
stable and unstable segments of the soliton families, respectively.
(d) The instability growth rate δre versus b for the upper branch and
lower branch (inset) of the 16-dipole soliton family. All quantities
are plotted in dimensionless units.

quadrupole and octupole solitons are stable, severally, in in-
tervals b ∈ [6.013, 8.864] and b ∈ [5.859, 8.555]. as shown
in Figs. 4(c) and 4(d). With the increase of n, the stabil-
ity segment of the upper-branch multipole solitons shrinks
very slowly, which is the most important finding of this
work. For example, the width of the stability intervals for the
quadrupoles and octupoles are 2.851 and 2.696, respectively.
Actually, these intervals, located to the left of the merging
point bcut, are relatively large ones. We stress that the stability
of the multipole solitons trapped in the annular potential is
very different from that for vortex solitons trapped in the same
potential [53], where the lower-branch vortices with all topo-
logical charges are unstable in their almost entire existence
domain, while all upper-branch vortices are completely stable.

To further understand the properties of multipole solitons,
we investigated necklace-shaped ones with n = 10, 12, 14,
and 16. Representative examples of the necklaces with n = 16
poles are presented in Figs. 5(a) and 5(b). Due to the con-
finement imposed by the annular potential, the components in
both lower- and upper-branch solitons are tightly packed in the
azimuthal direction and somewhat stretched along the radius.
This effect is more evident for the solitons with a higher power
or higher n. The lower-branch necklace solitons with n = 16
bifurcate from the linear mode at b = 7.154, while the point of
the merger of the lower and upper branches is at bcut = 7.346.
The stronger repulsion between the adjacent lobes in the case
of larger n causes shrinkage of the stability interval for the
upper-branch solitons. Nevertheless, for n = 16 there still ex-
ists a sufficiently wide stability interval to the left of bcut,
see Fig. 5(d). A nonvanishing stability region can be found
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FIG. 6. Examples of the simulated propagation of (a), (d) un-
stable and (b), (c), (e), and (f) stable solitons with (a), (b) n = 2,
(c), (d) n = 4, (e) n = 8, and (f) n = 16. The solitons belong to the
lower branch in (b), (d) and to the upper branch in other panels. The
propagation constant is b = 3.0 in (a), 8.85 in (b), 7.0 in (c), 8.8 in
(d), 7.2 in (e), and 7.3 in (f). The panels exhibit the outcome of the
propagation after passing the distance z = 100 in (a), 1540 in (d), and
2000 in the other panels. All quantities are plotted in dimensionless
units.

for still higher values of n (e.g., n = 20). These findings are
in sharp contrast to the in 2D cubic-quintic NLSE with the
harmonic-Gaussian potential [52], where the stability region
is virtually invisible for n > 8. We also note that the main
results hold for multipole solitons with different numbers of
poles in potentials with varying depths p. The stability region
gradually shrinks with the decrease of p due to weakening of
the trapping.

To verify the predictions of the linear-stability analysis
for the multipole families with different values of n, we
conducted extensive simulations of perturbed propagation for
the solitons, by means of the split-step Fourier method. The
perturbation was added, as white noise, to the input at z = 0
for stable solitons and no perturbations were added to the
solitons whose instability was predicted by the computation
of eigenvalues for small perturbations. Typical examples of
stable and unstable propagation are presented in Fig. 6. For the
upper-branch dipole soliton with b = 3.0, the large instability
growth rate δre = 1.266 destroys the original pattern, shown
in Fig. 2(a), after a short propagation distance, see Fig. 6(a).
The lower-branch quadrupole soliton with b = 8.8 and a small
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instability growth rate, δre = 0.019, is only deformed, but not
destroyed, after a long distance [Fig. 6(d)]. White noise added
to the stable solitons is quickly radiated away in Figs. 6(b),
6(d) to 6(f). The agreement between the predictions of the
linear-stability analysis and direct simulations is obtained for
all the cases considered.

IV. ROTATING MULTIPOLE SOLITONS: ANALYTICAL
AND NUMERICAL RESULTS

Because the multipole solitons have the articulate structure
in the azimuthal direction, it is natural to try setting them in
rotation, by imprinting a phase torque

ψ (x, y) → ψ (x, y) exp(imθ ), (10)

with integer index m, onto the static soliton. First, the result
of the application of this “crank” to the static multipole with
the narrow radial shape can be predicted in an approximate
analytical form. Indeed, assuming that the result is a pattern
rotating with angular velocity 	, in the form of

�(x, y, z) = ϕ(r, θ − 	z) exp (ibz + imθ ) (11)

[cf. Eq. (4)], which is written in the polar coordinates (r, θ ),
we substitute ansatz (11) in the underlying equation (1). This
leads to the conclusion that wave function ϕ satisfies the
stationary equation

bϕ = ∂2ϕ

∂r2
+ 1

r

∂ϕ

∂r
+ 1

r2

∂2ϕ

∂θ̃2

+
[

pV (r) − m2

r2

]
ϕ + |ϕ|2ϕ − |ϕ|4ϕ (12)

[cf. Eq. (5)], where θ̃ ≡ θ − 	z, the term −m2/r2 represent-
ing the centrifugal energy. An additional relation produced by
the substitution of ansatz (11) in Eq. (1) is an approximate
one, 	 = 2m/r2. It is approximate because it produces 	 as
a function of r, while the angular velocity must be a constant.
However, for the pattern confined to a narrow annulus around
r = r0, one may, in the first approximation, replace r by r0,
thus predicting the angular velocity and respective rotation
period

	 ≈ 2m/r2
0 , Z = 2π/	 ≈ πm−1r2

0 . (13)

In particular, for the radial size r0 = 2π of the trap adopted
here [see Eq. (6)] and m = 1, Eq. (13), predicts the rotation
period Z ≈ 4π3 ≈ 124, while the value produced by direct
simulations is Z ≈ 120 (see below), hence the approximation
is quite accurate. Furthermore, the simulation for the torque
with m = 2 produces the rotation with the double angular
velocity, in agreement with prediction given by Eq. (13).

The competition of the centrifugal energy with the trapping
potential in Eq. (12) may eventually suppress the trapping
effect if the effective combined potential, −pV (r) + m2/r2,
has no minimum. In the lowest approximation, the condition
for the survival of the minimum is

r3
0 >

√
2em2d/p. (14)

Systematic simulations clearly confirm transition to a
regime of steady rotation, initiated by the application of torque
(10). The rotation lasts for indefinitely many periods, without
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FIG. 7. The stable counterclockwise rotation of (a)–(c) dipole,
(d)–(f) quadrupole, and (g)–(i) octupole solitons initiated by torque
(10) with m = 1, applied to inputs selected as the stationary solitons
presented in Figs. 6(b), 6(c) and 6(e), respectively. The periods
of oscillations of the x width observed in panels (c), (f), and (i)
agree with the prediction Z/n, see the main text. The lower plot in
(c) displays the oscillations of the x width of the same dipole soliton
initiated by the double torque, with m = 2. In panel (c), the vertical
dashed lines define one rotation period, Z . All quantities are plotted
in dimensionless units.

generating any tangible loss (see Fig. 7). In particular, the
torque with m = 1 gives rise to the robust rotational state with
period Z ≈ 120.

The rotation is coupled to periodic oscillations of the effec-
tive soliton’s width. In particular, the oscillations of the width
in the x direction, defined by

W 2
x ≡

∫∫
x2ψ2dxdy/P ≈ W 2/2 (15)

[cf. Eq. (7)], with period Z ≈ 120, initiated by the torque with
m = 1 in Eq. (10), are plotted in Figs. 7(c) 7(f), and 7(i) for the
rotating dipole, quadrupole, and octupole, respectively. Note
that the period of oscillations of width (15) exhibited by an
n multipole rotating with period Z is Z/n. The oscillations
observed in Figs. 7(c), 7(f) and 7(i) completely agree with this
expectation.

To illustrate the steady rotation, examples of the patterns
are displayed at z = Z/4 and Z/2 for the dipole soliton
[Figs. 7(a) and 7(b)], Z/8 and Z/4 for the quadrupole
[Figs. 7(d) and 7(e)], and Z/16 and Z/8 for the octupole
[Figs. 7(g) and 7(h)]. The robustness of the rotation is corrob-
orated, in particular, by Fig. 7(c), which shows an example of
long evolution, for z = 600 (around five full rotation periods).
Movies presented in the Supplemental Material [54] illustrate
the rotation dynamics in full detail (the third movie displays
the clockwise rotation, while others represent the opposite di-
rection). Robust rotary states of the multispot patterns suggest
new possibilities for all-optical routing of weak data-carrying
light beams [45].
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The multipole solitons predicted in this work can be cre-
ated in the currently available optical experimental setups.
In particular, polydiacetylene paratoluene sulfonate (PPS) ex-
hibits competing nonlinearities with sufficiently large cubic
and quintic indices [20]. For a beam with carrier wavelength
λ = 1.6 µm, the second- and fourth-order optical indices are
n2 = 2.2 × 10−3 cm2/ GW and n4 = 0.8 × 10−3 cm4/GW2,
respectively. The critical intensity at which δn = 0 is I0 =
|n2/n4| = 2.75 GW/cm2. This material exhibits focusing
nonlinearity at I < 0.5I0 and becomes defocusing at I >

0.5I0. In other words, a localized beam experiences self-
defocusing around the peak intensity (assuming Imax > 0.5I0)
and focusing in the wings, where I < 0.5I0. As concerns
the linear refractive-index modulation inducing the annular
trapping potential, it may be created by means of the well-
elaborated technology used for the production of multilayer
fibers [55].

V. CONCLUSION

Summarizing, we investigated the existence, stability, and
propagation dynamics of excited nonlinear states contain-
ing different even numbers n of lobes in CQ (cubic-quintic)
optical media equipped with an annular (ring-shaped) trap-
ping potential. Adjacent components of such solitons have

opposite signs, being uniformly placed along the potential
annulus. With the increase of the soliton’s amplitude, the
transition from focusing to defocusing nonlinearity, along
with the action of the trapping potential, gives rise to two
branches of multipole soliton families, with opposite slopes
of the power-versus-propagation-constant curves. With the
increase of n, the stability domain of the solitons shrinks
very slowly, allowing the tangible presence of stable solitons
with n > 16. Steady rotation of multipole solitons, initiated by
the application of the phase torque, is predicted analytically
and numerically. The results suggest new ways of manip-
ulating light signals and the creation of novel self-trapped
states. The analysis reported here can be generalized for opti-
cal solitons in competing quadratic-cubic media, matter-wave
solitons in Bose-Einstein condensates, and quantum droplets
in Bose-Bose mixtures trapped in a ring potential. A challeng-
ing possibility is to extend the consideration for elliptically
shaped trapping potentials.
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